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Aggregation model

We consider a simple model of particle interaction,

dx :
—jz—ZF‘CCj—ka‘ ’ j=1...N (1)

k=1...N
k#j

e Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

e Interaction force F'(r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

e Note that acceleration effects are ignored as a first-order approximation.
e Mathematically F'(r) is positive for small 7, but negative for large 7.

e Alternative formulation: (1) is a gradient flow of the minimization problem

min F (z1,...xy) where E = ZZP |z, — x;]) with F(r) = —P'(r).



Confining vs. spreading

e Consider a Morse interaction force:

F(r)g%\
F(r) =exp(—r) — Gexp(—r/L); G<1,L>1 b

o If GL? > 1, the morse potential is confining (or catastrophic): doubling /V doubles
the density but cloud volume is unchanged:

r=1.3978 r=1.43535 r=1.44716

e If GL? < 1, the system is non-confining (or h-stable): doubling N doubles the cloud
volume but density is unchanged:

r=9.56367 r=13.3742 r=19.3298
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Continuum limit

e For confining potentials, we can take the continuum limit as the number of particles
N — 0.

e We define the density p as
/ #particles inside domain D
p(x)dr ~
D

N

e The flow is then characterized by density p and velocity field v:

pr+ V- (pv)=0; v(x)= /nF(|37 —y|) S py)dy. (3)

e Variational formulation: Let
A= [ st Pl —dsdys P =—F0)
Then (3) is the gradient flow of £/; minima of £ are stable equilibria of (3).

e Questions

1. Describe the equilibrium cloud shape in the limit ¢ — oo

2. What about dynamics?



Turing analysis in 1D:

pr+V-(vp)=0, wv=K=xp, K(x)=F(z|)sign(x).

e Note that K" x 1 = 0 (since kernel K is odd) so that p = 1 is a steady state.

e Linearize around homogeneous state p = 1 :
plz,t) =1+(z,t), ¢<1

A imax

e Plugin ¢ = e™e"" ;

K x exp(imx) = / F(|y|) sign(y) exp(imz — imy)dy

9]

= exp(imx) /OO F(\y\)jlgn(yl {gos(z'myz —7j§in(imy2} dy

o0 Vv Vv

odd even odd

— ~2icxplima) [ Fly)sintom)dy

A= —=2m [ F(y)sin(my)dy

[~



e Conclusion: The homogeneous state is stable if and
fooo F(y)sin(my)dy > 0 for all m > 0.

e In particular, patterns form (w.r.t. low frequencies) if fooo F(y)ydy < 0.
e Patterns form when the constant state is unstable!

e |In the case of the repulsive-attractive morse potential:

F(r) =exp(—r) — Gexp(—r/L); G<1,L>1

(1 G
o= (1= )

A0) = —2(1 — GL?

e Conclusions:

- Homogenous state is unstable iff GL?> > 1

- Confining potential [i.e. “catostrophic case” iff GL* > 1].

only

if



Turing in any dimension d

e Exercise: In dimension d, homogeneous state is unstable (wrt small m) when
00 d
Jo F(r)ridr <0.

e For Morse force, confining potential if GL™ > 1.



Complex patterns:

F(r) =tanh ((1 — r)a) + b; O<a; —1<b< 1

b=-09 -07 -05 -03 —0
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F(r) =min(ar +b,1 —r)

PW-linear force
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Ring-type steady states

e Seek steady state of the form z; = r (cos (275 /N) ,sin (275 /N)), j=1...N.

e In the limit N — oo the radius of the ring must be the root of

vl

I(r) = / F(2rsin ) sin df = 0. (6)
0

e For Morse force F'(r) = exp(—r)—G exp(—r/L), such root exists whenever GL* >
1 [coincides with 1D catastrophic regime]

e For general repulsive-attractive force F'(r), a ring steady state exists if F'(r) < C' < 0
for all large .

e Even if the ring steady-state exists, the time-dependent problem can be ill-posed!

10



Continuum limit for curve solutions

e If particles concentrate on a curve, in the limit N — 0o we obtain

< 2o 2ot >
pr=p ‘a ‘;“f s =Kxp (7)
Za

where z (a; t) is a parametrization of the solution curve; p («; t) is its density and

Kop= [ Fllste) = () 500 =20 0isi@). @

e Depending on F'(r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

e We used a Lagrange particle-based numerical method to resolve (7).
- Agrees with direct simulation of the ODE system (1):
:“: : & M\\ /\ S 7 & -

:;{::}&.i_( | f\ /\ )\ )

T——

t=10 t=40 t=300

OO0

t=100 t=110 t=147

11



Local stability of a ring

e Turing-type analysis (linearization around the ring solution)

e Direct approach for ODE linearization:

x = roexp (2mik /N) (1 + exp(tN)or), o < 1.

e After some algebra:

o 0 (5) (- e (24

k4
o (552 (- ()
F(2ry|sinf|) 1 F(2ry|sin])

1
Gy = §F/(27“0 |sin @) + . G_ = §F’(2r0 |sin 6]) —

41 [sin 6| 4 |sin 0|

e Anzatz:
qu _ b+62m7rij/N + b_e—Qmm'j/N

1D



4 alk T\ ., ml
Li(m) = NZG+ (N) sin ((m + 1)N) ;

e Taking the limit N — oo, we obtain

Ii(m) = g/§ F(2rsin6) + F'(2rsin 0)| sin? ((m + 1)0) do; (10a)
0

2r sin 6

I(m) = : /5 P ,Sm ) _ F'(2r sin 0) [Sin2 (m#) — SiHZ(Q)} df. (10b)
0 2rsin 6 |

e Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of

11



the circle.

m=3, N=50, lambda=0.05 m=25, N=50, lambda=-1.17
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Quadratic force F(r) = r — r?

e Computing explicitly,
(4m4 —m? — 9)
(4m? — 1)(4m? — 9)
3m?(2m? + 1)

det M(m) = (I — 9) (42 — 12 >0, m=2,3,...

tr M (m)=—

<0, m=23,...

e Conclusion: ring pattern corresponding to F'(r) = r — r? is locally stable

e For large m, the two eigenvalues are A ~ —i and \ ~ —% — 0asm — o0. The

presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.

t=0 t=6 t=20 t=1000 t=10000

. ® "y - e, . Leeténg
. T ., 10 -q._. Cadit T "
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General power force

F(r)

rP—rl, 0<p<yq

e The mode m = oo is stable if and only if pg > 1 and p < 1.

e Stability of other modes can be expressed in terms of Gamma functions.

e The dominant unstable mode corresponds to m = 3; the boundary is given by
0 =723 —594(p + q) — 27(p* + ¢*) — 431pq + 106 (pg* + p*q) + 19 (p°q + pg*)
+10 (P’ +p°¢%) +6 (p° + ¢°) +p°¢;

e Boundaries for m = 4,5,...

polynomials in p, q.

1R

are similarly expressed in terms of higher order

=0 t=2 t=40 t=300
(0.5, 6)

=1 t=2 t=100 t=1000
O5,18) 2 o iaed B tien




Weakly nonlinear analysis

e Near the instability threshold, higher-order analysis shows a supercritical pitchfork
bifurcation, whereby a ring solution bifurcates into an m-—symmetry breaking
solution

e This shows existence of nonlocal solutions.

e Example: F'(r) = rt®

analysis predicts

— r4; bifurcation m = 3 occurs at ¢ = ¢q. ~ 4.9696; nonlinear

max |z;| — min |z;| = /max (0,7(q — ¢.)); T~ 0.109.

4.9 4.95 S 5.05
q

17



Point-concentration (hole) solutions

F(r) = min(ar,r — r?

Solutions consist of K “clusters”, where each cluster has [N/ K points inside. The number

00
“=MO&)-
O .

a=0.2

a=0.6

=0 =5 1=1000

1Q



Spots: “degenerate” holes

F(r)=min(ar +4,1 —7r); <1
e Points degenerate into spots of size O(d). eg. a = 0.3,6 = 0.05 :

b /—’?
3
- 0(5) reduced
Zzoom system
N=400 n = 1000,

a=1,5=0.484.

e Inside each of the cluster, the reduced problem is:
- o1 — @, a 0
G=y L o
Y 0
£l Wl ¢J’ p
e «, 3 depend only on F'(r) noton N.

1Q



(In)stability of m > 1 modes

e If A\(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed.

e For ill-posed problems, the ring can degenerate into either an annulus (eg. F'(x) =
0.5+ z — %) or discrete set of points (eg F'(z) = x'* — 2?)

e . if F'(r)is C*on [0,2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F(0)=0, F"(0)<0 and (11)
/2 .
/ (F 2rsind) _ priorsin 9)) d < 0. (12)
0 27 sin

e Ring solution for the morse force F'(r) = exp(—r)—G exp(—r/L) is always ill-posed
since F'(0) > 0.

20



Bifurcation to annulus:

Consider
Fry=r—r"+6, 0<i<1.

e Aring is stable of radius R ~ 3% + 2§ + O(6?) if 6 = 0 but high modes become
unstable for 0 > 0

e The most unstable mode in the discrete system is m = N/2 and can be stable even
if the continuous model is ill-posed!

s 32
N~ et exp (=) .
TR (645)

e Proposition: Let

The ring is stable if N < N,.

e For N > N, but N ~ N, solution consists of two radii R + € where

3 [ 128 _2 —4R* + Rr/2
R32<1+ 1+37T25>; e~ 4Re exp( 5 )

21




e Example: 6 = 0.35 = N, ~ 90, 2¢ ~ 0.033. Numerically, we obtain 2¢ =~ 0.036.
Good agreement!

80 100 300 400 600 1200 . 1900 .2500 3000

e Increasing NN further, more rings appear until we get a thin annulus of width O(e).
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Annulus: continuum limit N > N, :

e Fir)y=r—1r*+4, 0<dixk1

e Main result: In the limit 0 — 0, the annulus inner and outer radii R, X5 are given by

3 2
R~"2426 Ri~R—B, Ry~R+5

16 =

where 5
3ml
~ 3me? —— 0 < 1.

15 e exp( 645><< <

The radial density profile inside the annulus is

C

p(x) ~ {182~ (R~ [a])?

0, otherwise

, |R—z|< Bkl

e Annulus is exponentially thin in J... note the 1/sqrt singularity near the edges!
d=0.35 6 =0.35 d=0.2
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Key steps for computing annulus profile

e For radially symmetric density, the velocity field reduces to a 1D problem:

v(r) = /OOO K(s,r)p(s)sds

where

2
K(s,r)::/ (r—scos@)f(\/r2+32_2743€os@)d9; f(r)zl_r+é
0

r

e Assume thin annulus; expand all integrals. It boils down to integral equation

B
/ Il €lofodn = 1 forsi € € a9

e Explicit solution is a special case of Formula 3.4.2 from “Handbook of integral
equations” A.Polyanin and A.Manzhirov:

C

Q(§)252—_€2

2o2A



3D sphere instabilities

e Radius satisfies: foﬂ F(2rgsin ) sin 6 sin 20 = 0

e Instability can be done using spherical harmonics

91~



Stability of a spherical shell

Define

_ F(V2s).
g(s) == Vo

The spherical shell has a radius given implicitly by

0= / g(R*(1 — 5))(1 — s)ds.

1
Its stability is given by a sequence of 2x2 eigenvalue problems

i\ [a+Ng) [T+ 1DN(g2)\ (e B
A (62) = ( M(g) l(lggl))\z(gg) ) <62> ., 1=2,3,4,...

N(f) =2m /1f(s)Pl(s) ds;
with P,(s) the Legendre polynomial and
a = 8mg(2R?) 4+ \o(g(R*(1 — 57))
gi(s) = R (R*(1 = 5))(1 — s)* — g(R*(1 — s))s

where

ga(s) = 9(R2(1 —s))(1—s); g3(s) == g(z)dz.

2R



Well-posedness in 3D

Suppose that g(s) can be written in terms of the generalized power series as

o

g(s) = Zcispi, P <py <--- with ¢; > 0.
i=1

Then the ring is well-posed [i.e. A < 0 for all sufficiently large (] if
(i) a<0 and (i) p1 € (—1,0)J1,2)J(3,4) ...
The ring is ill-posed [i.e. A > 0 for all sufficiently large [] if either « > 0 or p; ¢

[—1,0]UI[L, 2]LJ[3,4] - ..

27



Key identity to prove well-posedness:

: ) 2 DI —p)T(p+2)
(/fl_$}ﬂﬁdsp+lFU+p+@ﬂkm

1
~ ——sin (mp) [*(p 4+ 1)2PTH#7%  as] — co.
m

Proof:
: : l + 17 _l 1—s
e Use hypergeometric representation: P;(s) = oF} | 5
e Use generalized Euler transform:
1
ai,....04,C ['(d) o1 dee1 a1, ..., G4,
F ’ P — ¢ 1—t 3 ; y A,
A+l B+1<b17'°'7b37d72) F(C)F(d—C)A ( ) ATB bl)"'?bB)a
p+1,1+1,—I 1
p+2,1 )

to get f_ll(l — $)PP(s) ds = 27;3?;13]72 (

e Apply the Saalschutz Theorem to simplify

p+1,0+1,—1 [(l—p)D(p+2)
3 Fh 1) = :
p+2,1 C(l+p+2)(—p)

2Q



Generalized Lennard-Jones interaction

g(s)=sP—s% 0<pg<l; p>q

e Well posed if ¢ < 3£=;; ill-posed if ¢ > 2=

Example: steady state with N = 1000 particles. (a) (p,q) = (1/3,1/6). Particles
concentrate uniformly on a surface of the sphere, with no particles in the interior. (b)
(p,q) = (1/2,1/4). Particles fill the interior of a ball. The particles are color-coded
according to their distance from the center of mass.

2Q



Custom-designed kernels

e In 3D, we can design force F'(r) which is stable for all modes except specified mode.

e EXAMPLE: Suppose we want only mode m = 5 to be unstable. Using our algorithm,
we get

S (e Y (= R (R ) P

Particle simulation [Linearized solution

20N



Part Il: Constant-density swarms

e Biological swarms have sharp boundaries, relatively constant internal population.
e Question: What interaction force leads to such swarms?

e More generally, can we deduce an interaction force from the swarm density?

4



Bounded states of constant density

Claim. Suppose that

F(r)= —r, where n = dimension
rn—1 ’

Then the aggregation model

p+V-(pv)=0 o(z)= / F(|z —yl) If? - ‘;/‘p(y)dy.

admits a steady state of the form

(z) = L, |z| < R (z) = 0, |z|<1
P =30, |z| >R "7 —az, |z|>1"

where R = 1forn = 1,2 and a = 2 in one dimension and a = 27 in two dimensions.

N=200, t=0..10 N=200, t=5000 N=400, t=5000
T O 1 s 1
..'.")\;E:W.i ..:'::::.:.. 'o::
05 ;\t\"‘fq""/f/ /& 05] Jherletetleles 0.5 eueets
o Y 748 o - .':.o..:.......... i .:o.
PN TN .'f-.' Dleleilileniile S
O.J\ ...\‘,.o,"‘o::,'. Ooo:o:.':o:.::.'.: O:E:
FANSIERE SRS G
"4 05 0 05 1 T o5 o o5 1 T
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Proof for two dimensions

Define 5
T
Glw) =mfel - 2 2= [ ply)dy
Rn
Then we have: -
VG = F(\az\)m and AG(x) =27md(x) — 2.
so that
o) = [ V.Gl - y)olwdy
Thus we get:

Vou= / (26— 9) — 2)ply)dy

= 2mp(x) — 2M
B 0, |z| <R
| —2M, |z| > R

The steady state satisfies V - v = () inside some ball of radius R with p = 0 outside such
a ball but then p = M/ inside this ball and M = [, p(y)dy = MR* —= R =1.

lele]



Dynamics in 1D with F'(r) =1 —r

/pr(sc):(); M::/Zp(x)d:c

v(a:)—/oo (1o — ) “=Y o)y

00 ‘x_y’

_ / " (1= o — yl) sign(z — 9ol

©.¢)

~2 [ty = Ma+ 1)

0,9)

Assume WLOG that

Then

and continuity equations become

Pt T VPy = —Uzp
= (M —2p)p

Define the characteristic curves X (¢, x() by

d
%X(t; xo) =v;  X(0,x0) =

A



Then along the characteristics, we have p = p(X, t);

d
7P p(M — 2p)

Solving we get:

M

pX (820 1) = 5 A )

p(X(t,xp),t) = M/2 ast — oo

nR



Solving for characteristic curves

w = /; p(y)dy

v=2w—-Mx+1); v,=2p—M
and integrating p; + (pv), = 0 we get:

Let

then

wy +vw, =0

Thus w is constant along the characteristics X of p, so that characteristics %X = v
become
d

- X = 2wy — M(X +1); X(0;20) =

2R



Summary for F(r) =1 —rin 1D:

221}0(5170)

X:
M

—1+e

— Mt (Qfo+1—

2’LU()($()))
M

wan) = [t M= [ i
M

p(X, 1) =

Example: po(z) = exp (—562) /T M =1

25 e (M pofo) = 2)

7

W



Global stability

In limit £ — oo we get:

2”(1)0 M
X=—-1, wy=0...M; X, 00) = —
M ) 0 ) p( ) ) 9
We have shown that as ¢ — o0, the steady state is

M2 x| < 1
P(x’oo)—{ 0, |z > 1

e This proves the global stability of (13)!

e Characteristics intersect at £ = oco; solution forms a shock at v = +1 att = oo.

nQ
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Dynamics in 2D, F(r) = £ —r

r

e Similar to 1D,
Vv =2mp(x) — 47 M;

pr+v-Vp=—pV- v
= —p(p—2M)2m

e Along the characterisitics:

d
—X(t;xg) =v;  X(0,20) = x0
dt
we still get
2= 2mp(2M — p);
P mp( p);
2M
p(X (t;20),1) =
1+ (/f(%) — 1) exp (—4mMt)

e Continuity equations yield:

p(X (t;x0),t) det V,, X (t; 20) = polxo)

20
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e Using (14) we get

det V,,, X (t; xg) = p;(j\?) + <1 — p;g\?>) exp (—4w Mt).

e If p is radially symmetric, characteristics are also radially symmetric, i.e.

X(tz0) = A(lol , T) zg

then
det Vo, X (t; o) = A& 7) (Mt r) + N (6 7)r), 7= |20

so that

) — Polzo) _ polzo) B
AT+ NAr = oM +<1 oM exp (—4m Mt)

1 T r
N2 = M/o spo(s)ds + 26Xp(—47th)/O s ( — %) ds

So characteristics are fully solvable!!

e This proves global stability in the space of radial initial conditions p;(x)

po(|z])-

e More general global stability is still open.

40



The force F(r) =1 — =1 in2D

T

e If ¢ = 2, we have explicit ode and solution for characteristics.

e For other ¢, no explicit solution is available but we have differential inequalities:

Define
Pmax = sup p(z,t); R(t) := radius of support of p(z,t)
T
Then
dpmax -
dta < (aRq - bpmaX)pmax
dR

1, S C\/ pmax dRq_l;

where a, b, ¢, d are some [known] positive constants.

e It follows that if R(0) is sufficiently big, then R(t), pmax(t) remain bounded for all ¢.
[using bounding box argument]

e Theorem: For ¢ > 2, there exists a bounded steady state [uniqueness??]

A1



Inverse problem: Custom-designer kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

by b+ byt + 4 0o, |z < R
plx) = 0, |z|>R

Define the following quantities,

R
ma, :—/ p(r)r?idr.
0

Then p(r) is the steady state corresponding to the kernel

a a a
F(r)zl—aor——2r3——4r5—...——2n 2nt1
3 D 2n +1
where the constants ag, as, . . . , as,, are computed from the constants by, 0o, . .

solving the following linear problem:

yikp)

(15)

(16)

(17)

< b2n by

(18)



Example: custom kernels 1D

Example1: p=1—12% R=1,then F(r)=1—9/5r +1/2r3
Example 2: p = 2°, R=1,then F'(r)=1+9/5r — .

Example 3: p = 1/2 + 22 — 2!, R=1;then F(r) =1+ 22425, 150,31 6,5

p(x)= 1-x p(X)= X? p(X)= 4/3 (0.5+x°~x*)

0.8
0.6
0.4
0.2

AR



Inverse problem: Custom-designer kernels: 2D

Theorem. In two dimensions, conisder a radially symmetric density p(x) = p(|z|) of

the form
()_ b0+b2r2+b47“4+---—|—b2n7”2n, r<R
= 0, r>R

Define the following quantities,

R
Moy, :/ p(r)r?idr.
0

Then p(r) is the steady state corresponding to the kernel

1 a az 5 a9y, 9
Flry=-— —r— =y — .  — —1 ponfl
(r) r 2 4 2n + 2
where the constants ag, as, . . ., as,, are computed from the constants by, bo, . .

solving the following linear problem:

n

N\ 2
bgk:Zagj(i) mz(j_k)+1; k=0...n.

Jj=k

This system always has a unique solution for provided that mg # 0.

A4

(19)

(20)

(21)

< b?n by

(22)



Numerical simulations, 1D

e First, use standard ODE solver to integrate the corresponding discrete particle model,
dz;

— = F (|z; — =1...N.

e How to compute p(x) from xi? [Topaz-Bernoff, 2010]

- Use ; to approximate the cumulitive distribution, w(z) = [*_ p(z)dz

- Next take derivative to get p(x) = w'(x)

(&)
X
o 2 4 6
1 -
ur R
- (b)
Y
F il
b e
1.5 ycr/
T
7‘-,/"
R x
o 1
o] 2 4 6
1.3 T —
7] g SR S o S (c)
15 ‘[—/—, . “-»—____]
X
o '
[o] 2 4 (5]

[Figure taken from Topaz+Bernoff, 2010 preprint]
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Numerical simulations, 2D

e Solve for x; using ODE particle model as before [2/NV variables]

e Use x; to compute Voronoi diagram,;

e Estimate p(x;) = 1/a; where a; is the area of the voronoi cell around ;.
e Use Delanay triangulation to generate smooth mesh.

e Example: Take

1+7%r <1
PN=9 "0 r>0

Then by Custom-designed kernel in 2D is:

Running the particle method yeids...

AR






Numerical solutions for radial steady states for F'(r) =

1 _ g1
- T

R
e Radial steady states of radius R satisfy p(r) = 2¢ / (r'p(r") L (r,r")dr’
0
where c(q) is some constantand I(r,7’) = ["(r? + 2 — 2rr’sin §)7/?71d6.

e To find p and R, we adjust R until the operator p — ¢(q) fOR(r’p(r’)K(r, r)dr' has
eigenvalue 1; then p is the corresponding eigenfunction.

20 ‘ ‘ ,
q=2 '
----- qgq=10
‘‘‘‘‘‘‘ -g=20
15 —— g=30 -
----- qgq=40
< 10} . .
i
:
50 .
'
¥
% 0.2 0.6
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Vortex dynamics

e Equations first given by Helmholtz (1858): each vortex generates a rotational velocity
field which advects all other vortices. Vortex model:

dz; = 2k
]_ nyk 29 ]_1 . N.
k#j 2 — 2l

e Classical problem; observed in many physical experiments: floating magnetized
needles (Meyer, 1876); Malmberg-Penning trap (Durkin & Fajans, 2000), Bose-
Einstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides
et.al, 2001)

e Conservative, hamiltonian system
e General initial conditions lead to chaos: movie — chaos
e Certain special configurations are “stable” in hamiltonial sense: mowvie — stable

e Rigidly rotating steady states are called relative equilibria:

( ) _ wztgj — (0= Z Sk Sk ng

40
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Dynamic, self-assembled aggregates of magnetized, millimeter-sized objecis rotating
at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms
and molecules

Bartosz A. Grzybowski,'! Xingyu Jiang.! Howard A. Stone,” and George M. Whitesides"*
IJ'.Je'J reriment of Chemisiry and Chemical Biology, Horvard University, 12 Oxford Sireer, Cambridee, Massachusetis 32138
*Division af Engmeering amd Applicd Sciences, Horvard University, Pierce Holl, Cambridge, Massachuserts 02138
(Received 3 October 2000k published 21 June 206 )

a b R
| | |
T K,
|
i T T e
Fr oy F s b
vl ——
———— e !
kx‘" —— | _'__'__,_,-'—""’/ h
-
e 1
—  ——+— 8
L N —
g |
s _—+|
oy O D - oy |
w

ure 1 Experimantal set-up and magnetc force profiles. a, A scheme of the
erimental set-up. A bar magnet rotates at angular velacity e below a dish filled with
iid (typically ethylene glvool'watar or glycennefwater solutions), Magnetically doped
(s are placed on the liquid—air interface, and are fully immersed in the liquid except for Figure2 Dynamic patterns formed by various numbers (f) of disks rotating at the ethylene
ir top surface. The disks spin at angular velocity w around their axes. A magnetic force 9Cl/water—air interface. This interface s 27 mm above the plane of the external
attracts tha dicke tnurmrde tha cantra of e dich and o hurdradenamie faema £ nochae MagRet. The disks are composed of a section of polyethylene tube {white) of outer
digmetar 1.27 mm, filled with poy(dimethylsilosane), POMS, doped with 25 wit of
magnetite (black centre), Al disks spin around their centres at w = 700r.p.m., and the
entire aggregate slowly (€2 < 2 r.p.m.) precesses around its cenire. For n = 5, the
agoregates do not have a ‘nucleus’—all disks are precessing on the fim of a circle, For
1 = 5, nucleated structures appear. For n=10and n =12, the patterns are bistable in
the sense that the two observed patterns interconvert irreqularly with time. Far 1= 19, the
hexagonal pattern {left) appears only above w == 800 r.p.m., but can be ‘annealed’ down




Observation of Vortex Lattices

in Bose-Einstein Condensates AR VASE BERC
J- R. Abo-Shaeer, C. Raman, |. M. Vogels, W. Ketterle

Fig. 1. Observation of
vortex  [attices. The
examples shown con-
tain  approximately
(&) 18, (B) 32, (C) 8O,
and (D) 130 vortices.
The wvortices have
“crystallized” in a tri-
angular pattern. The
diameter of the cloud
in (D) was 1 mm after
ballistic  expansion,
which represents a
magnification of 20.
Slight asyrmmetries in the density distribution were due to absarption of the optical pumping light.
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e Campbell and Ziff (1978) classified many stable configurations for small (eg. N =

18) number of vortices of equal strength.
IE.{. 133( .

3521 .3511

2924
1 611 1 512 B 12 3 312

e Goal: describe the stable configuration in the continuum limit of a large number of
vortices N (eg. N = 100, 1000...). These have been observed in several recent
expriments: Bose Einstein Condensates, magnetized disks
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Key observation

-z
Vortex model: —2 =i ) yk S j=1...N. (V)
k Zj — %k ’
#J
Relative equilibrium: z;(¢) = ¢“""¢; <= 0= Z Ve — & — wé;
i r —af
Aggregation model — nyk wx;. (A)

kA 1T

e One-to-one correspondence between the steady statates x;(¢) = &; of (A) and the
relative equilibrium z;(t) = e“"'¢; of (V).

e Spectral equivalence of (V) and (A): The equilibrium x;(t) = &; is asymptotically
stable for the aggregation model (A) if and only if the relative equilibrium z;(t) = e“"*¢;
is stable (neutrally, in the Hamiltonian sense) for the vortex model (V)!

e Aggregation model fully describes relative equilibria and their linear stability in the
vortex model.

e Aggregation model is easier to study than the vortex model.

[ e



Vortices of equal strength v, = v

Corresponding aggregation model:

dx ; Ti— T

2
k] ’xj o xk‘

e Coarse-grain by defining the particle density to be

pla) = > e — ),

k=1..N

Then (23) is equivalent to ©; = v(z;) where

v(z) = —w:ch’y/

2
R? |2 — Y|

L —Y

and density is subject to conservation of mass

pr+ V- (pv) =0.

RA

p(y) dy,

(23)

(24)

(23)

(26)



e [Fetecau&Huang&Kolokolnikov2011]: In the limit N — o0, the steady state density
of (A) is constant inside the ball of radius

Ry=+/N~/w.

-—— -
A ~ e e £ 500 g . 0%
’, » y N f: ® e © an *..:'..'.:.. (5.3
] A @ ® 0_0 P 0,90 &
lte o ® le ot 5099502 %%
! ° V%0 e® 0 0"y pegele®iegece’ el
fe & ® slje o L@ o %1 :-'.‘:o:.c'.a'.c‘.d
l s @ 9 ® 1), o ° el h:..:::'.:::::::q
Y - Y e @ . .; p...t.. ........

\ (] I \® e P @ 7 Qe 0%9595%0% ° &
e s 2 V4 \e 4 e ®, t.'...........i’
N .y weo *® g € L020%0%,%03

e o eg0e®®y’
~ A ~ 0 o o~ t'-.l - 2

Fig. 1. Stable relative equilibria of N = 25,50 and 200 vortices of equal

strength. The dashed line shows the analytical prediction Rg = /N~ /w of the
swarm radius in the N — oc limit (see (6)).
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Crystallization

—z
Vortex model: — =1 Z% k2, 7=1...N. (V)
kA 9T
Reltive equiliria: z;(t) = e*''¢; <= 0= Z T =& — w§;
k] | gk‘
dz; — 2 Zi — ZL
Vortex with dissipation: — =1 %— + U ——"= —wz; | (D)
i 2 2 — 2 2 z -t

k#j

e In many physical experiments of BEC there is damping or dissipation involved.

e Spectral equivalence: Relative equilibria and their stability are the same for (V)
and (D)

e Both the vortex model and the “aggregation model” model are limiting cases of (D).
e Taking 11 > 0O stabilizes vortex dynamics! chaos damped stable

e This allows us to find stable relative equilibria numerically.
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Vortex dynamics in BEC with trap

e For BEC, dynamics have extra term corresponding to prcession around the trap:

: .a : Zj — Rk :
Zj =1 525 + ZCZ]—Q, j=1...N.
1 —r ‘z — Zk‘
N—— k#j ' y
trap-interaction self-interaction
e Large [V limit:

v(m)z(f(r)—w>x+c/ TY () dy.

2
R |7 — ¥

téﬁ@ﬂ%ZN,

e Non-uniform vortex lattice state:

1
P~ — (w — %) ifr < R, p=0otherwise,

mc 1 —1r?)
h a N cN
with w =
1-R? R?

K7

(27)
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N =400

N =100

N=125

ik
0.6
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row: stable equilibrium of Eq. (2.4) with f(r) as in Eq. (2.2), with N as shown in the title and with ¢ =

0.5/N,w=2.95139,a

Figure 2. Top

().65 is the smaller solution

= 1. The dashed circle is the asymptotic boundary whose radius i

to Eq. (4.9). Bottom row: average of p {|x|)/p(0) as a function of r = |x|. Solid curve corresponds to the numerical

= H.

computation. Dashed curve is the formula (4.10). Vertical line is the boundary r
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Maximum N

2 ) VeN
W, = (ﬁ—k@) ; RC_\/5+j\\/[W.

200

150

100}

50+

e No solutions if w < w,

e Two solutions R = R4 if w > w,
- smaller is stable, larger has negative density (unphysical).

e Corrollary: must have N < N,,.x Where

N e —va)©

max —
C

AN

(28)



N + 1 problem
e [V vortices of equal strength and a single vortex of a much higher strength
dx; T — T Tj—mn ,
—= = +bo———F -2, j=1...N (29)
dt N Z —$k| |z — 7|
k‘%]
1 — Tk
(30)
dt N klZN |77 - [Ek|
e Mean-field limit N — oo:
)Ot —|— V- (pVv) = O
v(x) = a Jp p (y) | y|dy+b|x 2T (31)

dn_afRQp s,

e Main result:. Define R; = \/5, Ry = v/a+ b and suppose that n is any point
such that B, (n) C Bgr,(0). Then the equilibrium solution for (31) is constant inside

Br,(0)\Bg,(n) and is zero outside.




e Unlike the N 40 problem, the relative equilibrium for the /V +1 problem is non-unique:
any choice of 7 yields a steady state as long as || < Ry — R;.
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Degenerate case: big central vortex

(// ‘“n‘ j// L8
s ’
lf ,.’f [ *\
! |
e §} @ ) i e
\ \\ \ Ggap L3
L% X \\ ‘j \\ /‘
oy > . y
T ke ® e e
y i 00
g B 5 o
. o O o

e Small vortices are constrained to a ring of radius . with big vortex at the center.

”~

-~

e Non-uniform distribution of small particles!

e Question: Determine the size of the gap © .

[age]



e Main Result:
Ogap ~ CN3,

where the constant C' = 8.244 satisfies

(8—6u+2u3)1n(u—1):3u(u2—4); 0—2(—
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Sketch of proof

e [Barry+Wayne, 2012]: Set () ~ Rye'®i) then at leading order we get

a; _ 1 sin(0; —6y)
dt N Z (2 — 2cos (0, — 0y) sin (0); %)) : (32)

k#j

e In the mean-field limit N — o0, the density distribution p(#) for the angles 6; satisfies

Pt + (PUG)Q — 07

w0 =V [ oo (2 s = sin (0 - ¢>) as,

where PV denotes the principal value integral, and f:r p=1.

e [Barry, PhD Thesis]: Up to rotations, the steady state density p(6) for which v = 0
must be of the form

1
p(0) = — (1 + acosh). 34
2T
This follows from (33) and (formal) expansion
nt
5oy~ Sint = sin(26) + sin(3) +sin(4f) + ...
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e (v is free parameter in the continuum limit.

e For discrete [V, particle positions satisfy

1 (1+ 6)do = !
\  COS —N

2T
0.4r
0.2r
0
e0 e1 e3/2 e5
_02 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

To estimate ®,,,, choose 6, so that v(6;) ~ 0. See our paper for hairy details.
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N + K problem

Main result: Let R, = /by, k =1...K and Ry = v/a+ b, + ... + bx. Suppose
n - ..M are such Br,(n1)... Br,(nK) are all disjoint and are contained inside Bp,(0).

The equilibrium density is constant inside Bp,(0)\ Uszl Br,(nx) and is zero outside.
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N + K problem, with very large K vortices

e The blue ellipse is described by the reduced system

d—fj_l Z + €k—§k

dt
k‘%]
e From [K, Huang, Fetecau, 20011], its axis ratio is 3.

[aqe]

(35)
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