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Aggregation model

We consider a simple model of particle interaction,

dxj
dt

=
1

N

∑
k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N (1)

• Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

• Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

• Note that acceleration effects are ignored as a first-order approximation.

• Mathematically F (r) is positive for small r, but negative for large r.

• Alternative formulation: (1) is a gradient flow of the minimization problem

minE (x1, . . . xN) where E =
∑∑

P (|xi − xj|) with F (r) = −P ′(r).
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Confining vs. spreading
• Consider a Morse interaction force:

F (r) = exp(−r)−G exp(−r/L); G < 1, L > 1 0

0.1
0.2
0.3
0.4

F(r)

1 2 3 4 5 6r (2)

• If GL3 > 1, the morse potential is confining (or catastrophic): doubling N doubles
the density but cloud volume is unchanged:

G = 0.5, L = 2

• IfGL3 < 1, the system is non-confining (or h-stable): doublingN doubles the cloud
volume but density is unchanged:

G = 0.5, L = 1.2
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Continuum limit

• For confining potentials, we can take the continuum limit as the number of particles
N →∞.

• We define the density ρ as∫
D

ρ(x)dx ≈ #particles inside domain D

N

• The flow is then characterized by density ρ and velocity field v:

ρt +∇ · (ρv) = 0; v(x) =

∫
Rn
F (|x− y|) x− y

|x− y|
ρ(y)dy. (3)

• Variational formulation: Let

E [ρ] :=

∫
Rn

∫
Rn
ρ(x)ρ(y)P (|x− y|)dxdy; P ′(r) = −F (r) (4)

Then (3) is the gradient flow of E; minima of E are stable equilibria of (3).

• Questions

1. Describe the equilibrium cloud shape in the limit t→∞

2. What about dynamics?
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Turing analysis in 1D:

ρt +∇ · (vρ) = 0; v = K ∗ ρ, K(x) = F (|x|) sign(x). (5)

• Note that K ∗ 1 = 0 (since kernel K is odd) so that ρ ≡ 1 is a steady state.

• Linearize around homogeneous state ρ = 1 :

ρ(x, t) = 1 + φ(x, t), φ� 1

φt + (K ∗ φ)x = 0

• Plug in φ = eλteimx :

K ∗ exp(imx) =

∫ ∞
−∞

F (|y|) sign(y) exp(imx− imy)dy

= exp(imx)

∫ ∞
−∞

F (|y|) sign(y)︸ ︷︷ ︸{cos(imy)︸ ︷︷ ︸−i sin(imy)︸ ︷︷ ︸} dy
odd even odd

= −2i exp(imx)

∫ ∞
0

F (y) sin(my)dy

λ = −2m
∫∞
0
F (y) sin(my)dy
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• Conclusion: The homogeneous state is stable if and only if∫∞
0
F (y) sin(my)dy > 0 for all m > 0.

• In particular, patterns form (w.r.t. low frequencies) if
∫∞
0
F (y)ydy < 0.

• Patterns form when the constant state is unstable!

• In the case of the repulsive-attractive morse potential:

F (r) = exp(−r)−G exp(−r/L); G < 1, L > 1

λ(m) = −2m2

(
1

m2 + 1
− G

m2 +
(
1
L

)2
)

λ(0) = −2(1−GL2)

• Conclusions:

- Homogenous state is unstable iff GL2 > 1

- Confining potential [i.e. “catostrophic case” iff GL2 > 1].
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Turing in any dimension d

• Exercise: In dimension d, homogeneous state is unstable (wrt small m) when∫∞
0
F (r)rddr < 0.

• For Morse force, confining potential if GLd+1 > 1.
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Complex patterns:

F (r) = tanh ((1− r)a) + b; 0 < a; −1 < b < 1.
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PW-linear force: F (r) = min(ar + b, 1− r)
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Ring-type steady states

• Seek steady state of the form xj = r (cos (2πj/N) , sin (2πj/N)) , j = 1 . . . N.

• In the limit N →∞ the radius of the ring must be the root of

I(r) :=

∫ π
2

0

F (2r sin θ) sin θdθ = 0. (6)

• For Morse forceF (r) = exp(−r)−G exp(−r/L), such root exists wheneverGL2 >
1 [coincides with 1D catastrophic regime]

• For general repulsive-attractive forceF (r), a ring steady state exists ifF (r) ≤ C < 0
for all large r.

• Even if the ring steady-state exists, the time-dependent problem can be ill-posed!
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Continuum limit for curve solutions
• If particles concentrate on a curve, in the limit N →∞ we obtain

ρt = ρ
< zα, zαt >

|zα|2
; zt = K ∗ ρ (7)

where z (α; t) is a parametrization of the solution curve; ρ (α; t) is its density and

K ∗ ρ =

∫
F (|z(α′)− z(α)|) z(α′)− z(α)

|z(α′)− z(α)|
ρ(α′, t)dS(α′). (8)

• Depending on F (r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

• We used a Lagrange particle-based numerical method to resolve (7).

- Agrees with direct simulation of the ODE system (1):

11



Local stability of a ring

• Turing-type analysis (linearization around the ring solution)

• Direct approach for ODE linearization:

xk = r0 exp (2πik/N) (1 + exp(tλ)φk) , φk � 1.

• After some algebra:

λφj =
1

N

∑
k 6=j

G+

(
π(k−j)
N

)(
φj − φk exp

(
2πi(k−j)

N

))
+G−

(
π(k−j)
N

)(
φ̄k − φ̄j exp

(
2πi(k−j)

N

))
,

G+ =
1

2
F ′(2r0 |sin θ|) +

F (2r0 |sin θ|)
4r0 |sin θ|

; G− =
1

2
F ′(2r0 |sin θ|)−

F (2r0 |sin θ|)
4r0 |sin θ|

.

• Anzatz:
φj = b+e

2mπij/N + b−e
−2mπij/N
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λ

(
b+
b−

)
= M(m)

(
b+
b−

)
, M(m) :=

[
I1(m) I2(m)
I2(m) I1(−m)

]
; m = 1, 2, . . . ; (9)

I1(m) =
4

N

N/2∑
l=1

G+

(
πl

N

)
sin2

(
(m + 1)

πl

N

)
;

I2(m) =
4

N

N/2∑
l=1

G−

(
πl

N

)[
sin2

(
πl

N

)
− sin2

(
m
πl

N

)]
.

• Taking the limit N →∞, we obtain

I1(m) =
2

π

∫ π
2

0

[
F (2r sin θ)

2r sin θ
+ F ′(2r sin θ)

]
sin2 ((m + 1)θ) dθ; (10a)

I2(m) =
2

π

∫ π
2

0

[
F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

] [
sin2 (mθ)− sin2(θ)

]
dθ. (10b)

• Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
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the circle.
m=3, N=50, lambda=0.05 m=25, N=50, lambda=–1.17
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Quadratic force F (r) = r − r2

• Computing explicitly,

tr M (m) = −
(
4m4 −m2 − 9

)
(4m2 − 1)(4m2 − 9)

< 0, m = 2, 3, . . .

detM(m) =
3m2(2m2 + 1)

(4m2 − 9)(4m2 − 1)2
> 0, m = 2, 3, . . .

• Conclusion: ring pattern corresponding to F (r) = r − r2 is locally stable

• For large m, the two eigenvalues are λ ∼ −1
4 and λ ∼ − 3

8m2 → 0 as m→∞. The
presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.
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General power force

F (r) = rp − rq, 0 < p < q

• The mode m =∞ is stable if and only if pq > 1 and p < 1.

• Stability of other modes can be expressed in terms of Gamma functions.

• The dominant unstable mode corresponds to m = 3; the boundary is given by

0 = 723− 594(p + q)− 27(p2 + q2)− 431pq + 106
(
pq2 + p2q

)
+ 19

(
p3q + pq3

)
+ 10

(
p3q2 + p2q3

)
+ 6
(
p3 + q3

)
+ p3q3;

• Boundaries for m = 4, 5, . . . are similarly expressed in terms of higher order
polynomials in p, q.
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Weakly nonlinear analysis
• Near the instability threshold, higher-order analysis shows a supercritical pitchfork

bifurcation, whereby a ring solution bifurcates into an m−symmetry breaking
solution

• This shows existence of nonlocal solutions.

• Example: F (r) = r1.5 − rq; bifurcation m = 3 occurs at q = qc ≈ 4.9696; nonlinear
analysis predicts

max
i
|xi| −min

i
|xi| =

√
max (0, τ (q − qc)); τ ≈ 0.109.
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Point-concentration (hole) solutions

F (r) = min(ar, r − r2)
Solutions consist ofK “clusters”, where each cluster hasN/K points inside. The number
K depends on a :

18



Spots: “degenerate” holes

F (r) = min(ar + δ, 1− r); δ � 1

• Points degenerate into spots of size O(δ). eg. a = 0.3, δ = 0.05 :

• Inside each of the cluster, the reduced problem is:

φ′l =

n∑
j 6=l

φl − φj
|φl − φj|

− n
[
α 0
0 β

]
φl

• α, β depend only on F (r) not on N.
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(In)stability of m� 1 modes

• If λ(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed.

• For ill-posed problems, the ring can degenerate into either an annulus (eg. F (x) =
0.5 + x− x2) or discrete set of points (eg F (x) = x1.3 − x2)

• , if F (r) is C4 on [0, 2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F (0) = 0, F ′′(0) < 0 and (11)∫ π/2

0

(
F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

)
dθ < 0. (12)

• Ring solution for the morse forceF (r) = exp(−r)−G exp(−r/L) is always ill-posed
since F (0) > 0.
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Bifurcation to annulus:

Consider
F (r) = r − r2 + δ, 0 ≤ δ � 1.

• A ring is stable of radius R ∼ 3π
16 + 2

πδ + O(δ2) if δ = 0 but high modes become
unstable for δ > 0

• The most unstable mode in the discrete system is m = N/2 and can be stable even
if the continuous model is ill-posed!

• Proposition: Let

Nc ∼
π

4
e4−γ exp

(
3π2

64δ

)
.

The ring is stable if N < Nc.

• For N > Nc but N ∼ Nc, solution consists of two radii R± ε where

R =
3π

32

(
1 +

√
1 +

128

3π2
δ

)
; ε ∼ 4Re−2 exp

(
−4R2 + Rπ/2

δ

)
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• Example: δ = 0.35 =⇒ Nc ∼ 90, 2ε ∼ 0.033. Numerically, we obtain 2ε ≈ 0.036.
Good agreement!

• Increasing N further, more rings appear until we get a thin annulus of width O(ε).
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Annulus: continuum limit N � Nc :

• F (r) = r − r2 + δ, 0 < δ � 1

• Main result: In the limit δ → 0, the annulus inner and outer radii R1, R2 are given by

R ∼ 3π

16
+

2

π
δ; R1 ∼ R− β, R2 ∼ R + β

where

β ∼ 3πe−5 exp

(
−3π2

64

1

δ

)
� δ � 1.

The radial density profile inside the annulus is

ρ(x) ∼


c√

β2 − (R− |x|)2
, |R− x| < β � 1

0, otherwise

• Annulus is exponentially thin in δ... note the 1/sqrt singularity near the edges!
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Key steps for computing annulus profile

• For radially symmetric density, the velocity field reduces to a 1D problem:

v(r) =

∫ ∞
0

K(s, r)ρ(s)sds

where

K(s, r) :=

∫ 2π

0

(r − s cos θ) f
(√

r2 + s2 − 2rs cos θ
)
dθ; f (r) = 1− r +

δ

r

• Assume thin annulus; expand all integrals. It boils down to integral equation∫ β

−β
ln |η − ξ| %(η)dη = 1 for all ξ ∈ (α, β)

• Explicit solution is a special case of Formula 3.4.2 from “Handbook of integral
equations” A.Polyanin and A.Manzhirov:

% (ξ) =
C√
β2 − ξ2
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3D sphere instabilities

• Radius satisfies:
∫ π
0
F (2r0 sin θ) sin θ sin 2θ = 0

• Instability can be done using spherical harmonics
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Stability of a spherical shell

Define

g(s) :=
F (
√

2s)√
2s

;

The spherical shell has a radius given implicitly by

0 =

∫ 1

−1
g(R2(1− s))(1− s)ds.

Its stability is given by a sequence of 2x2 eigenvalue problems

λ

(
c1
c2

)
=

(
α + λl(g1) l(l + 1)λl(g2)

λl(g2)
l(l+1)
R2 λl(g3)

)(
c1
c2

)
, l = 2, 3, 4, . . .

where

λl(f ) := 2π

∫ 1

−1
f (s)Pl(s) ds;

with Pl(s) the Legendre polynomial and

α := 8πg(2R2) + λ0(g(R2(1− s2))
g1(s) := R2g′(R2(1− s))(1− s)2 − g(R2(1− s))s

g2(s) := g(R2(1− s))(1− s); g3(s) :=

∫ R2(1−s)

0

g(z)dz.
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Well-posedness in 3D

Suppose that g(s) can be written in terms of the generalized power series as

g(s) =

∞∑
i=1

cis
pi, p1 < p2 < · · · with c1 > 0.

Then the ring is well-posed [i.e. λ < 0 for all sufficiently large l] if

(i) α < 0 and (ii) p1 ∈ (−1, 0)
⋃

(1, 2)
⋃

(3, 4) . . .

The ring is ill-posed [i.e. λ > 0 for all sufficiently large l] if either α > 0 or p1 /∈
[−1, 0]

⋃
[1, 2]

⋃
[3, 4] . . .
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Key identity to prove well-posedness:

∫ 1

−1
(1− s)pPl(s) ds =

2p+1

p + 1

Γ(l − p)Γ(p + 2)

Γ(l + p + 2)Γ(−p)

∼ −1

π
sin (πp) Γ2(p + 1)2p+1l−2p−2 as l→∞.

Proof:

• Use hypergeometric representation: Pl(s) = 2F1

(
l + 1,−l

1
; 1−s2

)
.

• Use generalized Euler transform:

A+1FB+1

(
a1, . . . , aA, c
b1, . . . , bB, d

; z

)
=

Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

tc−1(1−t)d−c−1AFB
(
a1, . . . , aA, c
b1, . . . , bB, d

; tz

)
to get

∫ 1

−1(1− s)
pPl(s) ds = 2π2p+1

p+1 3F2

(
p + 1, l + 1,−l

p + 2, 1
; 1

)
.

• Apply the Saalschütz Theorem to simplify

3F2

(
p + 1, l + 1,−l

p + 2, 1
; 1

)
=

Γ(l − p)Γ(p + 2)

Γ(l + p + 2)Γ(−p)
.
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Generalized Lennard-Jones interaction

g(s) = s−p − s−q; 0 < p, q < 1; p > q

• Well posed if q < 2p−1
2p−2; ill-posed if q > 2p−1

2p−2.

Example: steady state with N = 1000 particles. (a) (p, q) = (1/3, 1/6). Particles
concentrate uniformly on a surface of the sphere, with no particles in the interior. (b)
(p, q) = (1/2, 1/4). Particles fill the interior of a ball. The particles are color-coded
according to their distance from the center of mass.
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Custom-designed kernels

• In 3D, we can design force F (r) which is stable for all modes except specified mode.

• EXAMPLE: Suppose we want only mode m = 5 to be unstable. Using our algorithm,
we get

F (r) =

{
3

(
1− r2

2

)2

+ 4

(
1− r2

2

)3

−
(

1− r2

2

)4
}
r + ε; ε = 0.1.
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Part II: Constant-density swarms

• Biological swarms have sharp boundaries, relatively constant internal population.

• Question: What interaction force leads to such swarms?

• More generally, can we deduce an interaction force from the swarm density?
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Bounded states of constant density

Claim. Suppose that

F (r) =
1

rn−1
− r, where n ≡ dimension

Then the aggregation model

ρt +∇ · (ρv) = 0; v(x) =

∫
Rn
F (|x− y|) x− y

|x− y|
ρ(y)dy.

admits a steady state of the form

ρ(x) =

{
1, |x| < R
0, |x| > R

; v(x) =

{
0, |x| < 1
−ax, |x| > 1

.

where R = 1 for n = 1, 2 and a = 2 in one dimension and a = 2π in two dimensions.
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Proof for two dimensions

Define

G(x) := ln |x| − |x|
2

2
; M =

∫
Rn
ρ(y)dy

Then we have:
∇G = F (|x|) x

|x|
and ∆G(x) = 2πδ(x)− 2.

so that

v(x) =

∫
Rn
∇xG(x− y)ρ(y)dy.

Thus we get:

∇ · v =

∫
Rn

(2πδ(x− y)− 2)ρ(y)dy

= 2πρ(x)− 2M

=

{
0, |x| < R
−2M, |x| > R

The steady state satisfies∇ · v = 0 inside some ball of radius R with ρ = 0 outside such
a ball but then ρ = M/π inside this ball and M =

∫
Rn ρ(y)dy = MR2 =⇒ R = 1.
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Dynamics in 1D with F (r) = 1− r

Assume WLOG that ∫ ∞
−∞

xρ(x) = 0; M :=

∫ ∞
−∞

ρ (x) dx

Then

v(x) =

∫ ∞
−∞

F (|x− y|) x− y
|x− y|

ρ(y)dy

=

∫ ∞
−∞

(1− |x− y|) sign(x− y)ρ(y)

= 2

∫ x

−∞
ρ(y)dy −M(x + 1).

and continuity equations become

ρt + vρx = −vxρ
= (M − 2ρ) ρ

Define the characteristic curves X(t, x0) by

d

dt
X(t;x0) = v; X(0, x0) = x0
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Then along the characteristics, we have ρ = ρ(X, t);

d

dt
ρ = ρ(M − 2ρ)

Solving we get:

ρ(X(t, x0), t) =
M

2 + e−Mt(M/ρ0 − 2)
; ρ(X(t, x0), t)→M/2 as t→∞
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Solving for characteristic curves

Let

w :=

∫ x

−∞
ρ(y)dy

then
v = 2w −M(x + 1); vx = 2ρ−M

and integrating ρt + (ρv)x = 0 we get:

wt + vwx = 0

Thus w is constant along the characteristics X of ρ, so that characteristics d
dtX = v

become
d

dt
X = 2w0 −M(X + 1); X(0;x0) = x0
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Summary for F (r) = 1− r in 1D:

X =
2w0(x0)

M
− 1 + e−Mt

(
x0 + 1− 2w0(x0)

M

)
w0(x0) =

∫ x0

−∞
ρ0(z)dz; M =

∫ ∞
−∞

ρ0(z)dz

ρ(X, t) =
M

2 + e−tM(M/ρ0(x0)− 2)

Example: ρ0(x) = exp
(
−x2

)
/
√
π; M = 1 :

rho for t=0..5, dt=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

–3 –2 –1 1 2 3
x

X vs. t

0

1

2

3

4

t

–3 –2 –1 1 2 3
x
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Global stability

In limit t→∞ we get:

X =
2w0

M
− 1; w0 = 0 . . .M ; ρ(X,∞) =

M

2

We have shown that as t→∞, the steady state is

ρ(x,∞) =

{
M/2, |x| < 1

0, |x| > 1
(13)

• This proves the global stability of (13)!

• Characteristics intersect at t =∞; solution forms a shock at x = ±1 at t =∞.
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Dynamics in 2D, F (r) = 1
r − r

• Similar to 1D,
∇ · v = 2πρ(x)− 4πM ;

ρt + v · ∇ρ = −ρ∇ · v
= −ρ (ρ− 2M) 2π

• Along the characterisitics:

d

dt
X(t;x0) = v; X(0, x0) = x0

we still get
d

dt
ρ = 2πρ(2M − ρ);

ρ(X(t;x0), t) =
2M

1 +
(

2M
ρ(x0)
− 1
)

exp (−4πMt)
(14)

• Continuity equations yield:

ρ(X(t;x0), t) det∇x0X(t;x0) = ρ0(x0)
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• Using (14) we get

det∇x0X(t;x0) =
ρ0(x0)

2M
+

(
1− ρ0(x0)

2M

)
exp (−4πMt) .

• If ρ is radially symmetric, characteristics are also radially symmetric, i.e.

X(t;x0) = λ (|x0| , t)x0
then

det∇x0X(t;x0) = λ(t; r) (λ(t; r) + λr(t; r)r) , r = |x0|
so that

λ2 + λrλr =
ρ0(x0)

2M
+

(
1− ρ0(x0)

2M

)
exp (−4πMt)

λ2r2 =
1

M

∫ r

0

sρ0(s)ds + 2 exp (−4πMt)

∫ r

0

s

(
1− ρ (s)

2M

)
ds

So characteristics are fully solvable!!

• This proves global stability in the space of radial initial conditions ρ0(x) =
ρ0(|x|).

• More general global stability is still open.
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The force F (r) = 1
r − r

q−1 in 2D

• If q = 2, we have explicit ode and solution for characteristics.

• For other q, no explicit solution is available but we have differential inequalities:

Define
ρmax := sup

x
ρ(x, t); R(t) := radius of support of ρ(x, t)

Then

dρmax

dt
≤ (aRq−2 − bρmax)ρmax

dR

dt
≤ c
√
ρmax − dRq−1;

where a, b, c, d are some [known] positive constants.

• It follows that if R(0) is sufficiently big, then R(t), ρmax(t) remain bounded for all t.
[using bounding box argument]

• Theorem: For q ≥ 2, there exists a bounded steady state [uniqueness??]
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Inverse problem: Custom-designer kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

ρ(x) =

{
b0 + b2x

2 + b4x
4 + . . . + b2nx

2n, |x| < R
0, |x| ≥ R

(15)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (16)

Then ρ(r) is the steady state corresponding to the kernel

F (r) = 1− a0r −
a2
3
r3 − a4

5
r5 − . . .− a2n

2n + 1
r2n+1 (17)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n∑
j=k

a2j

(
2j
2k

)
m2(j−k), k = 0 . . . n. (18)
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Example: custom kernels 1D

Example 1: ρ = 1− x2, R = 1, then F (r) = 1− 9/5r + 1/2r3.

Example 2: ρ = x2, R = 1, then F (r) = 1 + 9/5r − r3.

Example 3: ρ = 1/2 + x2 − x4, R = 1; then F (r) = 1 + 209425
336091r −

4150
2527r

3 + 6
19r

5.
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Inverse problem: Custom-designer kernels: 2D

Theorem. In two dimensions, conisder a radially symmetric density ρ(x) = ρ (|x|) of
the form

ρ(r) =

{
b0 + b2r

2 + b4r
4 + . . . + b2nr

2n, r < R
0, r ≥ R

(19)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (20)

Then ρ(r) is the steady state corresponding to the kernel

F (r) =
1

r
− a0

2
r − a2

4
r3 − . . .− a2n

2n + 2
r2n+1 (21)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n∑
j=k

a2j

(
j
k

)2

m2(j−k)+1; k = 0 . . . n. (22)

This system always has a unique solution for provided that m0 6= 0.
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Numerical simulations, 1D

• First, use standard ODE solver to integrate the corresponding discrete particle model,

dxj
dt

=
1

N

∑
k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N.

• How to compute ρ(x) from xi? [Topaz-Bernoff, 2010]

- Use xi to approximate the cumulitive distribution, w(x) =
∫ x
−∞ ρ(z)dz.

- Next take derivative to get ρ(x) = w′(x)

[Figure taken from Topaz+Bernoff, 2010 preprint]
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Numerical simulations, 2D

• Solve for xi using ODE particle model as before [2N variables]

• Use xi to compute Voronoi diagram;

• Estimate ρ(xj) = 1/aj where aj is the area of the voronoi cell around xj.

• Use Delanay triangulation to generate smooth mesh.

• Example: Take

ρ(r) =

{
1 + r2, r < 1

0, r > 0

Then by Custom-designed kernel in 2D is:

F (r) =
1

r
− 8

27
r − r3

3
.

Running the particle method yeids...
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Numerical solutions for radial steady states for F (r) =
1
r − r

q−1

• Radial steady states of radius R satisfy ρ(r) = 2q

∫ R

0

(r′ρ(r′)I(r, r′)dr′

where c(q) is some constant and I(r, r′) =
∫ π
0

(r2 + r′2 − 2rr′ sin θ)q/2−1dθ.

• To find ρ and R, we adjust R until the operator ρ → c(q)
∫ R
0

(r′ρ(r′)K(r, r′)dr′ has
eigenvalue 1; then ρ is the corresponding eigenfunction.
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Vortex dynamics

• Equations first given by Helmholtz (1858): each vortex generates a rotational velocity
field which advects all other vortices. Vortex model:

dzj
dt

= i
∑
k 6=j

γk
zj − zk
|zj − zk|2

, j = 1 . . . N.

• Classical problem; observed in many physical experiments: floating magnetized
needles (Meyer, 1876); Malmberg-Penning trap (Durkin & Fajans, 2000), Bose-
Einstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides
et.al, 2001)

• Conservative, hamiltonian system

• General initial conditions lead to chaos: movie− chaos

• Certain special configurations are “stable” in hamiltonial sense: movie− stable

• Rigidly rotating steady states are called relative equilibria:

zj(t) = eωitξj ⇐⇒ 0 =
∑
k 6=j

γk
ξj − ξk
|ξj − ξk|2

− ωξj
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• Campbell and Ziff (1978) classified many stable configurations for small (eg. N =
18) number of vortices of equal strength.

• Goal: describe the stable configuration in the continuum limit of a large number of
vortices N (eg. N = 100, 1000 . . .). These have been observed in several recent
expriments: Bose Einstein Condensates, magnetized disks
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Key observation

Vortex model:
dzj
dt

= i
∑
k 6=j

γk
zj − zk
|zj − zk|2

, j = 1 . . . N. (V)

Relative equilibrium: zj(t) = eωitξj ⇐⇒ 0 =
∑
k 6=j

γk
ξj − ξk
|ξj − ξk|2

− ωξj

Aggregation model:
dxj
dt

=
∑
k 6=j

γk
xj − xk
|xj − xk|2

− ωxj. (A)

• One-to-one correspondence between the steady statates xj(t) = ξj of (A) and the
relative equilibrium zj(t) = eωitξj of (V).

• Spectral equivalence of (V) and (A): The equilibrium xj(t) = ξj is asymptotically
stable for the aggregation model (A) if and only if the relative equilibrium zj(t) = eωitξj
is stable (neutrally, in the Hamiltonian sense) for the vortex model (V)!

• Aggregation model fully describes relative equilibria and their linear stability in the
vortex model.

• Aggregation model is easier to study than the vortex model.
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Vortices of equal strength γk = γ

Corresponding aggregation model:

dxj
dt

=
∑
k 6=j

γ
xj − xk
|xj − xk|2

− ωxj. (23)

• Coarse-grain by defining the particle density to be

ρ(x) =
∑

k=1...N

δ(x− xk). (24)

Then (23) is equivalent to ẋj = v(xj) where

v(x) ≡ −ωx + γ

∫
R2

x− y
|x− y|2

ρ (y) dy, (25)

and density is subject to conservation of mass

ρt +∇ · (ρv) = 0. (26)
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• [Fetecau&Huang&Kolokolnikov2011]: In the limit N → ∞, the steady state density
of (A) is constant inside the ball of radius

R0 =
√
Nγ/ω.
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Crystallization

Vortex model:
dzj
dt

= i
∑
k 6=j

γk
zj − zk
|zj − zk|2

, j = 1 . . . N. (V)

Reltive equiliria: zj(t) = eωitξj ⇐⇒ 0 =
∑
k 6=j

γk
ξj − ξk
|ξj − ξk|2

− ωξj

Vortex with dissipation:
dzj
dt

= i
∑
k 6=j

γk
zj − zk
|zj − zk|2

+ µ

∑
k 6=j

γk
zj − zk
|zj − zk|2

− ωzj

 (D)

• In many physical experiments of BEC there is damping or dissipation involved.

• Spectral equivalence: Relative equilibria and their stability are the same for (V)
and (D)

• Both the vortex model and the “aggregation model” model are limiting cases of (D).

• Taking µ > 0 stabilizes vortex dynamics! chaos damped stable

• This allows us to find stable relative equilibria numerically.
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Vortex dynamics in BEC with trap

• For BEC, dynamics have extra term corresponding to prcession around the trap:

żj = i
a

1− r2
zj︸ ︷︷ ︸+ ic

∑
k 6=j

zj − zk
|zj − zk|2︸ ︷︷ ︸, j = 1 . . . N. (27)

trap-interaction self-interaction

• Large N limit:

v(x) ≡ (f (r)− ω)x + c

∫
R2

x− y
|x− y|2

ρ (y) dy.∫
R2

ρ(x)dx = N,

• Non-uniform vortex lattice state:

ρ ∼ 1

πc

(
ω − a

(1− r2)2

)
if r < R, ρ = 0 otherwise,

with ω =
a

1−R2
+
cN

R2
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Maximum N

ωc =
(√

a +
√
cN
)2

; R2
c =

√
cN

√
a +
√
cN

.

• No solutions if ω < ωc

• Two solutions R = R± if ω > ωc

- smaller is stable, larger has negative density (unphysical).

• Corrollary: must have N < Nmax where

Nmax =
(
√
ω −
√
a)

2

c
. (28)
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N + 1 problem
• N vortices of equal strength and a single vortex of a much higher strength:

dxj
dt

=
a

N

∑
k=1...N
k 6=j

xj − xk
|xj − xk|2

+ b
xj − η
|xj − η|2

− xj, j = 1 . . . N, (29)

dη

dt
=
a

N

∑
k=1...N

η − xk
|η − xk|2

− η (30)

• Mean-field limit N →∞:
ρt +∇ · (ρ∇v) = 0;
v(x) = a

∫
R2 ρ (y) x−y

|x−y|2
dy + b x−η

|x−η|2
− x

dη
dt = a

∫
R2 ρ (y) η−y

|η−y|2
dy − η

. (31)

• Main result:. Define R1 =
√
b, R0 =

√
a + b and suppose that η is any point

such that BR1(η) ⊂ BR0(0). Then the equilibrium solution for (31) is constant inside
BR0(0)\BR1(η) and is zero outside.
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• Unlike theN+0 problem, the relative equilibrium for theN+1 problem is non-unique:
any choice of η yields a steady state as long as |η| < R0 −R1.
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Degenerate case: big central vortex

• Small vortices are constrained to a ring of radius R0. with big vortex at the center.

• Non-uniform distribution of small particles!

• Question: Determine the size of the gap Θgap.

63



• Main Result:
Θgap ∼ CN−1/3.

where the constant C = 8.244 satisfies(
8− 6u + 2u3

)
ln (u− 1) = 3u

(
u2 − 4

)
; C = 2

(
6π(2− u)

u (u2 − 1)

)1/3

Θ
gap

Θ
gap

Θ
gap Θ

gap
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Sketch of proof

• [Barry+Wayne, 2012]: Set xj(t) ∼ R0e
iθj(t) then at leading order we get

dθj
dt

=
1

N

∑
k 6=j

(
sin (θj − θk)

2− 2 cos (θj − θk)
− sin (θj − θk)

)
. (32)

• In the mean-field limitN →∞, the density distribution ρ(θ) for the angles θj satisfies
ρt + (ρvθ)θ = 0,

v(θ) = PV

∫ π

−π
ρ (φ)

(
sin (θ − φ)

2− 2 cos (θ − φ)
− sin (θ − φ)

)
dφ,

(33)

where PV denotes the principal value integral, and
∫ π
−π ρ = 1.

• [Barry, PhD Thesis]: Up to rotations, the steady state density ρ(θ) for which v = 0
must be of the form

ρ(θ) =
1

2π
(1 + α cos θ) . (34)

This follows from (33) and (formal) expansion

sin t

2− 2 cos t
− sin t = sin(2t) + sin(3t) + sin(4t) + . . .
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• α is free parameter in the continuum limit.

• For discrete N, particle positions satisfy∫ θj

θj−1

1

2π
(1 + α cos θ) dθ =

1

N

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

θ
1

θ
0

θ
3/2

θ
5

To estimate Φgap, choose θ1 so that v(θ1) ∼ 0. See our paper for hairy details.
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N + K problem

v(x) = a

∫
R2

ρ (y)
x− y
|x− y|2

dy +
∑

k=1...K

bk
x− ηk
|x− ηk|2

− x,

dηj
dt

= a

∫
R2

ρ (y)
ηk − y
|ηk − y|2

dy +
∑

k=1...K
k 6=j

bk
ηj − ηk
|ηj − ηk|2

− ηj,

j = 1 . . . K.

Main result: Let Rk =
√
bk, k = 1 . . . K and R0 =

√
a + b1 + . . . + bK. Suppose

η1 . . . ηK are such BR1(η1). . .BRK(ηK) are all disjoint and are contained inside BR0(0).

The equilibrium density is constant inside BR0(0)\
⋃K
k=1BRk(ηk) and is zero outside.
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N + K problem, with very large K vortices

• The blue ellipse is described by the reduced system
dξj
dt

=
1

N

∑
k=1...N
k 6=j

1

ξj − ξk
+

1

2
ξ̄k − ξk (35)

• From [K, Huang, Fetecau, 20011], its axis ratio is 3.
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