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Abstract. We study the spectrum of the Laplace Beltrami operator on ellipsoids. For ellipsoids
that are close to the sphere, we use analytic perturbation theory to estimate the eigenvalues up
to two orders. We show that for biaxial ellipsoids sufficiently close to the sphere, the first L2

eigenvalues have multiplicity at most two, and characterize those that are simple. For the triaxial
ellipsoids sufficiently close to the sphere that are not biaxial, we show that at least the first sixteen
eigenvalues are all simple.

We also give the results of various numerical experiments, including comparisons to our results
from the analytic perturbation theory, and approximations for the eigenvalues of ellipsoids that
degenerate into infinite cylinders or two-dimensional disks. We propose a conjecture on the exact
number of nodal domains of near-sphere ellipsoids.

1. Introduction

This article aims to compute the Laplace-Beltrami spectrum (and its multiplicities) of a class of 2-
dimensional ellipsoids in R3 through analytic perturbation theory [18], more specifically eigenvalue
perturbations [11]. We describe our main results first before providing motivations and a discussion
of related results.

1.1. Main results. Let us give the definition for the main object of study in our article:

Definition 1. Let a, b, c ą 0. We denote by Ea,b,c Ă R3 the ellipsoid given by
"

px, y, zq P R3 |
x2

a2
`
y2

b2
`
z2

c2
“ 1

*

.

In other words, Ea,b,c is an ellipsoid with axes a, b, and c.

Let ´∆g be the positive Laplace-Beltrami operator on Ea,b,c and consider the corresponding
eigenvalue problem ´∆gϕΛ “ ΛϕΛ. Recall that on the sphere S2 “ E1,1,1, the eigenvalues are
Λ “ lpl`1q having multiplicity 2l`1, with l P Zě0. We are now in a position to state main results:

Theorem 2. Let L P N and α, β P R with at least one being non-zero. Consider the biaxial ellipsoid
Ea,a,b where a “ 1` εα, b “ 1` εβ where ε P R` and gε the metric from R3 restricted to Ea,a,b.

Then there exists ε0pα, β, Lq such that for all ε ă ε0 and Λ P specp´∆gqX r0, LpL` 1qs, we have

Λ “ l pl ` 1q ` εΛ1 `Opε
2q

for l “ 0, 1, 2, . . . L and m “ ´l, . . . , l with Λ1 being given by the explicit formula

Λ1 “ ´2αl pl ` 1q ` pα´ βq
2l pl ` 1q

p2l ` 3q p2l ´ 1q

`

2l2 ´ 2m2 ` 2l ´ 1
˘

. (3)

Moreover, each Λ has multiplicity two except for those whose expansion has m “ 0, which in this
case corresponds to multiplicity one.
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Theorem 4. Let l P N and α, β, γ P R be given with at least one being non-zero. Consider the
triaxial ellipsoid Ea,b,c where a “ 1 ` αε, b “ 1 ` βε and c “ 1 ` γε and gε the metric from R3

restricted to Ea,b,c.
Then there exists ε0pα, β, γ, lq such that for all 0 ă ε ă ε0 and Λ P specp´∆gqXrlpl`1q´2l, lpl`

1q ` 2ls, we have

Λ “ l pl ` 1q ` Λ1 ε`Opε2q (5)

where Λ1 is an eigenvalue of a p2l ` 1q ˆ p2l ` 1q matrix and whose entries yield explicit formulas
in l, α, β, and γ. Thus, given L P N, there exists ε0pα, β, γ, Lq such that the expansion (5) holds
for all Λ P specp´∆gq X r0, LpL` 1qs. Lastly, for l “ 1, 2, 3 in particular, there exists ε0 such that
specp´∆gq X rlpl ` 1q ´ 2l, lpl ` 1q ` 2ls contains only simple eigenvalues for all ε ă ε0.

For these explicit formulas pertaining to Λ1, see Proposition 35 in Section 4.

1.2. Some motivations. From the point of view of classical mechanics, ellipsoids Ea,b,c form
one of the oldest known examples of integrable systems, themselves holding a venerable place
in the subject. Their quantum analogues have been intensively studied in the last forty years,
with numerous contributions arising from a beautiful mixture of symplectic geometry and WKB
approximations, the connection being exploited by microlocal/semiclassical analysis. We survey
some related and microlocally-oriented results in the next section.

We emphasize that the spectrum of geometric spaces with large symmetry groups has been
explicitly computed [23] with a partial list being compact rank-one symmetric spaces (CROSSes),
certain projective spaces, Steifel manifolds, and Grassmannians. However, it appears that not much
is known for manifolds lacking large symmetry groups like biaxial and triaxial ellipsoids let alone
their multiplicities. While microlocal analysis has addressed the approximation of the eigenvalues
in the semiclassical limit, we have not found any literature providing bounds on multiplicity.

The study of Laplace’s equation on R3 using ellipsoidal-type coordinate systems is well-developed
and is centered around the analysis of the Lamé equation. In fact, the word “ellipsoidal harmonics”
has been attached to a variety of families of functions including for eigenfunctions on Ea,b,c. See
the treatise of Dassios [7] for a survey and in particular Chapter 4.4 for a brief treatment on
product-form eigenfunctions on Ea,b,c.

We make note that the use of analytic perturbation theory allows for both accurate approximations
(as confirmed by our numerics in Section 5.1) and multiplicity calculation. Furthermore, it provides
us the opportunity to bypass the use of Bohr-Sommerfeld quantization rules and the computation of
subprincipal symbols, per microlocal analysis, which are two highly powerful but technical concepts.
In this vein, the contents of our article appear to be novel.

The question of what is specp´∆gq has played a prominent role in recent years in data analy-
sis. For example, in [19] eigenvalues of the Laplace–Beltrami operator were used to extract “fin-
gerprints” which characterize surfaces and solid objects. In [2, 4], these eigenvalues (and their
corresponding eigenfunctions) were used for dimensionality reduction and data representation.

We close our motivations section by briefly discussing the concept of shape DNA in shape match-
ing. By “shape DNA”, we mean the first N elements of specp´∆gq for pM, gq. Our results can
be encompassed as the computation of this shape DNA for ellipsoids that are close to spheres.
Note that shape DNA plays a crucial role in the representation of data sets, itself being usefuk in
copyright protection and database retrieval. For more applications, see [19].

1.3. Related results from semiclassics. There are a number of relevant results from the semi-
classical analysis literature that require discussion. We begin with the work of Pankratova [16].
In this article, the author uses a special ellipsoidal coordinate system and the so-called parabolic-
equation method (in the spirit of Babich and Lazutkin) to compute high-frequency asymptotics for
eigenvalues arising only from product-form eigenfunctions of ´∆g.
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Three works of greatest relevance to Theorems 2 and 35 are those of Sjöstrand [22], Colin de
Verdère-Parisse [6], and Toth [24], each of which we describe in detail. First, the work of Toth
[24] not only proves the quantum integrability of Ea,b,c (i.e. the existence of a second quantum
Hamiltonian on Ea,b,c that commutes with ∆g) but also formulates an interesting conjecture: the
joint spectrum for these quantum Hamiltonians is encoded by a second-order complex ODE with
automorphic boundary conditions.

An asymptotic description of eigenvalues for semiclassical Schrödinger operators whose potentials
satisfy a non-degeneracy condition is given in the work of Sjöstrand [22]. In the case of biaxial
2-dimensional ellipsoids, one can reduce to a Mathieu-type operator Ap~q on the non-S1-invariant
axis and then use quantum Birkhoff normal forms to read off formulas for the energies in a fixed
window (in our setting, this corresponds to the low-energy spectrum with the constraints that
m2 « l2) but to order ~. This leads us to the more geometric work of Colin de Verdière-Parisse.

The articles [5, 6] investigate Bohr-Sommerfeld quantization rules in the presence of singularities
generated by select classes of quantum Hamiltonians. The spectrum of ellipsoids is studied as an
application by Colin de Verdière-Vu Ngoc and depends strongly on some previous work of Colin de
Verdière-Parisse in one dimension. The work [6] determines that the energies of a certain class of 1-
dimensional semiclassical Schrödinger operators P p~q in a fixed window can be explicitly deduced

from solving for the coefficients aj in the equation e

ř

j aj~
j

~ “ 1 for small enough h. Following
this reasoning in the case of biaxial 2-dimensional ellipsoids should allow one to reproduce the
multiplicity information given in Theorem 2. To perform this calculation however, it appears one
needs to push the quantum Birkhoff normal forms to greater precision via the calculation of P p~q’s
subprincipal terms. In some sense, our work proceeds in this direction albeit through the lens of
analytic perturbation theory. This is one avenue in which our Theorems 2 and 4 are new.

In closing this discussion, we point the connections between our method and high-frequency
quasimode constructions in semiclassical analysis. If we write out the Laplace-Beltrami operator
on Ea,b,c as ´~2

`

∆g ` εA1 `Opε2q
˘

, it becomes clear that we are utilizing an additional small

parameter ε whilst bounding ~ away from zero to write quasimodes on S2. In fact, we are computing
the quasifrequencies for ´∆g but not in a high-frequency regime. This naturally results in our
Theorems 2 and 4 not being descriptive of high frequencies but at the upshot of being descriptive
for multiplicities.

1.4. Outline of the paper. Our main tool is the theory of perturbations, a sharply defined set
of ideas that is described for instance in the classic applied mathematics text of Hinch [11] and
in a more pure, theoretical fashion in the treatise of Kato [12]. While there exists a number of
sources from pure mathematics rigorizing asymptotics, including [12], there appear to be much
fewer sources demonstrating the analyticity of eigenvalues for analytic families of metrics. In this
paper, we utilize a combination of results from Rellich’s perturbation theory notes (unfortuntaely,
now discontinued) from the Courant Mathematical Institute [18] and an article of Bando-Urakawa
[1] on eigenvalues for certain families of Laplace-Beltrami operators. In fact, for the benefit of easier
reading, Section 2 is dedicated to an appreciable reproduction of useful results from [1] along with
some alternate proofs coming from Rellich’s Courant notes.

Once we have explained our theoretical tools, particularly in Theorem 6, Sections 4 and 4 are
dedicated to explicit calculations with the coordinate representations of ´∆g on Ea,b,c and the
ultraspherical harmonic basis on L2pS2q. Section 3 utilizes the symmetries of Ea,b,b to reduce our
eigenvalue calculation problem to one for analytic families of ordinary differential equations, allow-
ing us to apply the theory of Sturm-Liouville equations as well as make deductions on multiplicities.
The triaxial ellipsoid Ea,b,c is the most difficult computationally, so Section 4 and the appendix are
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focused in this direction. The lack of rotation-invariance (in other words, an invariant S1-action
on Ea,b,c) obstruct most simplifications hence requiring a more in-depth analysis.

Our final section, namely Section 5, is focused on verifying the accuracy of our analytic methods
via numerics. A combination of MATLAB calculations as well as Laplace-Beltrami eigenfunction
approximations on surfaces, as generated by code of Macdonald-Brandman-Rooth [14], are provided
for comparisons: these demonstrate that our analytic results are in fact accurate up to a designated,
yet still high, order. We also provide some simulations that address the shapes of regions where
eigenfunctions are non-zero (which go by the moniker of “nodal domains” in the spectral geometry
community) on different ellipsoids Ea,b,c.

2. Analytic Perturbation Theory

Let M be a compact, n-dimensional, smooth manifold without boundary. Let SpMq be the space
of all C8 symmetric covariant 2-tensors on M and M the set of all C8 Riemannian metrics on M .
Following the texts [8, 10], we can put a Frechet norm on SpMq. Using this fact, [1, Proposition
1.2] gives a metric ρ on M which will play a role in the statement of our following theorem although
its precise form is not needed.

Theorem 6 (Berger’s Lemma). For g P M and hi P SpMq fixed for i “ 1, . . . , N , let gpεq “

g `
řN
i“1 ε

ihi where ε ă ε0pM, thuiq. Let Λ be an eigenvalue of ´∆g of multiplicity l. Then
specp´∆gpεqq consists of elements that have an analytic dependence in ε in the following way:
Given Λ, there exists ε1pM, εq along with Λmpεq P R and ψmpεq P C

8pMq, for m P t1, . . . , lu, such
that

(1) Λm and ψm depend real-analytically on ε ă ε1, uniformly for each m P t1, . . . , lu,
(2) Λjp0q “ Λ, for m P t1, . . . , lu, and

(3) tψmpεqu
l
m“1 is orthonormal with respect to the inner product x, ygε

This “lemma” is originally due to Berger [3] however some gaps needed to be resolved and
were filled by Bando-Urakawa [1]. Their own proofs though, albeit terse, heavily relied on various
facts from the perturbation theory of eigenvalue problems, so we reproduce a sufficient number
of arguments due to Rellich [18] for the following two reasons: 1) sake of completeness and 2) to
re-illustrate the beautiful blend of ideas and formulas presented by Rellich.

The proof of Theorem 6 actually follows as an immediate consequence of a slightly more general
result. However, we first give a necessary definition:

Definition 7. A family of metric tgεuε Ă M depends real-analytically on ε if there exists a family
tgiu

8
i“0 Ă SpMq and an ε0pM, tguiq such that

ř8
i“0 ε

igi converges to g in the metric topology of
M , for all ε ă ε0.

Theorem 8. (cf. [1, Theorem 1]]) Let gε P M be a one-parameter family of metrics depending
real-analytically on ε ă ε0 with respect to the metric ρ on M , for some ε0pMq ą 0. Let Λ be
an eigenvalue of ´∆g of multiplicity l. Then the spectrum specp´∆gpεqq consists of elements that
have an analytic dependence in ε in the following way: for Λ, there exists ε1pM, ε0,Λq along with
Λmpεq P R and ψmpεq P C

8pMq X L2pM, gεq, for m P t1, . . . , lu, such that

(1) Λm and ψm depend real-analytically on ε ă ε0 (with respect to their corresponding topolo-
gies), for each m P t1, . . . , lu,

(2) Λjp0q “ Λ and ψmp0q is in the ´∆g-eigenspace associated to Λ, for m P t1, . . . , lu, and

(3) tψmpεqu
l
m“1 is orthonormal with respect to the inner product x, ygε
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2.1. Main tools and Rellich’s Theorem. The proof of this Theorem 8 hinges upon the afore-
mentioned robust and clever result of Rellich [18] and an auxilliary lemma about linear differential
operators whose coefficients have an analytic dependence on a small parameter. First, we start
with a definition for the notion of real-analytic operators:

Definition 9 (Real-analytic families of operators). For ε ą 0, let Apεq P L pHs1pMq,
Hs0pMqq, the Banach space of bounded operators from Hs1pMq to Hs0pMq. We say Apεq is real-
analytic in ε if there exists a Ai P L pHs1 , Hs0q with the property that Apεq “

ř

i ε
iAi and a

sequence of constants taiui where }Ai} ď ai such that

}Apεq} ď
ÿ

n

εnan ă 8.

In fact, the definition goes both ways: starting off with the series expansion and finiteness of its
norm, that L is Banach gives us that Apεq is in fact an element of L pHs1 , Hs0q. We now give a
technical lemma that is useful for analysis in coordinate charts:

Lemma 10. Let U Ă Rn be a coordinate chart on M . Let Lε be family of differential operators on
M which can locally be expressed in U as

Lε “
ÿ

|α|ďm

aαpε, xqD
α
x

where each aα has a real-analytic dependence on ε ă ε0pUq, uniformly for x P U . Then the family
of bounded operators Lε : HmpMq Ñ L2pMq is real-analytic.

Proof. We leave the proof as an easy exercise for the interested reader. �

It is important to note that in local coordinates px1, . . . , xnq on M , the coefficients of the Laplace-
Beltrami operator are simply products of functions which are themselves analytic in ε thanks to
our analyticity assumption on gε (this assumption itself implying analyticity for the coefficients of
g´1, which appear in the local coordinate expressions of ∆gε , thanks to the analyticity of det´1pgq
and the adjugate matrix of g.)

Finally, we arrive at our main technical results in the theoretical portion of this article:

Theorem 11 (Rellich’s Theorem). Let I be an interval containing 0. Let s1 ą s0 ě 0 be integers.
Let Aε be a real-analytic family of bounded operators mapping from Hs1 to Hs0 with A0 “: A.
Assume that

(1) each operator Aε, ε P I, is self-adjoint with domain Hs1 but with respect to the inner
product x , ys0. In other words, Aε is a densely defined unbounded operator on Hs0pMq and
has DpAεq “ DpA˚ε q,

(2) A0 is a positive operator on its domain, and
(3) Λ is an eigenvalue of A0 with multiplicity l that is also isolated in the spectrum, that is

there exists δpΛq ą 0 such that specpAq X r´δ ` Λ, δ ` Λs “ tΛu.

Then there exists I 1 Ă I containing 0, l real-analytic families of eigenvalues tΛmpεqu
l
m“1 and

eigenvectors tψmpεqu
l
m“1 of Aε for ε P I 1 such that

‚ Λjp0q “ Λ, for m P t1, . . . , lu,

‚ tψmpεqu
l
m“1 is orthonormal with respect to the inner product x, ys0 for all ε P I 1, and more-

over,
‚ given any d1, d2 ă δ, there exists I2 Ă I 1 such that for all ε P I2, specpAεq X r´d1 `Λ, d2 `

Λs “ tΛmpεqu
l
m“1.
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A similar statement can be found in the classic texts of Kato [12] and Riesz-Nagy [17]. Note
also that a priori, our intervals I 1 and I2 depend on Λ therefore making this result inherently
non-uniform across the entirety of specpA0q.

In fact, by applying Theorem 11 to each element of the spectrum of A below a fixed threshold
L say, and carefully choosing the intervals I2 we then immediately have the

Corollary 12. Given L ą 0, there exists ε0pLq such that specpApεqq X r0, Ls consists entirely of
analytic eigenvalues as described in Theorem 11.

Proof of Theorem 8 using Lemma 10 and Theorem 11. The proof is almost immediate after con-
sidering the following well-known isometry between L2pM, gεq and L2pM, gq which we give in local-
coordinate form:

Uεpfqpxq “

d

det gpxq

det gεpxq
fpxq.

Thanks to the analyticity of
b

det gpxq
det gεpxq

, it follows immediately that Uε∆gεU
´1
ε ` I satisfies the

hypotheses of Lemma 10 and is a bounded family of operators from H2pM, gεq to L2pM, gq where
s1 “ 2 and s0 “ 0. Furthermore, these operators are densely defined on L2pMq, self-adjoint, and
positive, thus satisfying the hypotheses of Theorem 11.

We conclude the proof by noting that for ψ̃mpεq an eigenvector of Uε∆gεU
´1
ε ` I as per the

conclusions of Theorem 11, ψmpεq :“ U´1
ε ψ̃mpεq gives us the desired eigenvectors corresponding to

gε. Hence,
Λmpεq “ x

`

Uε∆gεU
´1
ε ` I

˘

ψ̃mpεq, ψ̃mpεqyg0

which itself admits an power series expansion therefore verifying the analyticity. The last step is
to just shift the spectrum by -1. �

2.2. Proof of Theorem 11: Some technical statements. The idea behind the proof of Rellich’s
Theorem is both natural and computational in nature, however there are a number of moving
parts that we must carefully identify in a top-down format. Throughout this section, we consider
assumptions (1)-(3) in the statement of Theorem 11.

For the sake of simplicity, as our operators of interest are themselves Laplace-Beltrami operators
corresponding to perturbed metrics gε, we assume that Aε admits a discrete, non-negative spectrum
and that DompAεq “ DompA0q “ H2pM,dVg0q. Now, set Bε :“ A0 ´ Aε and µpεq :“ Λ ´ Λpεq
where Aεψpεq “ Λpεqψpεq. This leads us to the following series of simple lemmas:

Lemma 13 (Restriction and matrix identity). Let ϕΛ be a eigenvector of eigenvalue Λ and ψpεq an
eigenvector of Aε. We have

pA0 ´ Λqψpεq “ pBε ´ µpεqqψpεq

and hence xpA´ ΛqϕΛ, ψpεqy “ xϕΛ, pBε ´ µpεqqψpεqy “ 0 by self-adjointness with domain H2.

Lemma 14 (Pseudo inverses). Let A be our self-adjoint, unbounded operator on L2pMq and δ be
as in the hypotheses Theorem 11. There exists R P L pL2q XL pH2q such that

‚ RΠEΛ
“ 0.

‚ R pA´ Λq “ pA´ ΛqR “ I ´ΠEΛ

Proof. We invoke spectral calculus for unbounded operators and denote by Eσ the spectral measure
for A (which is in our case discrete). Then we can set

R “

ż Λ´δ

0

1

σ ´ Λ
dEσ `

ż 8

Λ`δ

1

σ ´ Λ
dEσ.

The boundedness follows from spectral multiplier taking values less than δ´1 on the spectrum. �
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Notice that for ψpεq an eigenfunction of Aε, we have the orthogonal decomposition ψpεq “
ψptq `RpBε ´ µpεqqψpεq where ψptq P EΛ; this follows immediately from a combination of Lemma
13 and Lemma 14. Iterating this expression, if we have a convergent operator series, allows us to
express ψpεq completely in terms of data coming from EΛ. This notion motivates the main idea of
Rellich’s proof as seen through the following natural generalization of this series.

Lemma 15 (Neumann series for ψpεq). Let µ be a free parameter and Bε “
ř

i“1 ε
iAi be analytic

in ε in the sense of Definition 9, with each of its terms Ai having norm }Ai}op ď c0 where c0 ą 0

is fixed. Consider ψ P EΛ and set Spεq “ R ˝ pBε ´ µq with }R} “ r0.
Then there exists ε0, µ0 small enough such that for |ε| ă ε0 and |µ| ă µ0 , we have that

ψpεq “
8
ÿ

n“0

Spεqnpψpεqq (16)

exists in L2.

This element ψpεq will be shown to be our desired eigenfunction for Aε. It should be noted that
the expression for this putative eigenfunction involves only information from a fixed eigenspace for
A0, namely EΛ. Also, the reason for having only a single number c0 bounding the norms of our
operator-valued coefficients is because we only deal with 2nd-order differential operators on M ,
therefore yielding only 2nd-order operators with uniformly bounded real coefficients.

Proof of Lemma 15. We only need to verify that
ř8
n“0 Sptq

n has a small norm for t sufficiently
small. Hence, we must further bound

ř8
n“1 }R ˝ pBε ´ µq}n, which in turn leads us to bounding

}R ˝ pBε ´ µpεqq}
n ď }R}n ¨ }pBε ´ µpεqq}

n. If we choose t0, µ0 ą 0 small enough so that

}R ˝ pBε ´ µpεqq} ď r0

˜

µ0 `

8
ÿ

i“1

εic0

¸

ă 1,

we then have a convergent Neumann series. This completes our proof. �

Remark 17. In our case of Laplace-Beltrami operators arising as perturbations from that on S2,
we can take r0 “ 1 as the spectral gaps δ can be taken to be as greater than or equal to 2 always.

2.3. Proof of Theorem 11: Weierstrass factorization and final steps. Let us massage our
series representation for the putative eigenfunction ψpεq in equation (16) a bit further, under the
assumption that µpεq is sufficiently small. To provide some motivation, let EΛ “ spantϕΛ,mu

l
m“1

and suppose that ψpεq is actually an eigenvector Aε. Then we know ΠEΛ
ψpεq “

řl
m1“1 cm1pεqϕΛ,m1

for some values cm1pεq; plugging in this linear combination into the series representation of RpBε´µq
with the identity in Lemma 13, gives

l
ÿ

m1“1

cm1pεqxϕΛ,m, pBε ´ µpεqq
8
ÿ

n“0

SnϕΛ,m1y “ 0 (18)

for each m “ 1, . . . , l.
This set of equations (18) s commonly referred to as the “first solvability conditions” in asymp-

totics. Rellich’s idea was to remove the dependence of µ on ε and treat it as an independent
variable. If we can solve these equations in cm1 for sufficiently small µ, then the theory of zeroes of
analytic functions return our desired eigenvalues and eigenvectors.

We label vm,m1pεq :“ xϕΛ,m, pBε ´ µq
ř8
n“0 S

nϕΛ,m1y; note that vm,m1pεq “ vm1,mpεq and hence
the corresponding l ˆ l matrix is Hermitian. We lift these functions into R2

µ,ε and consider the
resulting determinant of

F pµ, εq :“ det
`

vm,m1pεq
˘

m,m1
(19)
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For |ε| ă ε0 and |µ| ă µ0, we know that F pµ, εq is an analytic function in µ and ε. Notice that in
the special case of µ “ rµpεq “ Λ ´ Λpεq, and if |µpεq| ă µ0, then F pµpεq, εq “ 0 thus showing the
existence of non-zero projection coefficients of ψptq.

It is through the Weierstrass Preparation Theorem and that we can show the existence of such
sufficiently small µpεq, and therefore Λpεq, as encapsulated by the following proposition:

Proposition 20. Consider the analytic function F pµ, εq defined in (19). We have that F pµ, 0q “ µl

and therefore

F pµ, εq “
´

µl ` pl´1pεqµ
l´1 ` ¨ ¨ ¨ ` p1pεqµ` p0pεq

¯

ˆ Epµ, εq

where each pipεq is analytic in ε and Epµ, εq is a non-vanishing analytic function in a rectangle
Ipµ0q.

Proof. This is an immediate consequence of the Malgrange-Weierstrass Preparation Theorem with
the derivative conditions applied in µ. For its rigorous statement, see the treatise by Guillemin-
Golubitsky [10, Chapter 4]. �

Proof that Proposition 20 implies Theorem 11. Take ε0 and µ0 small enough to satisfy the hypothe-
ses of Proposition 20. Thanks to the corresponding matrix for the determinant F being Hermitian,
F is itself real and we have a complete factorization of

´

µl ` pl´1pεqµ
l´1 ` ¨ ¨ ¨ ` p1pεqµ` p0pεq

¯

into monomials of the form µ´ rµm1pεq for m1 “ 1, . . . , l where |µ´ rµm1pεq| P r0, µ0q and ε P r0, ε0q.
By analyticity of F pµ, εq, it follows that rµmpεq is analytic for all m1.

Notice that F pµ̃mpεq, εq “ 0, implying there exists non-trivial solution vectors ÝÑc pεq P Rl where

l
ÿ

m1“1

cm1ptqvm,m1pεq “ 0 (21)

for all m “ 1, . . . , l. With this, we are ready to show ψpεq as defined in Lemma 15, with µ “ µ̃mpεq
and ψpεq having the coefficients ÝÑc pεq, is an eigenfunction of Aε of eigenvalue Λmpεq “ Λ` µ̃mpεq.

We have

pA0 ´ Λqψpεq

“ pA0 ´ ΛqRpBε ´ µ̃mptqq
loooooooooooooomoooooooooooooon

orthogonality

ψpεq

“ pBε ´ µ̃mpεqqψpεq ´ΠEΛ
ppBε ´ µ̃mpεqqψpεqq

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Lemma 14

“ pBε ´ µ̃mpεqqψpεq ´
l
ÿ

m“1

˜

l
ÿ

m1“1

cm1pεqxϕΛ,m, pBε ´ µ̃pεqq
8
ÿ

n“0

SnϕΛ,m1y

¸

ϕΛ,m

loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

Lemma 15
“ pBε ´ µ̃mpεqqψpεq

with the last equation following from the implications of F pµ̃mpεq, εq “ 0 namely (21). Therefore,
Aεψpεq “ pΛ` µ̃mpεqqψpεq, and finally yielding the eigenfunction we aimed for. Since Apεq is
self-adjoint and Λ is real, so is µpεq. By positivity of Aε, we know that Λ` µ̃pεq ě 0 and |µ̃pεq| ď δ.
Orthonormality follows from executing the Gram-Schmit procedure.

To prove the final part of the theorem, let Λ1 “ Λ ` pd2 ´ d1q. Then the operator norm of
} pA0 ` p2δqΠEΛ

q ´ Λ1}op is bounded below, as A0 ` p2δqΠEΛ
has no spectrum in J , and this
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continues to be the case in the interval r´d1`Λ, d2`Λs for parameters |t| ă t1pΛ, δq where ε1 ď ε0

thanks to analyticity which in turn provides continuity of our operator norms in ε. This completes
our proof. �

3. Biaxial Ellipsoids in R3

3.1. Coordinate calcuations and reduced equations. Let ϕ P p0, πq and θ P r0, 2πq. A natural
set of ellipsoidal coordinates are pa sinϕ cos θ, a sinϕ cos θ, b cosϕq. We don’t make any assumptions
on the sizes of a or b yet. The induced metric in these coordinates is of the form

g11 “ a2 cos2 ϕ` b2 sin2 ϕ, g12 “ g21 “ 0, g22 “ a2 sin2 ϕ.

Notice that the functions g11 and g22 are, respectively, the squared chord length for the ellipse in
R2 given by x2{a2 ` z2{b2 squared and the squared radius of the S1 cross section of our ellipsoid
Ea,b.

Therefore the corresponding Laplace-Beltrami operator takes the form

∆g0 “ pa
2 cos2 ϕ` b2 sin2 ϕq´1Bϕϕ ` pa

2 sin2 ϕq´1Bθθ ` hpϕqBϕ, (22)

where hpϕq “
a

detpgq
´1
Bϕp

a

detpgqpa2 cos2 ϕ ` b2 sin2 ϕq´1q. In the upcoming sections, we set
a “ 1 ` αε and b “ 1 ` βε where α, β ‰ 0 independent in ε. For ε0 “ 1{2, the metric gε for Ea,b
is analytic and admits a finite polynomial expansion in ε. Hence, Theorem 6 applies and we can
perform calculations using analytic series in ε for a possibly smaller threshold ε0.

Thanks to the natural S1 action on Ea,b, basic representation theory (see for instance Terras’
treatise [23]) tells us that L2pEa,b, dV q has a basis consisting of separable eigenfunctions of the form

upϕqeimθ where m P Z. Plugging this ansatz into the Laplace-Beltrami operator and performing the
standard calculations leads to the following separated equations written in Sturm-Liouville form:

ˆ

a sinϕ?
a2 cos2 ϕ`b2 sin2 ϕ

Bϕ

ˆ

a sinϕ?
a2 cos2 ϕ`b2 sin2 ϕ

Bϕ

˙

` Λa2 sin2 ϕ

˙

u

u
“ m2 “ ´

Bθθf

f

where fpθq “ eimθ. Thus, the factor u satisfies the following reduced equation
˜

a sinϕ
a

a2 cos2 ϕ` b2 sin2 ϕ
Bϕ

˜

a sinϕ
a

a2 cos2 ϕ` b2 sin2 ϕ
Bϕ

¸

` Λa2 sin2 ϕ

¸

u´m2u “ 0, (23)

exhibiting some dependence on the integral parameter m; in the upcoming calculations, we incor-
porate the parameter a2 into Λ and abuse notation by calling the new eigenvalue Λpεq. We will
use these equations to compute approximations for the purported basis of L2pEa,b, dV q using the
analytic perturbation introduced in Section 2.

3.2. Deriving the first solvability condition. The theory of 2nd-order ODEs tells us that the
eigenvalues Λpεq, for each m, are simple. Thanks to the term m2 and therefore being able to use
˘m to generate potentially different eigenfunctions in ϕ, we know that we can write each solution
in ϕ as either u`m or u´m: it is of these u˘m that we take the expansion and in turn approximate
Λ2pεq, which we see has multiplicity at least 2 for m ‰ 0 and multiplicity at least 1 when m “ 0.

Theorem 11 holds for the Legendre equation on r´1, 1s. Hence we know that given lpl ` 1q P
specpS2q, there exists ε0pS

2, lpl ` 1qq such that the following expansions are valid:

Λpεq “ lpl ` 1q ` εΛ1 ` ε
2Λ2 ` . . .

u˘mpϕ, εq “ u0pϕq ` εu1pϕq ` ε
2u2pϕq ` . . . .

We make note that we are abusing notation by using Λ1 to represent the first-order coefficient of
Λ; as we have fixed the eigenvalue Λ, this use is unambiguous.
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The simplicity of the Sturm-Liouville spectrum is used when writing the order 0 (in ε) term for
u˘m. To these expansions, we apply

Aε “
1

sin2 ϕ

˜

sinϕ
a

a2 cos2 ϕ` b2 sin2 ϕ
Bϕ

˜

sinϕ
a

a2 cos2 ϕ` b2 sin2 ϕ
Bϕ

¸

´
m2

a2 sin2 ϕ

¸

and work out the formal series for

Aεu˘mpεq “ ´Λpεqu˘mpεq.

We expand Aε in ε to obtain
Aε “ A0 ` εA1 `Opε

2q

where the big-O notation means that the “implicit” object is a 2nd-order differential operator, and
with

A0 “ Bϕϕ ` cotϕBϕ ´
m2

sin2 ϕ
(24)

A1 “ pα´ βq
`

2 sin2 ϕBϕϕ ` 2 sinp2ϕqBϕ
˘

´ 2αA0 (25)

A gathering of the 0th-order and 1st-order terms in ε yield the following two equations:

A0u0 “ ´lpl ` 1qu0, and (26)

A0u1 ` lpl ` 1qu1 “ ´A1u0 ´ Λ1u0. (27)

The solution to (26) is given by the spherical harmonics u0 “ c0P
m
l pcosϕq where c0 is any constant.

The operator A0 is self-adjoint with respect to the measure sinϕdϕ, whose corresponding inner
product we denote by x, y. Taking the product of both sides of (27) with respect to u0 we then
obtain: xu0, A0u1 ` lpl ` 1qu1y “ xu1, A0u0 ` lpl ` 1qu0y “ 0, so that ´xu0, A1u0y´Λ1xu0, u0y “ 0
or

Λ1 “
´xu0, A1u0y

xu0, u0y
. (28)

Next we compute,

A1u0 “ pα´ βq
 ``

´l pl ` 1q 2 sin2 ϕ` 2m2
˘

u0 ` 2 sinϕ cosϕBϕu0

˘(

` 2αl pl ` 1qu0

where we used the Legendre equation (26) to rewrite Bϕϕu0 “

´

´ cotϕBϕ `
m2

sin2 ϕ
´ lpl ` 1q

¯

u0.

Therefore (28) yields the formula

Λ1 “ pβ ´ αq

ş  `

´2l pl ` 1q sin2 ϕ` 2m2
˘

u0 ` 2 sin pϕq cosϕBϕu0

(

u0 sinϕdϕ
şπ
0 u

2
0 sinϕdϕ.

´ 2αl pl ` 1q .

Changing variables cosϕ “ t, we then obtain

Λ1 “ pβ ´ αq

ş1
´1

 `

´2l pl ` 1q
`

1´ t2
˘

` 2m2
˘

P 2ptq ´ 2
`

1´ t2
˘

tP 1ptqP ptq
(

dt
şπ
0 P ptq

2dt.
´ 2αl pl ` 1q (29)

where P ptq “ Bl`m

dtpl`mq

“`

1´ tl
˘m‰

. Integrating by parts, we rewrite:
ż 1

´1
2
`

1´ t2
˘

tP 1P “ ´

ż 1

´1

`

1´ 3t2
˘

P 2

so that (29) becomes

Λ1 “ pβ ´ αq

#

`

´2l pl ` 1q ` 2m2 ` 1
˘

` p2l pl ` 1q ´ 3q

ş1
´1 t

2P 2dt
şπ
0 P

2dt.

+

´ 2αl pl ` 1q
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Finally, the ratio
ş1
´1 t

2P 2dt
ş1
´1 P

2
“ 2l2´2m2`2l´1

p2l`3qp2l´1q is evaluated in Appendix 6. This yields formula (3).

The multiplicity statement in Theorem 2 follows easily from here after taking into account that
for each lpl` 1q, we get a single analytic eigenvalue for m “ 0 and get a double analytic eigenvalue
for each m “ ˘1, . . . ,˘l. Now apply Corollary 12 which implies that the multiplicities cannot be
higher than 2.

4. Triaxial ellipsoids in R3

4.1. Coordinate calculations. We now pursue the calculation of eigenvalues for triaxial ellip-
soids. For organizational reasons, let us write ∆g in coordinates. In R3, we take the coordinates
pa cosϕ cos θ, b cosϕ sin θ, c sinϕq where ϕ P p0, πq and θ P r0, 2πq. This leads us the following
expression of ∆g as follows:

∆g “ ABϕϕ `BBϕθ ` CBθθ ` EBϕ ` FBθ

where

A :“
g22

D
, B :“ ´2

g12

D
, C :“

g11

D
,

E :“ D´1{2

ˆ

´

g22D
´1{2

¯

ϕ
´

´

g12D
´1{2

¯

θ

˙

“
Bϕg22

D
´

1

2

g22

D2
BϕD ´

Bθg12

D
`

1

2

g12

D2
BθD

F :“ D´1{2

ˆ

´

g11D
´1{2

¯

θ
´

´

g12D
´1{2

¯

ϕ

˙

“
Bθg11

D
´

1

2

g11

D2
BθD ´

Bϕg12

D
`

1

2

g12

D2
BϕD

where

Dpθ, ϕq :“ g11g22 ´ g12g21

g11pθ, ϕq :“ cos2 ϕ
`

a2 cos2 θ ` b2 sin2 θ
˘

` c2 sin2 ϕ

g22pθ, ϕq :“ sin2 ϕ
`

a2 sin2 θ ` b2 cos2 θ
˘

g12pθ, ϕq :“ g21 “
`

b2 ´ a2
˘ sin p2ϕq sin p2θq

4

4.2. Deriving the first solvability condition. We want our triaxial ellipsoid to be a small
perturbation of S2, so we set

a :“ 1` αε, b :“ 1` βε, c :“ 1` γε

Note that our metric coefficients gij are analytic and non-vanishing in ε, therefore making the
inverse metric gij ’s coefficients analytic as well. We are in a position to apply Theorem 6.

Thus, we can carefully massage ∆g into an analytic series of operators, specifically as

∆g “ A0 ` εA1 ` ε
2A2pεq

where

A0 “ Bϕϕ `
1

sin2 ϕ
Bθθ `

cosϕ

sinϕ
Bϕ



12 SURESH ESWARATHASAN AND THEODORE KOLOKOLNIKOV

and

A1 :“
“

p2β ´ 2αq cos2 θ cos2 ϕ` p2γ ´ 2βq cos2 ϕ´ 2γ
‰

Bϕϕ `

`

p2α´ 2βq cos2 θ ´ 2α
˘

sin2 ϕ
Bθθ

` 4 pα´ βq
cosϕ sin θ cos θ

sinϕ
Bϕθ ` 4 pβ ´ αq

sin θ cos θ

sin2 ϕ
Bθ

` 4

„

´

pβ ´ αq pcos pθqq2 ´ β ` γ
¯

cos2 ϕ`
3

2
pα´ βq cos2 θ ´

α

2
` β ´ γ



cosϕ

sinϕ
Bϕ.

Now, we set u to be a solution of
∆gu “ ´Λpεqu.

Expanding similarly as in Section 3 thanks to Theorem 6, we are can again write the following two
analytic series in ε :

u “ u0 ` εu1 ` . . .

Λpεq “ lpl ` 1q ` εΛ1 ` . . .

Gathering terms in ε yields the 0th-order equation of

A0u0 “ ´lpl ` 1qu0

for l P Z` and whose solution is given by

u0 “ C0v0pθ, ϕq `
l
ÿ

m“1

Cmvmpθ, ϕq `Dmwmpθ, ϕq, where

vm “ cospmθqPml pcospϕqq; wm “ sinpmθqPml pcospϕqq;

the set tw0, twm, vmu
l
m“1u form a basis for the space of spherical harmonics with eigenvalue lpl`1q

with the Pml being the associated Legendre functions given by

Pml ptq “ Al,m
`

1´ t2
˘m{2 B

m`l

Btm`l

”

`

1´ t2
˘l
ı

.

The normalization constants Al,m are chosen so that

xvm, vmy “ xwm, wmy “ 1, (30)

where the inner product x, y is with respect to the metric on S2, that is

xv, wy :“

ż 2π

0

ż π

0
vpθ, ϕqwpθ, ϕq sinϕdϕdθ.

At order ε we have
A0u1 ` lpl ` 1qu1 “ ´Λ1u0 ´A1u0. (31)

Note that A0 is self-adjoint with respect to the inner product x, y. Multiplying (31) by vk or wk
and integrating we then obtain the solvability conditions

xvk, u0yΛ1 “ ´xvk, A1u0y , k “ 0 . . . l,

xwk, u0yΛ1 “ ´xwk, A1u0y , k “ 1 . . . l.

Thanks to orthonormality, we have that xvku0y “ Ck and xwku0y “ Dk.
Thus, in contrast to the biaxial case, the first solvability equation returns a more complicated

system of linear equations to solve. This eigenvalue problem problem for Λ1 can be read off as

MV “ Λ1V (32)

where M is the p2l ` 1q ˆ p2l ` 1q matrix and V is 2l` 1 column vector containing coefficients Cm
and Dm. We now seek to simplify the “matrix elements” xvm, A1u0y .
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4.3. Expanding into Fourier modes. To execute this simplification of the quantities xvm, A1u0y

, we expand in terms of Fourier modes on S1 in the variable θ. For simplicity of notation, set
P pϕq :“ Pml pcospϕqq. We find that

A1 pcospmθqP q “ gm´pϕq cos ppm´ 2q θq ` gmpϕq cos pmθq ` gm`pϕq cos ppm` 2q θq (33a)

and

A1 psinpmθqP q “ gm´pϕq sin ppm´ 2q θq ` gmpϕq sin pmθq ` gm`pϕq sin ppm` 2q θq (33b)

and

gm´pϕq “
β ´ α

2

ˆ

l pl ` 1q sin2 ϕ`
`

´lpl ` 1q ´m2
˘

`
2mpm´ 1q

sin2 ϕ

˙

P

`
β ´ α

2

ˆ

´ cosϕ sinϕ`
2pm´ 1q cosϕ

sinϕ

˙

Pϕ, (34a)

gm`pϕq “
β ´ α

2

ˆ

l pl ` 1q sin2 ϕ`
`

´lpl ` 1q ´m2
˘

`
2mpm` 1q

sin2 ϕ

˙

P

`
β ´ α

2

ˆ

´ cosϕ sinϕ`
2p´m´ 1q cosϕ

sinϕ

˙

Pϕ, (34b)

gmpϕq “
`

pα` β ´ 2γqm2 ` l pl ` 1q 2γ ` pα` β ´ 2γq lpl ` 1q cos2 ϕ
˘

P`

pα` β ´ 2γq sin pϕq cos pϕqPϕ. (34c)

In above expressions, we have used the standard Legendre ODE (albeit with t “ cosϕ), Pϕϕ “

´
cosϕ
sinϕPϕ `

”

m2

sin2 ϕ
´ l pl ` 1q

ı

P in order to eliminate any occurrence of Pϕϕ.

In total, each quantity xvm, A1u0y simplifies to

xvm, A1u0y “ xvm, A1vmyCm ` xvm, A1vm`2yCm`2 ` xvm, A1vm´2yCm´2

xwm, A1u0y “ xwm, A1wmyDm ` xwm, A1wm`2yDm`2 ` xwm, A1wm´2yDm´2

where we used the convention that Cm “ 0 if m R t0, 1, . . . , lu and similarly Dm “ 0 if m R

t1, 2, . . . , lu. In other words, odd-frequency Fourier modes couple with neighbouring odd-frequency
modes, and even-frequency Fourier modes couple with their neighbors. Therefore the eigenvalue
problem (32) decomposes into four distinct subproblems: one for even-indexed C’s, one for odd-
indexed C’s, and so forth. As a result, Λ1 is characterized by the following.

Proposition 35. Define

le “

"

l, if l is even
l ´ 1, if l is odd

; lo “

"

l, if l is odd
l ´ 1, if l is even

and define the tridiagonal matrices

Mcos,e “ ´

»

—

—

—

—

—

—

—

–

xv0, A1v0y xv0, A1v2y 0 . . . 0

xv2, A1v0y xv2, A1v2y xv2, A1v4y
. . .

...

0 xv4, A1v2y xv4, A1v4y
. . . 0

...
. . .

. . .
. . . xvle´2, A1vley

0 . . . 0 xvle , A1vle´2y xvle , A1vley

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(36a)
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Mcos,o “ ´

»

—

—

—

—

—

—

—

–

xv1, A1v1y xv1, A1v3y 0 . . . 0

xv3, A1v1y xv3, A1v3y xv3, A1v5y
. . .

...

0 xv5, A1v3y xv7, A1v7y
. . . 0

...
. . .

. . .
. . . xvlo´2, A1vl0y

0 . . . 0 xvl0 , A1vl0´2y xvl0 , A1vl0y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(36b)

Msin,e “ ´

»

—

—

—

—

—

—

—

–

xw2, A1w2y xw2, A1w4y 0 . . . 0

xw4, A1w2y xw4, A1w4y xw4, A1w6y
. . .

...

0 xw6, A1w4y xw6, A1w8y
. . . 0

...
. . .

. . .
. . . xwle´2, A1wley

0 . . . 0 xwle , A1wle´2y xwle , A1wley

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(36c)

Msin,o “ ´

»

—

—

—

—

—

—

—

–

xw1, A1w1y xw1, A1w3y 0 . . . 0

xw3, A1w1y xw3, A1w3y xw3, A1w5y
. . .

...

0 xw5, A1w3y xw7, A1w7y
. . . 0

...
. . .

. . .
. . . xwlo´2, A1wloy

0 . . . 0 xwl0 , A1wl0´2y xwlo , A1wloy

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(36d)

Then for Λ “ l pl ` 1q ` εΛ1 ` O
`

ε2
˘

, as given by Theorem 6, we have that Λ1 is one of the
2l ` 1 eigenvalues of the four matrices (36).

The entries of the matrices (36) are computable explicitly – see Appendix 6 – with the following
result:

xvm, A1vmy “ 2γlpl ` 1q ` pα` β ´ 2γq
2l pl ` 1q

p2l ` 3q p2l ´ 1q

`

l2 `m2 ` l ´ 1
˘

for m ‰ 1,

(37a)

xwm, A1wmy “ xvm, A1vmy , for m ‰ 1, (37b)

xv1, A1v1y “ p
3α

2
`
β

2
´ 2γq

2l2 pl ` 1q2

p2l ` 3q p2l ´ 1q
` 2l pl ` 1q γ, (37c)

xw1, A1w1y “ p
3β

2
`
α

2
´ 2γq

2l2 pl ` 1q2

p2l ` 3q p2l ´ 1q
` 2l pl ` 1q γ, (37d)

xvm´2, A1vmy “ xvm, A1vm´2y “ pβ ´ αq
l pl ` 1q

p2l ´ 1q p2l ` 3q

ˆ
a

pl ´m` 1q pl ´m` 2q pl `m´ 1q pl `mq ˆ

"

1 if m ą 2
?

2 if m “ 2,
(37e)

and xwm´2, A1wmy “ xwm, A1wm´2y “ xvm´2, A1vmy , for m ě 3. (37f)

4.4. Explicit calculations for l “ 1, 2, 3. We carry out Proposition 35 in the simple cases of
l “ 1, 2 and observe the form of the corresponding perturbed eigenvalues.
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For l “ 1, we arrive at three possible choices for Λ1:

Λ1 “ ´
4

5
pα` β ` 3γq with u0 “ v0; (38)

Λ1 “ ´
4

5
p3α` β ` γq with u0 “ v1; (39)

Λ1 “ ´
4

5
pα` 3β ` γq with u0 “ w1. (40)

Note that this coincides with the formula (3) for the biaxial case by taking γ “ α : the formula (40)
corresponds to mode m “ 0 while (38) and (39) correspond to the mode m “ ˘1. For a generic
choice where all of α, β, γ are distinct, we find that spectrum of ∆g near 1 ¨ 2 “ 2 is simple and is
of the form 2` εΛ1 `Opε2q.

For l “ 2, matrices (36) are of the size 2x2 1x1, 1x1 and 1x1, respectively. The five resulting
eigenvalues, respectively, are:

Λ1 “ ´4 pα` β ` γq ˘
16

7

a

α2 ` β2 ` γ2 ´ αβ ´ αγ ´ βγ,

´
12

7
p3α` β ` 3γq ´

12

7
p3α` 3β ` γq , ´

12

7
pα` 3β ` 3γq . (41)

Again, for a generic choice where all of α, β, γ are distinct, we find that spectrum of ∆g near to
2 ¨ 3 “ 6 is simple and of the form 6` εΛ1 `Opε2q. When γ “ α, eigenvalues (41) become, in the
order as listed,

Λ1 “ ´
40

7
α´

44

7
β, ´

72

7
α´

12

7
β, ´

72

7
α´

12

7
β, ´

48

7
α´

36

7
β, ´

48

7
α´

36

7
β,

and as expected, they coincide with the formula (3), with m “ 0, ˘2, ˘2, ˘1, ˘1, respectively.
Finally, for l “ 3, matrices (36) are of the size 2x2, 2x2, 2x2 and 1x1, respectively, and yield the

following eigenvalues for the correction Λ1 :

Mcos,e : ´
104α

15
´

104β

15
´

152γ

15
˘

32

15

a

4α2 ` 4β2 ´ 7αβ ´ αγ ´ βγ ` γ2

Mcos,o : ´
104γ

15
´

104β

15
´

152α

15
˘

32

15

a

4γ2 ` 4β2 ´ 7γβ ´ γα´ βα` α2

Msin,e : ´8α´ 8β ´ 8γ

Msin,o : ´
104γ

15
´

104α

15
´

152β

15
˘

32

15

a

4γ2 ` 4α2 ´ 7γα´ γβ ´ αβ ` β2.

As with previous cases, we have verified that all these eigenvalues are distinct whenever α, β, γ are
distinct. Taking γ “ β, they become

Mcos,e : ´
64

5
α´

56

5
β, ´

64α

5
´

8

5
β

Mcos,o : ´
64

5
α´

56

5
β, ´

64α

5
´

8

5
β

Msin,e : ´16a´ 8b

Msin,o : ´16a´ 8b, ´
176

5
a´

184

5
b.

These agree with formula (3), with m “ ˘1, ˘3, ˘1, ˘3, ˘2, ˘2, 0, respectively.
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ε “ 0.1 ε “ 0.05

m Λ0 Λ1 Λnumeric
Λnumeric´Λ0

ε %err Λnumeric
Λnumeric´Λ0

ε %err
0 2 -2.400 1.7772 -2.228 7.17% 1.8844 -2.312 3.67%

6 -6.2857 5.4079 -5.921 5.80% 5.6950 -6.100 2.95%
12 -12.266 10.8463 -11.53 6.00% 11.4052 -11.896 3.02%

1 2 -0.8 1.9250 -0.750 6.25% 1.9612 -0.776 3.00%
6 -5.1429 5.5227 -4.773 7.19% 5.7521 -4.958 3.60%
12 -11.2 10.9509 -10.49 6.34% 11.4573 -10.854 3.09%

2 6 1.7143 5.8404 -1.596 6.90% 5.9173 -1.654 3.52%
12 8 11.2595 -7.405 7.44% 11.6152 -7.696 3.80%

3 12 -2.666 11.7527 -2.473 7.24% 11.8716 -2.568 3.68%

Table 1. Comparison between asymptotic value of Λ1 and the estimated numerical
value for the biaxial ellipsoid. Here, a “ 1 and b “ 1 ` ε (corresponding to α “
0, β “ 1) and with ε “ 0.1 or 0.05. The error column is the relative error between

Λ1 and Λnumeric´Λ0
ε .

5. Numerical experiments and conjectures

5.1. Biaxial eigenvalues. Equation (23) can be used to compute the eigenvalues numerically for
any bi-axial ellipsoid. To solve (23) numerically, we discretize the space using the usual centered
difference discretization. The procedure leads to an N ˆ N -matrix eigenvalue problem Av “ Λv
where the eigenfunction vpϕq is approximated by vpϕjq « vj , ϕj “

jπ
N . We impose Neumann

boundary conditions at the poles: v1p0q “ 0, v1pπq “ 0. In our computations, we have set N “ 400
which is sufficient to compute Λnumeric to 4 significant digits; we verified that doubling the mesh-size
did not change the answer within that precision.

Table 1 provides a comparison between the analytical result for Λ1, as given in equation (3),
and the numerical approximation using the above procedure. The axial parameters a “ 1 and
b “ 1 ` ε are considered with ε “ 0.1 and ε “ 0.05. While we did not prove this analytically, the
numerics suggest that the relative error scales linearly with ε, as would be expected assuming that
Λ is analytic in ε.

5.2. Triaxial eigenvalues. We used the algorithm described in [14] to compute the eigenvalues
numerically for a true triaxial ellipsoid. As opposed to the numerical method used for the biaxial
eigenvalues, the code used in this case implements the closest-point algorithm developed in [20, 15].
To compare with the numerics, we take a “ 1, b “ 1`ε, c “ 1´ε, so that pα, β, γq “ p0, 1,´1q . Table
2 compares the numerics with the analytic formulas for first nine triaxial eigenvalue subprincipal
terms, as obtained in Proposition 35.

The code in [14] generates a sparse matrix that corresponds to a discretization of the Laplace-
Beltrami operator for a surface. We use the spatial resolution of 0.1 that results in a 30, 000ˆ30, 000
sparse matrix: the lowest eigenvalue is zero with the next eight eigenvalues being listed in the second
columns of our given tables.

We note that even with a sparse matrix of dimension 3ˆ 104, the control on the error is rather
poor; we expect no more than 2-3 digits of precision. For this reason, the error does not scale
linearly in ε as would be expected: it would require too many meshpoints to resolve up to Opε2q

numerically for this two-dimensional non-symmetric problem: the method relies on the MATLAB
sparse eigenvalue solver eigs which is not sufficiently accurate for such large matrices. Indeed, this
problem provides a good test case for the closest-point method algorithm.
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ε “ 0.2 ε “ 0.1

Λ0 Λ1 Λnumeric
Λnumeric´Λ0

ε err Λnumeric
Λnumeric´Λ0

ε err
2 -1.6 1.69763 -1.511 0.088 1.84107 -1.589 0.0106
2 0 2.05566 0.278 0.278 2.01048 0.1047 0.105
2 1.6 2.33333 1.666 0.066 2.1603 1.603 0.003
6 -3.95897 5.24037 -3.798 0.160 5.59748 -4.025 -0.066
6 -3.42857 5.45296 -2.735 0.693 5.68282 -3.171 0.256
6 0 6.04863 0.2431 0.243 6.0048 0.0479 0.0479
6 3.42857 6.82912 4.145 0.717 6.36925 3.692 0.263
6 3.95897 6.83013 4.150 0.191 6.3857 3.857 -0.101

Table 2. Comparison between asymptotic value of Λ1 and the estimated numerical
value for the triaxial ellipsoid. Here, pa, b, cq “ p1 ` ε, b “ 1 ´ ε, 1q (corresponding
to pα “ 0, β, γq “ p1,´1, 0q) and with ε “ 0.2 or 0.1. The error column is the

difference between Λ1 and Λnumeric´Λ0
ε .

We conclude this numerical exploration with a discussion of multiplicity of eigenvalues. For the
biaxial case, due to the monotonicity of the formula (3) with respect to m, there are exactly l
double eigenvalues (corresponding to m “ 1 . . . l) and a one single eigenvalue (corresponding to
m “ 0) near Λ0 “ l pl ` 1q, for a total of 2l ` 1 eigenvalues. For a triaxial α ‰ β ‰ γ, extensive
numerical experiments indicate that for a fixed l, the perturbations Λ1 as given in Proposition 35
are all distinct (we verified this analytically when l ď 3 since Λ1 is an eigenvalue of at most 2x2
matrix in that case, and numerically for l up to 5). As a consequence, we repeat the following
generally held belief in the spectral-geometry literature: Suppose α ‰ β ‰ γ. Given any L, there
exists ε0 such that for all ε ă ε0, the set tΛ : Λ ď Lu contains only simple eigenvalues.

5.3. Observations on nodal domains. Figure 1 shows the first few eigenmodes with l “ 1, 2, 3, 4,
as given by Proposition 35, for several values of α, β, γ. The corresponding eigenfunctions are
plotted, as well as their nodal lines.

A nodal domain of u is a connected component of the subset Ωpuq “ tx P M : upxq ‰ 0u,
the regions of M where u is positive or negative. In this section, we briefly explore the nodal
domain structures (or better yet, shapes) of our ellipsoidal harmonics. Recall that a version of
Courant’s nodal domain theorem says that on a compact, boundaryless manifold, the number of
nodal domains for eigenfunctions produced from the n-th eigenspace (counting multiplicities) is
bounded above by n.

In the biaxial case near a sphere, there are 2l`1 eigenvalues near the eigenvalue lpl`1q with l dou-
ble eigenvalues and one simple eigenvalue. The corresonding eigenfunctions have Pml pϕq cospmθq,
m “ 0 . . . l and Pml pϕq sinpmθq, m “ 1 . . . l as their leading order terms. These are shown in Figure
1 (rows 1 to 4) for l “ 1 . . . 4. Note that those corresponding to double eigenvalues, with leading
order terms Pml pϕqpC cospmθq`D sinpmθq, all have pl ` 1´mq 2m nodal domains when 0 ă m ď l;
whereas the simple eigenvalue P 0

l pϕq has pl ` 1q nodal domains. Moreover, formula (3) shows that
the 2l ` 1 eigenvalues near l pl ` 1q are monotone in m. This allows for a full characterization for
the number of nodal domains in the biaxial case.

Figure 1 suggests that when deforming a biaxial ellipsoid to a triaxial ellipsoid, the nodal line
topology changes only at the “north” and “south” poles, where 2m nodal lines intersect, and does
so in two very specific ways. For example, when m “ 3, the pole is desingularized either in this

way: or this way: . The latter transformation does not
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Figure 1. The first few eigenfunctions of some ellipsoids, computed from Propo-
sition 35. Corresponding nodal lines and Λ1 are also shown. Parameters are as
indicated.

affect the number of nodal domains, whereas the former reduces it by either 2 pm´ 1q if m ă l, or
by m´ 1, if m “ l. Based on extensive numerical observations for l “ 0 . . . 5, we offer the following
conjecture on the number of nodal domains for our near-sphere ellipsoids.

Conjecture 42. Define the sequence Nk, k “ 0 . . . 2l as follows:

N0 “ l ` 1; N2m´1 “ pl ` 1´mq2m, N2m “ N2m´1, m “ 1 . . . l; (43)

and sequence N̂k, k “ 0 . . . 2l as follows:

N̂2m “

"

N2m ´ 2 pm´ 1q , m “ 1 . . . l ´ 1
l ` 1, m “ l

; N̂2m´1 “ N2m´1. (44)

For ε0 sufficiently small such that Theorem 4 holds, arrange the 2l ` 1 eigenvalues near the the
level Λ0 “ lpl ` 1q in increasing order. Their nodal domain count is as follows:

(a) For an oblate ellipsoid (α “ γ ą β), the nodal domain count is N0, . . . , N2l.
(b) For a prolate ellipsoid (α “ γ ă β), the nodal domain count is N2l, . . . , N0.

(c) For a triaxial ellipsoid (α ‰ β ‰ γq, the nodal domain count is N̂0, N̂1, . . . N̂2l.

For example take l “ 4. Then the three sequences in Conjecture 42 are:
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Figure 2. The number of nodal domains versus eigenvalue index for the three cases
as given in Conjecture 42. Notice the fluctuations against Courant’s bound.

(a) Oblate: N0, . . . , N2l “ 5, 8, 8, 12, 12, 12, 12, 8, 8.
(b) Prolate: N2l, . . . , N0 “ 8, 8, 12, 12, 12, 12, 8, 8, 5.

(c) Triaxial: N̂0, . . . , N̂2l “ 5, 8, 8, 12, 10, 12, 8, 8, 5.

Part of the motivation for this conjecture comes from the observed low multiplicities in the
spectrum of our ellipsoids. Conjecture 42 states (and the reader can verify) that the sequence
(a) corresponds to the number of nodal domains in Figure 1 (row 4) whereas the sequence (c)
describes the number of nodal domains for rows 5 and 6. Note that any triaxial ellipsoid near the
sphere is conjectured to have the same nodal sequence, regardless of the relative sizes of α, β, γ.
This is reflected in the fact the sequence N̂k is symmetric: N̂k “ N̂2l´k. We verified this conjecture
numerically, for numerous values of α, β, γ and with l up to 5.

In Figure 2 we plot the number of nodal domains as a function of the eigenvalue index for an
arbitrary triaxial ellipsoid, with parameter l up to 7. For large l, the maximum number of nodal
domains asymptotes to „ l2 (by taking m “ l{2 in (43)) whereas the lowest asymptotes to l
(corresponding to m “ 0).

It is worth noting the works of Levy and Eremenko-Jakobson-Nadirashvilli on nodal domains
on S2. Levy [13] constructs high-frequency examples of spherical harmonics that obtain exactly
two nodal domains. Eremenko-Jakobson-Nadirashvilli [9] construct harmonics that obtain various
prescribed topological configurations in their nodal structure. Both works use perturbation-type
arguments.

5.4. Numerics for large perturbations of spheres. Figure 3 shows the numerically computed
eigenvalues of a biaxial ellipsoid using the method described in Section 5.1. In this regime, we set
a “ 1 and varied b from 0.1 to 500.

The case of the sphere corresponds to the solid black vertical line b “ 1, and as expected, multiple
eigenvalues collide at this point with Λ “ lpl`1q. There are numerous eigenvalue crossings far away
from the sphere.

With a “ 1 and in the limit b Ñ 8, the ellipsoid takes a cigar-type shape. In this case, all of
the eigenfunctions corresponding to mode m appear to asymptote to Λ „ m2. Furthermore, the
eigenfunctions appear to be “microlocalized” (that is, exhibiting its main oscillations) near the
center of the cigar, as illustrated in Figure 4. It is an interesting open question to explain this
“microlocalization” in this asymptotic regime.
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Figure 3. Λ graphed as a function of the axial parameter b with a “ 1 fixed, for
the bi-axial ellipsoid (c “ a). The first ten eigenvalues for modes m “ 1, . . . , 5 are
plotted.

Figure 4. Eigenfunctions on cigar-type ellipsoids; in the insert gives the axial pro-
file of an eigenfunction with eigenvalue Λ “ 5.58845. The solid black lines indicate
the zero curves of the plotted eigenfunctions.

Figure 5. Eigenfunctions on disk-type ellipsoids. The solid black lines indicate the
zero curves of the plotted eigenfunctions.
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With a “ 1 and in the limit bÑ 0, the ellipsoid degenerates into a two-dimensional disk. In this
case, the problem appears to degenerate into a union of the eigenvalues of a unit disk with either
Dirichlet or Neumann boundary conditions as illustrated in Figure 5. In this limit, the numerics
suggest that the eigenvalues approach roots of either Jmp

?
Λq “ 0 or J 1mp

?
Λq “ 0 where Jm is the

Bessel function of order m. This behaviour is reminiscent of eigenvalue asymptotics in the presence
of degenerating metrics at least in the case of the “singular” manifold being boundaryless; see for
instance [21] and the references therein.

6. Appendix A: Calculation of (37)

We will use the notation

vmpϕ, θq “ cos pmθqPml pcosϕq, wmpϕ, θq “ sin pmθqPml pcosϕq,

Pml ptq :“ Al,mQ
m
l ptq,

Qml ptq :“
`

1´ t2
˘m{2 B

m`l

Btm`l

”

`

1´ t2
˘l
ı

(45)

where Al,m is chosen so that

ż 2π

0

ż π

0
vmpϕ, θq sinϕdϕdθ “ 1.

A couple of key integrals that appear in the computations are:

J0 “

ż 1

´1

`

1´ t2
˘l
dt; J2 “

ż 1

´1
t2
`

1´ t2
˘l
dt. (46)

All of the quantities will be ultimately expressed in terms of their ratio:

J2

J0
“

1

2l ` 3
. (47)

We start with the following lemma.

Lemma 48.
ş1
´1 t

2 pPml ptqq
2 dt

ş1
´1

`

Pml ptq
˘2
dt

“

ş1
´1 t

2 pQml ptqq
2 dt

ş1
´1

`

Qml ptq
˘2
dt

“
2l2 ´ 2m2 ` 2l ´ 1

p2l ` 3q p2l ´ 1q
. (49)

Proof. This follows by successive integration by parts. We start with
ş1
´1 pQ

m
l ptqq

2 :

ż 1

´1
pQml ptqq

2
“

ż 1

´1

`

1´ t2
˘m Bm`l

Btm`l

”

`

1´ t2
˘l
ı

Bm`l

Btm`l

”

`

1´ t2
˘l
ı

dt

“

ż 1

´1

ˆ

p2lq!

pl ´mq!
tm`l ` . . .

˙

Bm`l

Btm`l

”

`

1´ t2
˘l
ı

dt (50)

“
p2lq! pl `mq!

pl ´mq!
J0 (51)

where J0 is as in (46). A similar computation yields
ż 1

´1
pQml ptqq

2 t2dt “

ż 1

´1

ˆ

t2
`

1´ t2
˘m Bm`l

Btm`l

”

`

1´ t2
˘l
ı

˙

Bm`l

Btm`l

”

`

1´ t2
˘l
ı

dt

“
p2lq! pm` lq!

pl ´mq!

ˆ

2l2 ´ 2m2 ` 2l ´ 1

p2l ` 3q p2l ´ 1q

˙

J0, (52)

where (47) was used.
Equation (49) follows immediately. �
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Derivation of (37a-d). From (33) we obtain

xvm, A1vmy “
1

şπ
0

`

Pml pcosϕq
˘2

sinϕdϕ

ż π

0
dϕˆ

"

gmpϕqP
m
l pcosϕq sinϕ, m ‰ 1

g1pϕqP
1
l pcosϕq sinϕ` g1´pϕqP

1
l pcosϕq sinϕ, m “ 1

(53)
and similarly,

xwm, A1wmy “
1

şπ
0

`

Pml pcosϕq
˘2

sinϕdϕ

ż π

0
dϕˆ

"

gmpϕqP
m
l pcosϕq sinϕ, m ‰ 1

g1pϕqP
1
l pcosϕq sinϕ´ g1´pϕqP

1
l pcosϕq sinϕ, m “ 1

(54)
Rewrite (34c) as

gmpϕq “
 

A`B cos2 ϕ
(

Pml pcosϕq ` C sin pϕq cos pϕq BϕP
m
l pcosϕq

where

C “ pα` β ´ 2 γq , A “ Cm2 ` 2γl pl ` 1q , B “ Clpl ` 1q.

Then

ż π

0
gmpϕqP

m
l pcosϕq sinϕdϕ “

ż 1

´1
dt
!

pPml ptqq
2 `A`Bt2

˘

´ Ct
`

1´ t2
˘

Pml ptqBtP
m
l ptq

)

“

ˆ

A`
C

2

˙
ż 1

´1
pPml ptqq

2 dt`

ˆ

B ´
3C

2

˙
ż 1

´1
pPml ptqq

2 t2dt

This yields

şπ
0 gmpϕqP

m
l pcosϕq sinϕdϕ

şπ
0

`

Pml pcosϕq
˘2

sinϕdϕ
“ A`

C

2
`

ˆ

B ´
3C

2

˙

ş1
´1 pP

m
l ptqq

2 t2dt
ş1
´1

`

Pml ptq
˘2
dt

“ pα` β ´ 2γq
2l pl ` 1q

p2l ` 3q p2l ´ 1q

`

l2 `m2 ` l ´ 1
˘

` 2l pl ` 1q γ. (55)

where we used Lemma 48.

In the case when m “ 1,we also need to evaluate
şπ
0 g1´pϕqP 1

l pcosϕq sinϕdϕ
şπ
0 pP

1
l pcosϕqq

2
sinϕdϕ

. We compute

2

α´ β

ż π

0
g1´pϕqP

1
l pcosϕq sinϕdϕ “

ż 1

´1

`

1` l pl ` 1q t2
˘ `

P 1
l ptq

˘2
´ t

`

1´ t2
˘

Bt
`

P 1
l ptq

˘

P 1
l ptqdt

“
3

2

ż 1

´1

`

P 1
l ptq

˘2
dt`

ˆ

l pl ` 1q ´
3

2

˙
ż 1

´1
t2
`

P 1
l ptq

˘2
dt

so that, using Lemma 48 we obtain
şπ
0 g1´pϕqP

1
l pcosϕq sinϕdϕ

şπ
0

`

P 1
l pcosϕq

˘2
sinϕdϕ

“ pα´ βq
l2 pl ` 1q2

p2l ` 3q p2l ´ 1q
. (56)

Combining (53, 54, 55, 56) yields (37a-d).

Derivation of (37e-f)
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Note that xvm´2, L1vmy “ Cm´2

şπ
0 gm´pϕqP

m´2
l pcos pϕqq sinϕdϕ, where Cm “

ş2π
0 cos2 pθmq dθ “

"

2π, m “ 0
π, m ě 1

. We further write

ż π

0
gm´pϕqP

m´2
l pcosϕq sinϕdϕ “

β ´ α

2
Al,mAl,m´2

ˆ
 

pl ` 1q lI13 `
`

´lpl ` 1q ´m2
˘

I12 ` 2mpm´ 1qI11 ` I2

(

where

I11 “

ż π

0

Qml pcosϕqQm´2
l pcosϕq

sinϕ
dϕ “ 0;

I12 “

ż π

0
Qml pcosϕqQm´2

l pcosϕq sinϕdϕ;

I13 “

ż π

0
Qml pcosϕqQm´2

l pcosϕq sin3 ϕdϕ;

I2 “

ż π

0
cos pϕq

`

´ sin2ϕ`2pm´ 1q
˘

BϕQ
m
l pcosϕqQm´2

l pcosϕqdϕ

1

CmA2
m,l

“

ż π

0
pQml pcosϕqq2 sinϕdϕ

All these integrals are all evaluated using successive integration parts, until they are expressed

in terms
ş1
´1

`

1´ t2
˘l
dt and

ş1
´1 t

2
`

1´ t2
˘l
dt. Skipping the details, we obtain

I11 “

ż

Pml P
m´2
l

sinϕ
dϕ “ 0,

I12 “ ´
p2lq!pm´ 2` lq!

pl ´mq!
J0

I13 “
p2lq! pm` lq!

pl ´mq!

ˆ

1

2
J2 ´

ˆ

m`
pl ´mq pl ´m´ 1q

2 p2l ´ 1q

˙

1

pm` lq pm` l ´ 1q
J0

˙

1

CmA2
m,l

“
p2lq! pl `mq!

pl ´mq!

p2lq! pl `mq!

pl ´mq!
J0

After some algebra we then obtain

xvm´2, L1vmy “ pβ ´ αq

c

Cm´2

Cm

l pl ` 1q

p2l ´ 1q p2l ` 3q

a

pl ´m` 1qpl ´m` 2q pl `m´ 1q pl ´mq

which shows (37e). Formula (37f) is evaluated analogously.
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