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Haus master equation

ET =

(
N − 1− a

1 + b|E|2
)

E + Eθθ

NT = γ

[
A−N −NL−1

∫ L

0
|E|2dθ

]
.

• Models a passively mode-locked laser in a

cavity with a fast saturable absorber.

• Supports the formation of a steady pulse

• Numerical experiments of Joly and Bielawski

(2001) show a Hopf bifurcation.
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Joly and Bielawski (2001)

Parameters:

A = 8, L = 3800, γ = 1.4e-4, b = 0.01.

Profile oscillations was found with a ≥ 0.003.
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Scaling

N = 1 + ωx, E = (A− 1)1/2y,

z = θ/L and s = ωT

where

ω ≡
√

2γ(A− 1)

xs =
1

2

[
1− ω

A− 1
x− (1 + ωx)

∫ 1

0
y2dz

]
,

ys = (x− α
1

1 + βy2
)y + Dyzz

where

α ≡ a

ω
, β ≡ b(A− 1) and D ≡ 1

ωL2
.

is known as the laser relaxation oscillation fre-

quency.
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Steady state

Expand in ω2, y = y0 + ω2y1 + · · · , x = x0 +

ω2x1 + · · · ,

0 = (x0 − α
1

1 + βy2
0

)y0 + Dy0zz,

0 = 1−
∫ 1

0
y2
0dz.

which has the form u′′ = F (u) from where,

x0 = α
ln(1 + βy2

M)

βy2
M

.

where yM is the maximum point of the spike.

Then use the second equation to solve for yM

and x0 simultaneously.
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Typical solution for y0:
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Hopf bifurcation

• Linearize around the steady state,

y ∼ yst(z) + eλsφ(z)

To leading order, we find λ ∼ i. Near Hopf

bifurcation we expand

λ = i + ωλ1 + · · ·
Imposing Reλ1 = 0 yield

Aω

A− 1
− 16βD

∫ ∞
0

y2
0dζ

∫ ∞
0

(
y2
0

1 + βy2
0

)2

dζ = 0.
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• We predict ah = 0.0029, (compared to 0.003

numerically).

• Simple explicit formula is possible when b is

small:

ah ∼
√

6γA

(A− 1)Lb
.

• Otherwise, ah is found by numerically evalu-

ating some integrals.
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Bursting behaviour

9



Generalization: slow
absorber
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