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Haus master equation
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e Models a passively mode-locked laser in a
cavity with a fast saturable absorber.

e Supports the formation of a steady pulse

e Numerical experiments of Joly and Bielawski
(2001) show a Hopf bifurcation.



Joly and Bielawski (2001)

Parameters:

A=8,L=3800,y=1.4e-4,b = 0.01.
Profile oscillations was found with a > 0.003.
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Scaling
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iIs known as the laser relaxation oscillation fre-
quency.



Steady state
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which has the form v” = F(u) from where,
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where y,s is the maximum point of the spike.
Then use the second equation to solve for y,,
and xg simultaneously.
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Typical solution for yg:
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Hopf bifurcation

e Linearize around the steady state,

y ~ yst(2) + e (2)

To leading order, we find A ~ 2. Near Hopf
bifurcation we expand

A=1i+wA1+---
Imposing ReA; = 0 yield
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e We predict ap, = 0.0029, (compared to 0.003
numerically).

e Simple explicit formula is possible when b is
small:
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e Otherwise, ay is found by numerically evalu-
ating some integrals.
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Bursting behaviour



Generalization: slow
absorber
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