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Some reaction diffusion
patterns in 2D
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bility of Turing patterns in the Brusselator model,
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Gierer-Meinhardt model with large saturation:
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Pattern types

e Turing patterns

I

interfaces, mesas

e L ocalized structures: spikes

e Localized structures:

e \What is the stability when these patterns

are extended trivially to 2-D7?



Gray Scott model
v = 2 Ay — v -+ Av2uy

Tut:DAu—u—l—l—’UQ’u

We assume D > 2

In 1D solutions are spikes.

Stability in 1D depends on small O(g2) and
large O(1) eigenvalues.

In 2D: large eigenvalues < breakup,
small eigenvalues < zigzag istability
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Main result. Assume that domain width is of
O(1) and

€2<<D.

Then a breakup instability is always present.

Suppose that
3
ev'D > = A2
220
where zg ~ 1.1997 is a root of
zgtanh zg = 1,
and

A <K O().

Then and only then there are no zigzag insta-
pilities.



Mesa patterns in GS
When D = O(e2), mesa patterns are possible.

In the case

3
D=¢2 and A= " =2.1213
V2

an exact heteroclinic solution exists [HPT, 2000].

When D —e2 = O(1) # 0, no exact solution
iIs known. However mesa-like patterns are ob-
served numerically:

A=12 D=0.0l,e = 0.05

Numerically, we show that such solution is sta-
ble w.r.t breakup but unstable w.r.t. zigzag
instabilities.
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This solution is very sensitive to changes in A,
less sensitive to changes in D:

A=1.96 DO=4 A=1.97 DO=4 A=1.98 D0=4

A=1.83 D0=6.08 A=1.95 D0=4
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Gierer-Meinhardt model with
saturation

A2 1
14+ 6A2H
rH; = DAH — H + A®,

Ay = e2AA - A+

ekl, D>1.

e Thelimit § <1 is the usual GM model. So-
lutions are spikes, always have a breakup insta-
bility.

e When § = O(1), the solutions are mesas.
The length of the mesa and its height are given
by

1
[ =0.2003V5, A ~1517—.
head \/E
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Example of mesa
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Here, ¢ = 0.01, D = 10. For left figure, satu-
ration 6 = 0.1; for right figure, 6 = 2.

Remark: Mesas occur in many other models,
such as FitzHugh-Nagumo model (Goldstein,
Muraki, Petrich, 1996), Diblock Copolymers
(Choksi, Ren, Wei), and the Brusselator.
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Eigenvalues are given by:

Te)
Ayiq ~ —m2e2 + 3.622-= —o_ .
zig ~ TmMIET Dl( 2 O)

1-0D1 o4
) ~ —m?e?+3.622
break + DI ( 5 145 09 £

where

cosh #1=D cogp &l 1
o 5 2 = m2+5

. H)
U sinh 5
cosh MlT_l)sinh%l
H)
U cosh 5

sinh (,ul) L
p? sinh (g) cosh <§ (= 1))

£ =
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The graph of [ versus the maximum value of
eD for which an instability can occur. The
solid and dotted curves correspond to zigzag
and breakup instabilities, respectively.

For example take [ = 0.25,¢ = 0.01. We get

stability if D = 1.2, zigzag innstability if D =
0.8.
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GM model with D = O(&2)

Take D = Dgpe and 6 = 0. If

Do < 7.17

then a 1-D spike dissapears; leading to pulse
splitting. If

7.17 < Dg < 8.06

then the stripe is stable w.r.t. breakup instabil-
ity, but unstable w.r.t. zigzag instability. The
final state is a Turing-type pattern.
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T he Brusselator model

Rate equations:

AS X, B4+X ->Y+D, 2X4Y —-3X, XS E.

After rescaling, we get a PDE system:

v = eDvgr + Bu — u2v,
Tut = eDugy + A + uly — (B4+¢)u
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Steady state

O =¢eDvyy + Bu — uzv,
0 =€Dum—|-€A—|-u2v— (B4+¢)u

Let w = v+ u; then
0 = 6%vzs + B(w—v) — (w—v)?v,
O=Dwzrz—w—+v+ A
where §° =D < 0 and D > 1. Therefore
w ~ wo

is constant to first order; and §%v;; = Cubic(v).
The Maxwell line condition then implies:

2 5
B = —w&§.
90
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Away from interfaces, v ~ wg or v ~ wq/3.
Near the interface zg,

2 1 (wo (z — :I:o)>

~ — &+ —tanh
v oy = Wog 3 V2D

Suppose v ~ wg/3 on [0,l] and v ~ wg on [, 1].
Using solvability condition we obtain,

1
wo—A:/O v =lwg/3 4+ (1 —1wg

and so

21



0 01 02 03 04 05 06 07 08 09 1
X

An example of a three-mesa equilibrium state

for v. Here, K =3, A=2 B =18, ¢D =
0.022.
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In 2D these mesas can be stable. Analysis is
similar to GMS.
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Coarsening in 1-D

logqg(t+1)
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A=1B=8,¢=10"% D =10, r = 10.

24



Conclusions

Stripes formed from spikes break up

Stripes formed from mesas can be stable

Turing patterns can form stripes

Two different mechanisms to get stripes in
GMS model

Space-filling curves occur in presence of
zigzag and absence of breakup
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