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Pattern Formation in a
Reaction-Diffusion System with
Space-Dependent Feed Rate∗
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Abstract. We develop novel mathematical techniques to study spot patterns in reaction-diffusion sys-
tems with space-dependent feed rate. The techniques are illustrated on the Schnakenberg
model, which is a prototypical model of spot formation. Previous works have mostly ad-
dressed spot formation assuming the feed rate A is a constant, in which case the spots are
uniformly distributed throughout the domain. By contrast, the spatially dependent feed
rate A(x) occurs naturally in applications, and very few studies exist in this case. In this
work we determine analytically how this inhomogeneity affects spot creation, spot density,
and spot death. We characterize the asymptotic density of spots and their heights for any
spatially dependent feed rate A(x). We also demonstrate a novel phenomenon which only
happens when the feed rate is sufficiently inhomogeneous in space. Namely, new spots are
continuously created in regions of high feed rate, travel toward regions of lower feed rate,
and are destroyed there. This “creation-destruction loop” is only possible in the presence
of heterogeneity. A key new technique is the Euler–Maclaurin formula to estimate the
effective spike density. For a sufficiently large feed rate, we find that the effective spot den-
sity scales like A2/3(x), whereas the spot mass scales like A1/3(x). We derive asymptotic
bounds for the existence of N spots. As the feed rate is increased, new spots are created
through self-replication, whereas the spots are destroyed as the feed rate is decreased. The
thresholds for both spike creation and spike death are computed asymptotically.

Key words. Schnakenberg model, Hopf bifurcation, mean first passage time, reaction-diffusion, matched
asymptotics
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1. Introduction. Reaction-diffusion PDEs are ubiquitous as models of pattern
formation in a variety of biological and social systems. Some prominent examples are
animal skin patterns [23, 5, 25], vortex lattices in Bose–Einstein condensates [1, 4],
patterns in chemical reactions [12, 31, 19], crime hot spots in a model of residential
burglaries [41, 50, 22, 8], and vegetation patches in arid environments [17, 38, 40, 9].
A common feature of many of these systems is the presence of localized patterns such
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Fig. 1 Left: Space-dependent density of spots on a fish. Right: height-dependent distribution of
vegetation patterns on a mountainside near L’Aquila, Italy. Image taken from Google Earth.

as spots, stripes, etc. There is a very large literature about the formation and stability
of these patterns, especially within homogeneous environments. We refer the reader
to the books [34, 16, 10, 28, 44] and references therein.

While initial pattern formation and various instabilities are by now well studied,
much less is known about the distribution of resulting patterns, especially—as is often
the case in nature—if there are spatial inhomogeneities. For example, vortex crystals
in Bose–Einstein condensates form in the presence of a rotating confining trap, which
is modeled by the Gross–Pitaevskii equation with a space-dependent potential [11].
The condensates are not uniformly distributed but have a higher density near the
center of the trap [37, 2, 18]. Animal skin patterns are also highly dependent on the
location within the animal, since the thickness, curvature, and growth of the skin are
nonuniform and have a large effect on the resulting patterns [27, 35, 32, 6, 24, 45].
Similarly, the distribution of vegetation patches is highly dependent on the amount
of precipitation and slope gradients, which vary in space and time [9, 42, 39]. See
Figure 1 for some examples.

In this paper we study the spot distribution and stability of a one-dimensional
reaction-diffusion model with a space-dependent feed rate. For concreteness, we con-
centrate on the well-studied Schnakenberg model [36, 15, 43], but we anticipate that
these techniques can be extended to other settings. We consider the following limiting
scaling of the Schnakenberg model:

(1.1)


ε2ut = ε2uxx − u+ u2v, x ∈ (−L,L) ,

0 = vxx + a0A(x)− u2v

ε
, x ∈ (−L,L) ,

ux = 0 = vx at x = ±L.

These equations model the following process: a fast-diffusing substrate v is consumed
via the reaction 2u + v → 3u by a slowly diffusing activator u, which decays with
time. The substrate is being pumped into the system at some space-dependent feed
rate a0A(x). The constant a0 represents the overall feed strength, and we will use it
as the control parameter. The reaction kinetics for u and v occur at different scales:
u reacts much slower than v, so that v is effectively slave to u. For simplicity of
presentation, we assume that only the feed rate A(x) is space dependent. However,
the techniques of this paper can be generalized to incorporate space dependence into
other parameters, such as the consumption or decay rate of the activator. We also
disregard any potential time dependence of the parameters. This is left for future
work.

The full Schnakenberg model also has an additional term in the equation for

v : τvt = vxx + a0A(x) − u2v
ε , where τ represents the “reaction time” of v relative



PATTERN FORMATION WITH SPACE-DEPENDENT FEED RATE 3

to u. The results presented in this paper are unchanged as long as τ � O(ε−1); this
corresponds to having a sufficiently fast response of v to u. On the other hand, if τ
is sufficiently increased, oscillatory instabilities are triggered that have destabilizing
and very complex effects on resulting patterns [48]. The analysis of these instabilities
is beyond the scope of this paper.

This model is a limiting case of the Klausmeyer model of vegetation (where u
represents plant density, v represents water concentration in soil, a0A(x) is the pre-
cipitation rate, and vxx is replaced by vxx+cvx−dv) as well as the Gray–Scott model
(where vxx is replaced by vxx − dv). As such, the Schnakenberg model is among the
simplest prototypical reaction-diffusion models.

In the limit ε→ 0, the system (1.1) is well known to generate patterns consisting
of spots (or spikes) [15, 43, 32], corresponding to high localized concentrations of the
chemical u, as shown in Figure 2(a). In the case of the Klausmeyer model, these spots
represent localized patches of vegetation. In particular, Figure 1(b) shows an example
of nonuniform distribution of vegetation patches; the vegetation is more dense near
the bottom of the mountain and less dense near the top. The goal of this paper is to
describe the density distribution of spikes and their stability in situations like this.

We now illustrate our main results, referring to Figure 2. There, we take A(x) =
1 + 0.5 cos(x) with L = π and either decrease or increase a0 very slowly. For a fixed
a0 and a fixed number of spikes, N , as illustrated in Figure 2(a), our theory (see Main
Result 2.2 below) yields both the effective spike density and the envelope for spike
heights. Note that the spike density is not uniform—it is higher at the center than at
the boundaries—and the asymptotics recover the effective spike density very well. As
a0 is increased, new spikes are created through self-replication near the center (where
A(x) is at a maximum)—see Figure 2(b,c). On the other hand, as a0 is decreased,
spikes are destroyed near the boundary (where A(x) is at a minimum) as a result of
competition or coarsening instability, as shown in Figure 2(d,e). In Main Result 3.4
we show that N spikes are stable if and only if the feed strength a0 lies within the
range

(1.2) αN3/2 < a0 < βNε−1/2, α = 0.504, β = 0.38097.

Moreover, spike destruction occurs when a0 is decreased below the curve a0 = αN3/2

(dashed curve in Figure 2(e), and spike creation occurs when a0 is increased above
the line a0 = βNε−1/2 (dashed line in Figure 2(c)).

The two boundaries a0 = αN3/2 and a0 = βNε−1/2 in (1.2) intersect when
a0 = a0,max ≡ β3/α2ε−3/2, and there is no stable spiky steady state that exists for
a0 > a0,max. However, for values of a0 just above a0,max, very complex dynamics
are observed, as shown in Figure 2(f): new spikes are continually being created near
the center and then move toward the boundaries and are destroyed there, resulting
in an infinite creation-destruction loop. In Figure 2(f), we took ε = 0.05 so that
a0,max = 19.469, whereas a0 = 20 is taken just above a0,max (numerical simulations
confirm that no such dynamics occur if a0 = 19). Such a complex dynamical loop
is only possible for an inhomogeneous feed rate, since the place of destruction must
differ from the place of creation. We remark that this phenomenon was also previously
reported in [32] and seems to be commonplace in reaction-diffusion systems with
varying parameters.

The summary of the paper is as follows. The equilibrium spike density is derived
in section 2. Stability is derived in section 3. We conclude with some discussions and
open problems in section 4.
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Fig. 2 (a) Stable equilibrium configuration with 22 spikes. Red dots and dashed line are the the-
oretical prediction for the density and spike heights, as given in Main Result 2.2. Here,
A(x) = 1 + 0.5 cos(x), L = π, ε = 0.007, with a0 as shown. Note that the steady state is
nonuniform, unlike the case of constant a (see Figure 4). (b) Illustration of spike creation.
Full numerical simulation of (1.1) where a0 is gradually increased according to the formula
a0 = 1+0.08t; other parameters are as in (a). New spikes are created through self-replication
near the origin, where a(x) has its maximum. (c) The number of spots as a function of a0.
Solid stair line corresponds to the observed number of spots from the numerical simulation
in (a). Dashed line is the theoretical prediction a0 = a0,split given in (3.9). (d) Illustration
of spike destruction. As in (b) except that a0 is very gradually decreasing according to the
formula a0 = 120 − 0.08t. Note that spikes are destroyed near x ∼ ±π. (e) The number
of spots as a function of a0. Solid stair line corresponds to the observed number of spots
from the numerical simulation in (a). Dashed line is the theoretical prediction a0 = a0,coarse
given in (3.9). (f) Creation-destruction loop with A(x) = 1 + 0.5 cos(x), a0 = 20, ε = 0.05.
New spikes are created near the center and are destroyed near the edges.

2. Spike Density. The starting point for computing spike density and stability is
to derive the reduced dynamics for spike centers. By now, this is a relatively standard
asymptotic computation; see, for example, [13]. For completeness, we include a self-
contained derivation of spike dynamics in Appendix A. We summarize it as follows.

Proposition 2.1. Consider the Schnakenberg system (1.1). Assume that A(x) is
even on the interval [−L,L]. Define P (x) and b by

(2.1) P ′′(x) = A(x) with P ′(0) = 0, b ≡ 6N3/a20.

Assume εN � 1. The dynamics of N spikes are asymptotically described by the ODE
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system

(2.2a)
dxk
dt

Sk
18N

=
1

N

∑
j=1,...,N
j 6=k

Sj
2

xk − xj
|xk − xj |

− P ′(xk)

subject to N + 1 algebraic constraints

b

N2

1

Sk
=

1

N

N∑
j=1

Sj
|xk − xj |

2
− P (xk) + c, k = 1, . . . , N,(2.2b)

1

N

N∑
j=1

Sj =

∫ L

−L
A(x)dx.(2.2c)

Here, xk is the center of the kth spike and Sk > 0 is proportional to its height, so that
near xk, the quasi-steady state is approximated by

(2.3) u(x) ∼ sech2

(
x− xk

2ε

)
Sk
4N

, v(x) ∼ 6N

Sk
, |x− xk| � 1.

The next step is to construct a continuum-limit approximation for spike density.
Setting dxk

dt to zero in (2.2a), we obtain the steady state equations

0 =
1

N

∑
j 6=k

Sj
2

xk − xj
|xk − xj |

− P ′(xk),(2.4a)

b

Sk

1

N2
=

1

N

∑
j

Sj
|xk − xj |

2
− P (xk)− C, 1

N

∑
Sj = 2P ′(L).(2.4b)

A posteriori analysis shows that N spikes are unstable if b � 1 (in the limit of large
N), so that the relevant regime to consider is when b = O(1).

To study the large-N limit, we define the spike density ρ(x) to be a density
distribution function for spikes, that is, for any a, b ∈ [−L,L] we define ρ(x) to be

(2.5)

∫ b

a

ρ(x)dx ∼ # of spikes in the interval [a, b]

N
.

An alternative definition is to define

ρ(x) =
1

N

∑
δ (x− xj) .

In the large-N limit, we consider the spike locations xj to be a continuous function
xj = x(j) from [0, N ] to [−L,L] . In terms of x(j), the density may also be expressed
as

(2.6) ρ(x(j)) =
1

Nx′(j)
,

which also gives a way to compute the effective density given a sequence of spike
positions.

Definition (2.6) is equivalent to definition (2.5). To show the equivalence, first
assume (2.6). Fix 1 ≤ j1 < j2 ≤ N and let a = x (j1) and b = x (j2) . Then we have
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a
ρ(x)dx =

∫ j2
j1
ρ(x(j))x′(j)dj =

∫ j2
j1

1
Nx′(j)x

′(j)dj = 1
N (j2 − j1), which agrees with

(2.5) since j2−j1 is the number of spikes in the interval [a, b]. Conversely, assume (2.5).

Then 1
N (j2 − j1) =

∫ b
a
ρ (x) dx =

∫ j2
j1
ρ(x(j))x′(j)dj. Using the mean value theorem,

we have
∫ j2
j1
ρ(x(j))x′(j)dj = (j2− j1)ρ(x(j))x′(j), where j ∈ [j1, j2] . Taking the limit

j2 → j1, we then obtain ρ(x(j))x′(j) = 1
N , which shows (2.6).

We also define the strength function S(x) to be such that

(2.7) Sj = S(x(j)).

With these definitions, we estimate the summation terms in (2.4) using integrals.

For example, we have
∑
j Sj

|xk−xj |
2 ≈

∫
S(y) |xk−y|

2 ρ(y)dy, and so on. To leading
order, the continuum limit of equations (2.4) then becomes∫ L

−L
S(y)ρ(y)

1

2

x− y
|x− y|

dy ∼ P ′(x),(2.8a) ∫ L

−L
S(y)ρ(y)

1

2
|x− y| dy ∼ P (x) + C.(2.8b)

The first thing to note is that the control parameter b is not present in the leading-
order computation in (2.8). What’s worse, equation (2.8a) is a direct consequence of
differentiating (2.8b); thus, at the leading order, there is only one equation, whereas
there are two unknown functions: S(x) and ρ(x). Nonetheless, differentiating (2.8a)
and using the fact that(

1

2

x− y
|x− y|

)
x

=

(
1

2
|x− y|

)
xx

= δ(x− y),

this leading-order computation yields the following relationship between S(x) and
ρ(x):

S(x)ρ(x) = P ′′(x) = A(x).

To make further progress in determining S(x) and ρ(x) requires a careful estimate
of the difference between the discrete sums in (2.4) and their integral approxima-
tions. This estimate is supplied by the Euler–Maclaurin formula, which we recall
here. Assume that f(n) is a sufficiently smooth function from [1, N ] to R. Then

(2.9)

N∑
j=1

f(j) =

∫ N

1

f(j)dj +
1

2
(f(1) + f(N)) +

K∑
j=1

cj

(
f (j)(N)− f (j)(1)

)
+RK ,

where the cj are coefficients that are related to Bernoulli numbers and the remainder,
RK , depends only on higher-order derivatives of f . Here, we only need the first two
coefficients:

c1 =
1

12
, c2 = 0

(in fact all even coefficients are zero). We now apply the Euler–Maclaurin formula to
estimate the sums in (2.4). We start by estimating

1

N

∑
j 6=k

Sj
2

xk − xj
|xk − xj |

=
1

N

k∑
j=1

S(x(j))− 1

N

N∑
j=k

S(x(j)).
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By changing variables x (j) = y, dj = dy
x′(j) = Nρ(y)dy, we obtain

1

N

k∑
j=1

S(x(j)) =

∫ xk

x1

S (y) ρ(y)dy +
1

2N
(S(x1) + S(xk))

+
1

12N2

(
S′(xk)

ρ (xk)
− S′(x1)

ρ(x1)

)
+O

(
1

N4

)
,

1

N

N∑
j=k

S(x(j)) =

∫ xN

xk

S (y) ρ(y)dy +
1

2N
(S(xk) + S(xN ))

+
1

12N2

(
S′(xN )

ρ (xN )
− S′(xk)

ρ(xk)

)
+O

(
1

N4

)
,

so that

1

N

∑
j 6=k

Sj
xk − xj
|xk − xj |

=

∫ xN

x1

S (y) ρ(y)
xk − y
|xk − y|

dy +
1

2N
(S(x1)− S(xN ))

+
1

12N2

(
2S′(xk)

ρ (xk)
− S′(x1)

ρ(x1)
− S′(xN )

ρ (xN )

)
+O

(
1

N4

)
.

Since we assumed that the feed rate A(x) is even, we seek an even steady state, so

that S(x) is also even and x1 = −xN . Then S(x1) = S(xN ), S′(x1)
ρ(x1)

= −S
′(xN )
ρ(xN ) , and∫ xN

x1

S (y) ρ(y)
xk−y
|xk−y|

dy =

∫ L

−L
S (y) ρ(y)

xk−y
|xk−y|

dy+

∫ x1

−L
S (y) ρ(y)dy−

∫ L

xN

S (y) ρ(y)dy

=

∫ L

−L
S (y) ρ(y)

xk−y
|xk−y|

dy,

so that we finally obtain

1

N

∑
j 6=k

Sj
1

2

xk − xj
|xk − xj |

=

∫ L

−L
S (y) ρ(y)

1

2

xk − y
|xk − y|

dy +
1

N2

(
1

12

S′(xk)

ρ (xk)

)
+O(N−4).

A similar computation yields

1

N

∑
j 6=k

Sj
|xk − xj |

2
=

∫ L

−L
S (y) ρ(y)

|xk − y|
2

dy +
1

N2

(
− 1

12

S(xk)

ρ (xk)
+ C0

)
+O(N−4),

where C0 is an irrelevant constant that depends on S(±L), S′(±L), ρ(±L), and
ρ′(±L).

We now expand

S(x) = S0(x) +
1

N2
S1(x) + · · ·

to obtain∫
S0(y)ρ(y)

1

2

x− y
|x− y|

dy = P ′(x),

∫
S0(y)ρ(y)

1

2
|x− y| dy = P (x) + C,

∫
S1(y)ρ(y)

1

2

x− y
|x− y|

dy = − 1

12

S′0(x)

ρ (x)
,(2.10) ∫

S1(y)ρ(y)
1

2
|x− y| dy =

1

12

S0(x)

ρ (x)
+

b

S0(x)
+ C0.(2.11)
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Upon differentiating (2.11) and substituting into (2.10), we finally obtain the following
ODE, which relates S0(x) and ρ(x):

(2.12) − 1

12

S′0(x)

ρ (x)
=

d

dx

(
1

12

S0(x)

ρ (x)
+

b

S0(x)

)
.

Furthermore, we have

(2.13) S0(x)ρ(x) = A(x),

∫ L

−L
ρ(x)dx = 1.

Together, the relationships (2.12) and (2.13) fully determine S0(x) and ρ(x) in terms
of A(x).

Solving for ρ′(x) from (2.12) yields a Bernoulli ODE,

(2.14) ρ′ =
2S′0
S0

ρ− 12b
S′0
S3
0

ρ2,

whose solution is readily obtained as

(2.15)
S2
0

ρ
− 12b log(S0) = C.

Substituting S0 ∼ S ∼ A/ρ, we find that the steady state satisfies, at leading order,

(2.16)
A2

ρ3
+ 12b log (ρ/A) ∼ C subject to

∫ L

−L
ρ(x)dx = 1; Sρ ∼ A as N →∞.

We summarize as follows.

Main Result 2.2. Let xj and Sj be the equilibrium locations of the reduced sys-
tem (2.2) with ∂xj/∂t = 0. The spike density ρ(x) as defined by (2.5) is asymptotically
approximated by (2.16). The spike strengths are given by Sj = S(xj).

An important special case of the formula (2.16) is when b → 0 or, equivalently,

a0 � O(N3/2). Then A2

ρ3 = C, and, together with ρS = A, we find ρ = C0A
2/3, S =

C−10 A1/3, where the normalization constant C0 is determined through
∫
ρ = 1:

(2.17) S(x) ∼

(∫ L

−L
A2/3(y)dy

)
A1/3(x), ρ(x) ∼ A2/3(x)∫ L

−LA
2/3(y)dy

.

Figure 2(a) shows the direct comparison between Main Result 2.2 and the full
numerical simulations of (1.1); see also Figure 5(c). In fact, the agreement is very
good even with a relatively small N (for example, N = 4; not shown). There are two
sources of error when comparing the asymptotics to full numerics. The first source
of error is when approximating the PDE dynamics using the reduced system (2.2),
which removes the ε from the PDE. This error scales like O(ε). The second source of
error is made when approximating the reduced system (2.2) by its continuum limit
(2.17). This error comes from the truncation of the Euler–Maclaurin series and scales
like O(1/N2). In other words, the effects of nonzero ε are captured going from the
PDE (1.1) to the reduced system of Proposition 2.1, while the effects due to finite N
are captured in going from the reduced system of Proposition 2.1 to Main Result 2.2.
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The equilibrium state with N spikes as given by Main Result 2.2 only exists for
restricted parameter values. This is illustrated in Figure 2. As a0 is increased, the
steady state eventually breaks down because of spike replication. This is related to
the effect of ε. As a0 is decreased, the steady state eventually breaks down because
of overcrowding effects leading to spike destruction. This is related to the effect of N .
The study of this breakdown is the topic of the next section.

3. Self-Replication and Coarsening. We begin with an examination of self-
replication. Numerical simulations (cf. Figure 2) show that self-replication is trig-
gered if a0 is sufficiently increased. This is a well-known phenomenon that was first
identified in one dimension in [33] and was further studied in [26, 29, 30, 20, 21]. As
explained in Appendix A, it is related to the disappearance of the the steady state
for the so-called core problem as a result of a fold point bifurcation. In Appendix A
we show that self-replication of the jth spot is triggered when Sj is increased past
2.70ε−1/2 Na0 (see (A.20)). Moreover, suppose that a0 � O(N3/2). Then from (2.17)

the maximum value of Sj is given by maxx∈[−L,L]A
1/3(x)

( ∫ L
−LA

2/3(x)dx
)
. Replacing

Sj by this maximum value and replacing the inequality in (A.20) by equality yields
the following threshold.

Proposition 3.1 (spike birth). Let

(3.1) β ≡ 2.70

max
x∈[−L,L]

A1/3(x)
(∫ L
−LA

2/3(x)dx
)

and suppose that Nε� O(1). Then N spikes undergo self-replication if a0 is increased
past

(3.2) a0,split ≡ βNε−1/2.

The spike that replicates is the one closest to the maximum of A(x).

The condition Nε � O(1) is equivalent to a0 � O(N3/2) when a0 = O(a0s).
Since the spike width is of O(ε), this condition also means that the spikes are well
separated from each other.

Figure 2(c,d) shows that the formula (3.2) is in excellent agreement with full
numerical simulations.

Next we address the coarsening thresholds resulting in spike death that occur as
a0 is decreased. Consider the case of constant A first. Then (2.16) implies that ρ is
also constant, so that 2Lρ = 1. For fixed A and b, the first equation in (2.16) defines
a curve C versus ρ, as shown in Figure 3 (left). The intersection of that curve with
the vertical line 2Lρ = 1 then determines the density ρ as a function of A. Note that
C(ρ) has a unique minimum which occurs at

(3.3) b =
A2

4ρ3
,

with C = Cmin ≡ 4b (1− log (4bA)). This fold point corresponds to a zero-eigenvalue
crossing. The solution branch to the left of this minimum is stable, whereas the branch
to its right is unstable. The stability threshold occurs precisely at the intersection
of the vertical line 2Lρ = 1 and the curve C(ρ) at this minimum (refer to Figure
3). It corresponds to setting ρ = 1/(2L), C = Cmin in (2.16), which yields b =
2A2L3 or a0 = 31/2(N/L)3/2, with spike death occurring when a0 is decreased below
31/2(N/L)3/2. Combining it with Proposition 3.1, we obtain the following result.
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Fig. 3 Left: the graph of C from (2.16) as a function of total mass in the case where A(x) = A is
constant, for three different values of b. The threshold occurs for the value of b such that
the vertical line (corresponding to total mass one) intersects the curve precisely at the fold
point. Right: The graph of C for nonconstant feed rate; here A(x) = 1 + 0.5 cos(x). The red
dot corresponds to Cmin. The threshold occurs when the red dot intersects the vertical line
corresponding to a unit total mass.

Proposition 3.2. In the case of a constant feed rate A(x) = 1 of the Schnaken-
berg model (1.1), N spikes are stable provided that

(3.4) 31/2(N/L)3/2 ≤ a0 ≤ 1.35(N/L)ε−1/2.

Remark. In the derivation above, we have assumed that N is large. However,
for a constant feed rate A(x) = 1, this threshold is also valid for any N (without
assuming that N is large). It corresponds to a zero crossing of small eigenvalues
[15] or, equivalently, a bifurcation point for asymmetric spike solutions [43] of the
system (1.1). Let us briefly summarize the latter computation here. Consider a
steady state consisting of N equal interior spikes of (1.1). Such a steady state can
be obtained using even reflections of a single interior spike on a domain [−l, l], where
l = L/N. As in Appendix A, the asymptotic construction yields the outer solution of

the form v(x) ∼ −a0 x
2

2 + la0 |x| + 3
a0l
, u(x) ∼ a0l

3 w(x/ε). Now define the function

f(l) = v(x)|x=l = a0l
2

2 + 3
a0l
. This function has a minimum at l3 = 3/a20. Substituting

l = L/N and solving for a0 yields precisely the left-hand side of (3.4).
Figure 4 illustrates and numerically verifies the lower bound of Proposition 3.2

(see caption). Excellent agreement is observed.
We now concentrate on the inhomogeneous case. As seen in the analysis of con-

stant A, for a given constant C and a given number A, there exist two solutions ρ of
(2.16), as long as C > 4b (1− log (4bA)); the solution does not exist if the inequality
is reversed. But since A = A(x) varies with x, we define

Cmin ≡ 4b

(
1− log

(
4b min

x∈[−L,L]
A(x)

))
.(3.5a)

Also, define M ≡
∫ L
−L ρ. Then (3.5a) defines a curve C(M) as a function of M. For

C > Cmin, there are two admissible values of M. Unlike the case of constant A (where
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Fig. 4 Left: spike-coarsening process with A(x) = 1. Other parameters are ε = 0.007 and a0 =
50−0.08t. Middle: The number of spikes as a function of a0. Solid stair line corresponds to
the observed number of spots from the numerical simulation. Dashed curve is the theoretical
prediction given by Main Result 2.2. Right: steady state consisting of 22 spikes.
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Fig. 5 Same as Figure 4 except that A(x) =
{ 0.5, x∈(−π,0)

1.5, x∈(0,π).

M = 2Lρ), not all positive values of M are admissible; a gap opens up—see Figure 3
(right). The solution to (2.16), when it exists, is the point along the curve C(M) for
which M = 1. As illustrated in Figure 3, there are two branches of the curve C(M).
The left branch is stable, whereas the right branch is unstable. The disappearance of
the steady state occurs when C = Cmin. In other words, it is the solution to

(3.5b)
A2(x)

ρ3(x)
+ 12b log (ρ(x)/A(x)) = Cmin,

where ρ(x) is the smaller of the two admissible solutions, subject to the constraint

(3.5c)

∫ L

−L
ρ(x)dx = 1.

We summarize this stability result as follows.

Proposition 3.3 (spike death). Let b be the solution to (3.5) and let α = (6/b)
1/2

.
The N -spike equilibrium becomes unstable, resulting in spike death as a0 is decreased
below N3/2α.

Interestingly, the competition threshold for any N depends only on a single uni-
versal number α, which must be computed from A(x).
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To illustrate Proposition 3.3, in Figure 2(d,e) we took A(x) = 1 + 0.5 cos(x)
with L = π. Numerical solution to (3.5) returns α = 0.504 (compare this with
A(x) = 1, L = π, α = 0.311). Starting initially with N = 22 spikes and a0 = 65
and very gradually decreasing a0, as indicated in the figure, as a0 is decreased below
αN3/2, the spikes start to disappear one by one near the boundaries where A(x) is
at a minimum. This is in contrast to the case of constant A(x) = 1, for which about
half of the spikes are destroyed every time the threshold is breached (see Figure 4).
Figure 2(e) shows the curve a0 = αN3/2 in excellent agreement with full numerics.

An important special case is when A(x) is piecewise constant [7, 6]. Suppose that

A(x) =

{
A1, x ∈ I1,
A2, x ∈ I2,

with A1 < A2,

where the the domain [−L,L] is a disjoint union of I1, I2 whose respective size is l1, l2
(so that 2L = l1 + l2). Straightforward algebra yields the following solution to the
system (3.5):

(3.6)
r3

s3
= exp

(
r2

s3
− 1

)
where r =

A2

A1
, s =

ρ2
ρ1
,

(3.7) b =
A2

1

4ρ31
, ρ1l1 + ρ2l2 = 1.

The relationship (3.6) can be written in parametric form as

(3.8) s =
exp

(
2
3 (τ − 1)

)
τ

, r =
exp (τ − 1)

τ

and is plotted in Figure 6. Note that there are two branches that connect to r =
1, s = 1. The stable branch is indicated by a solid line.

For a concrete example, take A1 = 0.5, A2 = 1.5, l1 = l2 = π, so that r = 3
and, from the graph in Figure 6, s = 1.4 = ρ2/ρ1. In particular, near the instability
threshold, there are 1.4 as many spikes in the region where A = 0.5 as there are in
the region where A = 1.5. From (3.7) we further obtain b = 26.744, α = 0.474. Figure
5 shows excellent agreement with full numerics in this case.

Surprisingly, as seen in Figure 6, there is a narrow regime where the density of
the spikes is higher in the areas of smaller feed rate. This occurs when r = A2/A1 ∈
[1, 1.5] .

Lois
New Stamp
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Combining Propositions 3.3 and 3.1, we now summarize our main finding as
follows.

Main Result 3.4. Suppose that Nε� 1. Then N spikes are stable when

(3.9) a0,coarse < a0 < a0,split,

where

(3.10) a0,coarse ≡ αN3/2; a0,split ≡ βNε−1/2.

The constants α, β are given in Propositions 3.3 and 3.1, respectively. Coarsening
(spike death) occurs when a0 is decreased below a0,coarse. Spike splitting occurs when
a0 is increased above a0,split.

Equivalently, N spikes are stable provided that

(3.11a) Nmin < N < Nmax,

where

(3.11b) Nmin ≡ a0
ε1/2

β
, Nmax ≡

(a0
α

)2/3
.

See Figure 2 and the introduction for an illustration of this result and a compar-
ison with full numerics.

4. Discussion. We used the Schnakenberg model with a space-dependent feed
rate to illustrate how the dynamics of N interacting spots can be analyzed by consid-
ering the large-N “mean-field” limit. For any fixed and finite N, the spot dynamics are
controlled by a highly nonlinear, fully coupled differential-algebraic particle system
for spot positions and their weights (2.2); this system is too complex to be tractable
analytically (except in the case of constant feed rate; see [14, 13]). On the other hand,
in the large-N limit we were able to fully characterize the resulting steady state as
well as its stability. In this limit, the particle system is delicately balanced between
the continous and discrete worlds. This required a careful use of the Euler–Maclaurin
summation formula to estimate asymptotically the difference between various sums
appearing in the particle system and their continuum (integral) approximations. Al-
though we assumed that N is large in our derivation, the final results work very well
even for relatively small N (for example, N = 4), for predicting both the correct
steady state and stability thresholds.

Let us contrast our results with previous studies of spikes for homogeneous param-
eters. In [15, 43], spot annihilation thresholds were worked out in the case of constant
feed rate A(x) = A (see also [14, 13] for an earlier study where similar techniques
were used to derive thresholds in the related Gierer–Meinhardt model). Our results
(Proposition 3.3) generalize these thresholds to the case of a nonconstant feed rate.
The previous results of constant rate A are easily recovered as special cases when A is
a constant, in which case the critical threshold is A = 31/2L3/2N−3/2; see (3.4). A key
difference is that for a constant feed rate, the spikes are uniformly distributed in the
domain and, as such, there is no preferred location for spike death. This is apparent
in Figure 4, where half of the spikes die off when the constant feed rate is decreased
below the critical threshold. Contrast this to the nonconstant feed rate (for example,
Figure 2(d,e)); spot death there occurs near the minimizer of A(x). More generally,
the exact location of spot death depends globally on A(x) in a rather complex way
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(see (3.5)). However, for sufficiently variable A(x), spot death is likely to happen near
the minimizer of A(x).

In terms of spot birth, one of the key ingredients is the core problem (A.18), which
was previously derived for a homogeneous feed rate in a series of papers [33, 26, 29,
30, 20, 21], initially for the related Grey–Scott model [33], of which the Schnakenberg
model is a limiting case. Here, we show that the exact same core problem appears
for an inhomogeneous feed rate. However, the outer problem depends strongly on the
inhomogeneity—the second key ingredient. In particular, for a constant feed rate,
there is no preferred location for spot creation as the feed rate is increased (see, for
example, Figure 1(b) in [20]). Contrast this to the nonconstant feed rate (for example,
Figure 2(b,c)). Our results show that as A(x) is gradually increased, spot creation
first occurs at a location where the feed rate A(x) is at a maximum.

Using mean-limit approximations, we found the upper and lower bounds for the
number of stable spikes—see (3.11). The two bounds coincide when a0 exceeds
a0,max ≡ β3/α2ε−3/2. For values of a0 slightly above a0,max, complex creation-
destruction loops can occur, provided that the feed rate A(x) is “sufficiently inho-
mogeneous” (see Figure 2(f)). However, when A(x) is constant, no such loops occur
when a0 > a0,max. Instead, the solution simply converges to a homogeneous state.
Presumably, the destruction and creation of spikes must occur in a different region in
order to produce complex creation-destruction loops, which is not the case for a con-
stant feed rate. Further investigation is needed to determine how “inhomogeneous”
the feed rate A(x) should be for such loops to exist. In any case, this provides for a
nice demonstration that introducing space dependence can lead to completely novel
and complex dynamical phenomena that do not occur in the homogeneous case [32].

Until now, there have been very few analytical results about the large-N limit
in the literature. In two dimensions, a prominent example is the Gross–Pitaevskii
equation used to model Bose–Einstein condensates, whose solutions consist of vortex-
like structures [47, 1, 4]. For a two-dimensional trap, an asymptotic reduction for
motion of vortex centers yields an interacting particle system [46, 3, 49], which in
turn can be reformulated as a nonlocal PDE in the continuum limit of many vortices
[37, 18]. While the analysis is quite different from the present paper, the end result
is similar: one obtains instability thresholds which yield the maximum number of
allowable vortices as a function of trap rotation rate and its chemical potential.

We used formal asymptotics, in the double limit of ε→ 0 and N →∞, to derive
the results in this paper. There are numerous issues of convergence and rigor which
this paper does not address, except to verify the results using numerics to compare
with the original PDE system. It would be an interesting (and sometimes formidable)
challenge to obtain error estimates and rigorously prove convergence of our results.

Numerous other PDE models have solutions that consist of N localized structures
that interact in a nonlocal way, and we expect our techniques (with some modifica-
tions) to be applicable more widely to other reaction-diffusion systems, such as Gray–
Scott and Gierer–Meinhardt [32, 45], and more generally to other physical systems.
The key takeaway message is that when the number of localized structures becomes
large, a mean-field approach can yield important insights that cannot easily be ob-
tained from looking at the finite-N situation. We hope that readers can attempt such
an approach on their own systems.

Appendix A. ODEs for Spike Centers and the Core Problem. Here we derive
the reduced system for the motion of spike centers of the system (2.2), i.e., Proposition
2.1. The procedure is relatively standard. It consists of computing outer and inner
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solutions, using a solvability condition, and matching. In the derivation below, we
assume for simplicity that A(x) is even although it generalizes easily to arbitrary
A(x).

Inner Solution. Near the kth spike we expand

u(x) = U(y), v(x) = V (y), y =
x− xk(t)

ε
, s = t,

so that
−εUyx′k = Uyy − U + U2V, 0 = Vyy + ε2a0A(x)− εU2V.

Next we expand

U = U0 + εU1 + · · · , V = V0 + εV1 + · · · .

At the leading order we obtain

(A.1) 0 = U0yy − U0 + U2
0V0, 0 = V0yy.

The solution for V0(y) is given by

(A.2) V0(y) = V0 + αy.

However, as we will show below (see discussion following (A.13)), matching the inner
and outer solutions will yield α = 0. It then follows that

(A.3) V0(y) = V0, U0(y) = w(y)/V0,

where V0 ∼ v(xk) will be obtained through inner-outer matching and w(y) is the
ground state satisfying

(A.4) wyy − w + w2 = 0, w′(0) = 0, w(y)→ 0 as y → ±∞.

It is well known that the solution to (A.4) is given by

(A.5) w(y) =
3

2
sech2 (y/2) .

The next-order equations are

−x′(t)U0y = U1yy − U1 + 2wU1 + U2
0V1,(A.6)

V1yy = U2
0V0.(A.7)

Multiply (A.6) by U0y and integrate to obtain

(A.8) − x′(t)
∫
U2
0y =

∫
U2
0U0yV1 = −

∫
U3
0

3
V1y.

Now

V1y =

∫ y

0

U2
0V0dy + C,

so that (A.8) becomes

(A.9) x′(t) = C

∫
U3
0

3
∫
U2
0y

= CV0

∫
w3

3
∫
w2
y

.

The constant C is determined as follows:

V1y(+∞) =

∫ ∞
0

U2
0V0dy + C, V1y(−∞) = −

∫ ∞
0

U2
0V0dy + C,

C =
V1y(+∞) + V1y(−∞)

2
.(A.10)
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Outer Expansion. Away from spike centers, u(x) is assumed to be exponentially

small so that vxx + a0A(x) = 0 for x 6= xk. Near xk, the term u2v
ε in (1.1) acts like a

delta function so that we write

(A.11) vxx + a0A(x) ∼
N∑
j=1

sjδ (x− xj) .

Here, the weights sj are defined by

sk ≡
∫ x+

k

x−k

u2v

ε
∼
∫ ∞
−∞

U2
0V0dy ∼

1

vk

∫ ∞
−∞

w2(y)dy ∼ 6

vk
,

where we defined
vk ≡ v (xk) .

The solution to (A.11) is then given by

(A.12) v(x) =

N∑
j=1

sj
|x− xj |

2
− a0P (x) +mx+ c,

where m, c are constants to be determined and P (x) is defined via

(A.13) P ′′(x) = A(x), P ′(0) = 0.

At this stage, let us briefly come back to (A.2) to show that, formally, α = 0. To
do so, we rewrite the outer solution (A.12) in terms of inner variables x = xk + εy.
Suppose that y is in the intermediate regime, 1 � y � ε−1, so that x > xk. Taylor-

expanding (A.12), we then obtain v(x) = A+Bεy+O(ε2), where A =
∑
j 6=k sj

|x−xj |
2 −

a0P (xk) + mxk + c and B = sk/2 + a0P
′(xk) + m. On the other hand, in the inner

region we recall the expansion V (y) = V0(y) + εV1(y). Matching the two expressions
within the intermediate regime 1 � y � ε−1, we obtain V0(y) ∼ A, V1 (y) ∼ By in
the intermediate regime 1 � y � ε. But we found from (A.1) that V0(y) = V0 + αy
in the inner region y � ε−1. This implies that V0 = A, α = 0.

For simplicity, we assume that A(x) is even. In this case the constant m is zero,
as can be seen in the following. Compute v′(±L) and set it to zero:

0 = v′(L) =
∑ sj

2
− a0P ′(L) +m,

0 = v′(−L) = −
∑ sj

2
− a0P ′(−L) +m.

Since P is even, −P ′(−L) = P ′(L), so that m = 0. The expression for c is obtained
by integrating (A.11), which yields∫ L

−L
a(x) =

∑
sj .

Finally, we also have v(xk) = vk = 6/sk. We therefore obtain the following algebraic
system for sk, k = 1, . . . , N and b:

6

sk
=
∑

sj
|x− xj |

2
− a0P (x) + c, k = 1, . . . , N,(A.14a)

∑
sj = a0

∫ L

−L
A(x) = 2a0P

′(L).(A.14b)

Lois
New Stamp

Lois
New Stamp
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To compute V1y (±∞) , we match the inner and outer regions. We have

V (y) ∼ V0 + εV1(y) ∼ v(xk + εy) ∼ v(xk) + εyv′(x±k ),

so that
V1y(±∞) = vx(x±k ).

We further compute

v(x+k ) =
sk
2

+
∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk),

v(x+k ) = −sk
2

+
∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk),

so that the constant C in (A.10) evaluates to

(A.15) C =
∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk).

Finally, we have∫ ∞
−∞

w2dy = 6,

∫ ∞
−∞

w3dy =
36

5
,

∫ ∞
−∞

w2
ydy =

6

5
,

so that (A.9) becomes

(A.16) x′k(t) =
18

sk

∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk)

 ,

subject to N + 1 algebraic constraints (A.14). Near xk, the quasi-steady state is
approximated by

u ∼ w (y) /vk, v(xk) ∼ vk, vk =
6

sk
, y = (x− xk)/ε.

Equations (A.14a), (A.14b), and (A.16) are precisely the equations (2.2) in Proposi-
tion 2.1 after rescaling the spike weights and a0 using the critical scaling

(A.17) a0 = (b/6)
−1/2

N3/2, sj = (b/6)
−1/2

N1/2Sj .

Self-Replication. Next we derive the self-replication thresholds. When sk is too
large, the inner problem becomes fully coupled. The relevant scaling for the inner
problem in this case is

u = ε−1/2U, v = ε1/2V, x = xj + εy.

The leading-order inner problem for the steady state becomes

(A.18a) Uyy − U + U2V = 0, Vyy − U2V = 0.

We seek an even solution to (A.18a) subject to boundary conditions

(A.18b) U (y)→ 0 as y →∞, Vy(∞) = B as y →∞, U ′(0) = V ′(0) = 0,
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where the constant B is related to the spike weight sj as follows. Integrate the second
equation in (A.18a) to obtain

(A.19) 2B =

∫
U2V dy = ε1/2sj .

The system (A.18) is referred to as the “core problem” and is used to explain the
self-replication phenomenon shown in Figure 2(b). It was first identified in [33] in the
context of the Gray–Scott model and was further studied in [26, 29, 30, 20, 21].

Numerical computations of the core problem (see, for example, [33, 26]) show
that the solution to (A.18) exists only for

0 < B < Bc ≈ 1.35.

As B is increased past Bc, the solution to the core problem disappears as a result
of a fold point bifurcation. This disappearance is responsible for the self-replication
[26, 29, 30, 20]. Substituting B = Bc into (A.19), we see that the solution exists only
if sj < 2.70ε−1/2. In terms of the rescaled weights Sj (A.17), this yields

(A.20) Sj ≤ 2.70ε−1/2
N

a0
.
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