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Some reaction diffusion
patterns in 2D

The Brusselator:

Reference: B. Peña and C. Pérez-Garćıa, Sta-

bility of Turing patterns in the Brusselator model,

Phys. Rev. E. Vol. 64(5), 2001.
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Gray Scott Model:

Reference: the Xmorphia website
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Gierer-Meinhardt model:
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Gierer-Meinhardt model with large saturation:
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Pattern types

• Turing patterns

• Localized structures: spikes

• Localized structures: interfaces, mesas

• What is the stability when these patterns

are extended trivially to 2-D?
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Gray Scott model

vt = ε24v − v + Av2u

τut = D4u − u + 1 − v2u

• We assume D � ε2

• In 1D solutions are spikes.

• Stability in 1D depends on small O(ε2) and

large O(1) eigenvalues.

• In 2D: large eigenvalues ↔ breakup,

small eigenvalues ↔ zigzag istability
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Main result. Assume that domain width is of

O(1) and

ε2 � D.

Then a breakup instability is always present.

Suppose that

ε
√

D ≥ 3

2z0
A2

where z0 ∼ 1.1997 is a root of

z0 tanh z0 = 1,

and

A � O(1).

Then and only then there are no zigzag insta-

bilities.
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Mesa patterns in GS

When D = O(ε2), mesa patterns are possible.

In the case

D = ε2 and A =
3√
2

= 2.1213

an exact heteroclinic solution exists [HPT, 2000].

When D − ε2 = O(1) 6= 0, no exact solution

is known. However mesa-like patterns are ob-

served numerically:

A = 2, D = 0.01, ε = 0.05
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Numerically, we show that such solution is sta-

ble w.r.t breakup but unstable w.r.t. zigzag

instabilities.
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This solution is very sensitive to changes in A,

less sensitive to changes in D:
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Gierer-Meinhardt model with
saturation

At = ε2∆A − A +
A2

1 + δA2

1

H

τHt = D∆H − H + A2,

ε � 1, D � 1.

• The limit δ � 1 is the usual GM model. So-

lutions are spikes, always have a breakup insta-

bility.

• When δ = O(1), the solutions are mesas.

The length of the mesa and its height are given

by

l = 0.2003
√

δ, Ahead ∼ 1.517
1√
δ
.
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Example of mesa
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Here, ε = 0.01, D = 10. For left figure, satu-

ration δ = 0.1; for right figure, δ = 2.

Remark: Mesas occur in many other models,

such as FitzHugh-Nagumo model (Goldstein,

Muraki, Petrich, 1996), Diblock Copolymers

(Choksi, Ren, Wei), and the Brusselator.
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Eigenvalues are given by:

λzig ∼ −m2ε2 + 3.622
ε

Dl

(

l(1 − l)

2
− σ−

)

,

λbreak ∼ −m2ε2+3.622
ε

Dl





(1 − l) l

2
−

σ+

1 + 5.09 ξ
lD





where

σ+ =
cosh µ(1−l)

2

µ

cosh µl
2

sinh µ
2

, µ =

√

m2 +
1

D

σ− =
cosh µ(1−l)

2

µ

sinh µl
2

cosh µ
2

,

ξ =
sinh

(

µ l
2

)

µ2 sinh
(

µ
2

) cosh

(

µ

2
(l − 1)

)
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The graph of l versus the maximum value of

εD for which an instability can occur. The

solid and dotted curves correspond to zigzag

and breakup instabilities, respectively.

For example take l = 0.25, ε = 0.01. We get

stability if D = 1.2, zigzag innstability if D =

0.8.

16



17



GM model with D = O(ε2)

Take D = D0ε and δ = 0. If

D0 < 7.17

then a 1-D spike dissapears; leading to pulse

splitting. If

7.17 < D0 < 8.06

then the stripe is stable w.r.t. breakup instabil-

ity, but unstable w.r.t. zigzag instability. The

final state is a Turing-type pattern.
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The Brusselator model

Rate equations:

A
ε→ X, B+X → Y +D, 2X+Y → 3X, X

ε→ E.

After rescaling, we get a PDE system:

vt = εDvxx + Bu − u2v,

τut = εDuxx + εA + u2v − (B + ε)u
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Steady state

0 = εDvxx + Bu − u2v,

0 = εDuxx + εA + u2v − (B + ε)u

Let w = v + u; then

0 = δ2vxx + B (w − v) − (w − v)2 v,

0 = Dwxx − w + v + A

where δ2 = εD � 0 and D � 1. Therefore

w ∼ w0

is constant to first order; and δ2vxx = Cubic(v).

The Maxwell line condition then implies:

B =
2

9
w2

0.
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Away from interfaces, v ∼ w0 or v ∼ w0/3.

Near the interface x0,

v ∼ w0
2

3
± w0

1

3
tanh

(

w0

3

(x − x0)√
2εD

)

Suppose v ∼ w0/3 on [0, l] and v ∼ w0 on [l,1].

Using solvability condition we obtain,

w0 − A =

∫ 1

0
v = lw0/3 + (1 − l)w0

and so

l =
A√
2B

.
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An example of a three-mesa equilibrium state

for v. Here, K = 3, A = 2, B = 18, εD =

0.022.
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In 2D these mesas can be stable. Analysis is

similar to GMS.

23



Coarsening in 1-D

A = 1, B = 8, ε = 10−4, D = 10, τ = 10.
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Conclusions

• Stripes formed from spikes break up

• Stripes formed from mesas can be stable

• Turing patterns can form stripes

• Two different mechanisms to get stripes in

GMS model

• Space-filling curves occur in presence of

zigzag and absence of breakup
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