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We consider the Gierer-Meinhardt model in one dimension with a spatially-dependent precursor
µ(x). Assuming that the activator diffuses much slower than the inhibitor, such a system is well-
known to admit solutions where the activator concentrates at N “spikes”. In the large-N limit,
we derive the effective spike density for an arbitrary µ(x). We show that this density satisfies
a first-order separable ODE. As a consequence, we derive instability thresholds for N spikes that
correspond to a singularity in the ODE for the density. We recover, as a special case, the well-known
stability thresholds for constant µ first derived in [1], as well as cluster solutions that concentrate
near the minimum of µ(x) that were recently discovered in [2]. The main trick is applying Taylor
expansions and geometric series to the equations of effective spike dynamics.

1. INTRODUCTION

The goal of this paper is to characterize the large-scale pattern density in the Gierer-Meinhardt (GM) model with
a spatially-variable precursor. GM model is among the simplest reaction-diffusion systems that manifests complex
patterns. We study the following version of the GM model [1–3],

ε2ut = ε2uxx − µ (x)u+ u2/v, 0 = Dvxx − v +
u2

ε
(1.1a)

Here, u and v represent activator and inhibitor concentrations, respectively, and we make the standard assumption
that the inhibitor diffuses much faster than the activator, that is ε2 � D. In this case, a pattern forms consisting of
a sequence of N “spikes”, which correspond to localized concentrations of the activator (such as shown in Figure 1).
The use of non-constant precursor µ(x) was suggested in the original work of Gierer and Meinhardt [3] as a way to
model cell differentiation and control pattern distribution in space.

For reasons that will become clear below, we shall assume the following scaling for D :

D =
d2

N2
, d ≤ O(1), with ε� O

(
d

N

)
, N � O(1). (1.1b)

In the case of a constant µ, spike patterns have been subject to intensive study over the last two decades, and
by now there is a large literature about the formation and stability of these patterns. We refer the reader to books
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FIG. 1. LEFT: Cluster equilibrium of (1.1) on all of R consisting of N = 10 spikes. Red points show the steady state of the
reduced system (1.4) for spike positions and weights. Dashed line shows the envelope for v(xj) derived from the continuum
limit, as well as continuum cluster boundaries. Here, N = 10, µ(x) = 1 + 0.2x2, d = 1, ε = 0.002. RIGHT: Convergence of
spike positions xj to the continuum spike density limit ρ(x) as given by Main Result 2.1. For interior points approximation
ρ(x) ∼ 2d/N/(xj+1 − xj−1) was used; density at endpoints was computed using linear extrapolation of interior points. The
points xj were computed by running the reduced system (1.4) until equilibrium was reached.
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[4, 5] and references therein. One of the most important results goes back to [1]. There, the authors showed that for
constant µ, N spikes on a domain of length 2L are stable as long as

ε� d <
L

log
(
1 +
√

2
) . (1.2)

When the inequality is reversed, some of the spikes are absorbed by others – so called competition or coarsening
instability.

The case of non-constant precursor µ(x) was recently studied in [2, 6]. It was found in [2] that for sufficiently small
d (of order ε � d � O(1)), N spikes form a localized cluster with all N spikes concentrating near the minimum of
µ(x). The spike density within such a cluster was assumed to be (asymptotically) uniform and furthermore, such a
cluster was shown to be stable, because d was taken to be very small.

In contrast to results from [2], the spike cluster that forms when d = O(1) does not have nearly constant density,
and is O(1) in size, rather than being localized at the critical point of µ(x). Our main insight is to derive the
continuum limit of the density and spike heights, in the limit N � 1. To give away the punchline, we show that the
spike density satisfies the first order separable ODE

dρ

dx
=
µ′(x)

µ(x)

3ρ3 sinh(1/ρ)− 5
2ρ

2 sinh2 (1/ρ)

cosh(1/ρ)− 3
. (1.3a)

Here, ρ(x) is the continuum limit of spike density, suitably rescaled, and is well approximated by

ρ(x) ∼ d

(xk+1 − xk)N
for N � 1, (1.3b)

where xk are equilibrium spike locations sorted in increasing order, and x is close to xk.
The inhibitor heights are approximated in terms of density by

v(xk) ∼ 12N

d
tanh

(
1

2ρ(xk)

)
µ−3/2(xk). (1.3c)

Figure 1 illustrates our result, showing an O(1) cluster of 10 spikes. The dashed line shows our continnum prediction
for the spike height envelope as well as cluster boundaries, in excellent agreement with the full PDE simulation.

Based on our continuum density formulation, we explicitly compute a threshold dmax such that the spike cluster
ceases to exist when d is gradually increased above dmax. In this case, spike coarsening is observed. See Figure 2 for
an example.

We also show that if the domain size is sufficiently large (or equivalently, if µ′(x) is sufficiently small), there is a
secondary threshold dc, with dc < dmax, which predicts the cluster formation. Namely, for d < dc, the spike cluster
has compact support inside the domain, whereas for dc < d < dmax the spike cluster spans the entire cluster. This
is illustrated in Figure 1.

As a starting point, we use by-now-standard techniques to reduce the full PDE solution on an infinite domain to
an ODE system for spike positions xj coupled to spike weights vj . The derivation is rather standard [1, 2, 5–7], and
is relegated to Appendix A. The resulting reduced system is:

d

dt
xk = −2µ1/2(xk)

(
〈vx〉k
vk

+
5

4

µ′ (xk)

µ (xk)

)
, (1.4a)

vk =

N∑
j=1

Sj
N

2d
e−|xk−xj |Nd , 〈vx〉k =

N∑
j=1

Sj
N2

2d2
e−|xk−xj |Nd sign(xj − xk) (1.4b)

Sk = 6µ3/2 (xk) v2k (1.4c)

with the convention that sign 0 = 0. Here, xk is the location of the center of the spike k, and vk is the height of the
inhibitor at xk :

vk ∼ v(xk, t) (1.5a)

whereas the activator is approximated by N localized sech2-type spikes:

u(x, t) ∼
N∑
j=1

vjµ (xj)
3

2
sech2

(
x− xj

2εµ−1/2(xj)

)
. (1.5b)
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The steady state solution then satisfies

0 =
−2

ηk

∑
j 6=k

Cj
N

2d
e−|xk−xj |N/d sign (xj − xk)− 5

2

µ′(xk)

µ(xk)
(1.6a)

ηk =
∑
j

1

2
e−|xk−xj |N/dCj , where Cj = η2jµ

3/2
j ; ηj =

6N

d
vj . (1.6b)

2. CONTINUUM LIMIT

We now derive the continuum limit of equations (1.6). Under the scaling (1.1b), the spike cluster density will be
shown to be proportional to N , so that the inter-spike distance scales like 1/N. With this in mind, suppose s ∈ [0, 1]
and define x(s) such that

xj = x

(
j

N

)
, j = 1 . . . N. (2.7)

Now consider the spikes in the interior of the cluster, that is, 1� k � N. Let s = k/N and define

x = x(s), r := exp (−x′(s)/d) where s = k/N. (2.8)

A key idea is to use Taylor series and geometric series. The key computation is the following estimate:

∑
j

1

2
e−|xk−xj |N/dCj ∼

∞∑
l=−∞

1

2
e−

x′
d |l|C

(
x+

l

N
x′
)

∼ C(x)

2

∞∑
l=−∞

r−|l| (2.9)

∼ C

2

1 + r

1− r
.

Similarly, we estimate

∑
j 6=k

CjN
1

2d
e−|xk−xj |N/d sign (xj − xk) ∼ − C

2d2
x′′
∞∑
l=0

e−
x′
d ll2 +

Cxx
′

d

∞∑
l=0

e−
x′
d ll

∼ −x′′ C
2d2

r2 + r

(1− r)3
+
Cx
2d
x′

2r

(1− r)2
(2.10)

Therefore the expressions (1.6) simplify to

0 =
−2

η

(
−x′′ C

2d2
r2 + r

(1− r)3
+
Cx
2d
x′

2r

(1− r)2

)
− 5

2

µ′(xk)

µ(xk)
(2.11)

η =
C

2

1 + r

1− r
, C = η2µ3/2. (2.12)

We now define the density to be

ρ :=
d

x′(s)
. (2.13)

For finite but large N, equation (1.3b) is just the finite-difference approximation of (2.13).
We compute,

dx

ds
=
d

ρ
;

d2x

ds2
= −d2 ρx

ρ3
.
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Equations (2.11, 2.12) then become

η = 2
1− r
1 + r

µ−3/2, C = 4

(
1− r
1 + r

)2

µ−3/2, r = e−1/ρ, (2.14)

0 = −1

η

(
ρx
ρ3
C

r2 + r

(1− r)3
+ Cx

1

ρ

2r

(1− r)2

)
− 5

2

µ′(xk)

µ(xk)
(2.15)

Eliminating C and η, after some algebra, we obtain the continuum limit equations (1.3), which is the main result
of this paper.

An additional constraint on the density comes from mass constraint. Suppose that the density is compactly
supported on the interval [a, b] , so that x1 → a and xN → b. Then∫ b

a

ρdx = d

∫ 1

0

ds = d. (2.16)

We now consider two cases: either the domain is all of R or the domain is finite. Let’s consider the infinite domain
first. In this case, we claim that the density ρ(x) decays to zero at the boundaries of the cluster: ρ(x)→ 0 as x→ a+

or x→ b−. To see this, take k = 1 in (1.6) and estimate:∑
j

1

2
e−|x1−xj |N/dCj ∼

1

2

1

1− r
C(a) ∼ η(a); (2.17)

∑
j 6=1

Cj
N

2d
e−|x1−xj |N/d sign (xj − x1) ∼ C(a)

N

2d

(
1

1− r
− 1

)
∼ −η(a)

5

2

µ′(a)

µ(a)
. (2.18)

where r = e−d/ρ(a). Combining (2.17) and (2.18) yields

e−d/ρ(a) ∼ −5d

N

µ′(a)

µ(a)
→ 0 as N →∞

which shows that the density decays to zero at the boundaries. Therefore we obtain the following result

Main Result 2.1 Consider the steady-state of the GM system (1.1) consisting of N spikes on all of R. In the limit
N � 1, the spike density satisfies the first-order separable ODE (1.3a), subject to the conditions∫ b

a

ρ(x)dx = d, ρ(a) = 0 = ρ(b); ρ(x) ≥ 0 for x ∈ [a, b] . (2.19)

The envelope for spike heights satisfies (1.3c).

Example. Take µ(x) = 1 + 0.2x2, d = 1. Because µ is even, we have a = −b, so we let [a, b] = [−l, l] and
conditions (2.19) are equivalent to

ρ(l) = 0,

∫ l

0

ρ(x)dx = d/2. (2.20)

We then solve the ODE (1.3a) numerically starting with ρ(0) = ρ0 and adjusting ρ0 until (2.20) are satisfied. In
this way, we find that l ≈ 1.4 and ρ(0) ≈ 0.47. This is illustrated in Figure 2 (top left). Figure 1 shows continuum
density distribution, and comparison with reduced dynamics for spike centers as well as the full PDE simulation.
Excellent agreement is observed.

Stability threshold and maximum spike density. Figure 2 (top left) shows the solution to the ODE (1.3a)
with µ(x) = 1 + 0.2x2, and for several choices of ρ0 = ρ(0). Note that the denominator on the right hand side of
(1.3a) is zero when cosh(1/ρ)− 3 = 0. This is the maximum admissable value of ρ. We therefore define

ρmax :=
1

arccosh(3)
= 0.5673. (2.21)

When ρ0 = ρmax, a “corner” is visible in this figure (due to the fact that µ′(0) = 0). When ρ(0) > ρmax, it is easy
to show that the density blows up and is therefore inadmissable. Therefore we must have 0 < ρ < ρmax. It is easy to

show that l as well as the total mass d = 2
∫ l
0
ρ(x)dx is an increasing function of ρ0. Therefore the maximum possible

value of d is attained by setting ρ(0) = ρmax. Call the corresponding value of d, dmax. The steady state breaks down
if d is gradually increased past dmax.

We now summarize this result.
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FIG. 2. Top row: simulation of (1.1) on a large domain (top left). Initial conditions consist of 10 spikes with D increasing
gradually according to the formula D = 0.001 + 10−6t with ε = 0.005 and µ(x) = 1 + 0.2x2. Continuum spike density support
is indicated by dashed line. It has a maximum radius of lmax = 1.448 corresponding to d = dmax = 1.14. Spike coarsening is
predicted whenever N = dmax/

√
D (as plotted on the vertical scale); this is in good agreement with full numerics, as shown

on top right. Bottom left: Simulation of (1.1) on the finite domain [−L,L] with L = 0.8 and the same µ(x). Since L < lmax,
the spike cluster first expands to fill up the whole domain without any coarsening event. The interior cluster forms when
d < dc = 0.39, but the steady state exists for a wider range d < dmax = 0.766 and becomes unstable as d is increased above
dmax. Bottom right shows excellent agreement with full numerics.

Main Result 2.2 Suppose µ (x) has a minimum at x = x0. Let ρ(x) be the solution to (1.3a) with ρ(x0) = ρmax =
1

arccosh(3) ≈ 0.5673, and let dmax be the corresponding d as given by (2.19). Then the spike cluster solution exists

when d < dmax and disappears when d > dmax.

To illustrate this result, consider again µ(x) = 1 + 0.2x2. We find that dmax = 1.1364 with −a = b = lmax = 1.45.
When D is gradually increased, d is eventually increased past dmax, triggering a competition instability which results
in spike death. This in turn decreases d slightly below dmax and the process repeats. In other words, N spikes exist
provided that N < 1.1364/

√
D, and the cluster is compactly supported on an interval [−lmax, lmax]. Refer to Figure

2 (top row), which shows an excellent agreement with full numerical simulations of (1.1).
Finite domain and cluster formation. Now suppose we have a finite domain x ∈ [−L,L] with either Neumann

or periodic boundary conditions. The solution can be extended to an infinite domain by periodically extending µ(x).
Then the density ρ(x) satisfies the same ODE (1.3a) and the same integral constraint (2.19), except that the density
support a, b may collide with the domain boundary (if the domain is small enough), as d is increased. In other words
the condition ρ(a) = 0 in (2.19) is replaced by either ρ(a) = 0 with a < L or a = L, and similarly, either ρ(b) = 0
with b > −L or b = −L.
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FIG. 3. Spike density ρ(x) for several values of d and with µ(x) = 1 + 0.2x2. Left: infinite domain L = ∞. Right: finite
domain, L = 0.8. Note that in both cases, the maximum admissable value dmax corresponds to ρ(0) = 1/ arccosh(3) = 0.567.

To illustrate, consider again the same µ(x) = 1 + 0.2x2, on a domain [−L,L] with L = 0.8. Recall that we found
lmax = 1.45 > L. This means that as d is gradually increased, the cluster first collides with the domain wall, and
then the instability sets in. Let dc denote the value of d when the cluster collides with the boundary. To find dc,
we solve the ODE (1.3a) with constraints (2.19) and an additional constraint that b = L. We find that dc = 0.39.
We then determine dmax = 0.766 > dc. As seen in Figure 2 (bottom left), both dc and dmax agree very well with full
PDE simulations.

Piecewise constant µ. An interesting special case is that of piecewise-constant µ(x). Here, we take the domain
to be x ∈ [0, L] and take

µ =

{
µ1, 0 < x < l
µ2, l < x < L

(2.22)

For the purpose of numerics, we use a smoothed-out step function for µ(x), namely:

µ(x) = (µ1 − µ2) (0.5− 0.5 tanh (10 (x− l))) + µ2. (2.23)

From the ODE (1.3a) it follows that ρ(x) is also piecwise constant, with

ρ(x) =

{
ρ1, 0 < x < l
ρ2, l < x < L

(2.24)

where ρ1, ρ2 satisfy ∫ ρ1

ρ2

cosh(1/ρ)− 3

ρ2 sinh(1/ρ)
(
3ρ− 5

2 sinh (1/ρ)
)dρ = log

(
µ1

µ2

)
, (2.25)

whereas
∫
ρ = d yields

d = lρ1 + (L− l) ρ2. (2.26)

Let us assume that µ1 < µ2 and as before, we must have 0 < ρ1, ρ2 < ρmax. Since the integrand is negative on this
range, it follows that ρ1 > ρ2, so that the spikes are more dense at the lower value of µ – consistent with the physical
interpretation of µ being the decay rate of the activator.

Figure 4 shows the steady state with 10.5 spikes (10 spikes plus a half boundary spike at x = 0). There, we took
µ1 = 1, µ2 = 1.25 with D = 0.005 so that d = 0.74. Solving (2.25) subject to (2.26) yields ρ1 = 0.48, ρ2 = 0.27. The
fraction of mass between 0 and l is then given by lρ1/d = 64%, corresponding to 6.7 out of 10.5 spikes. This is in
excellent agreement with Figure 4, where 6.5 spikes are located to the left of x = l.

It is possible that for a given choice of ρ1 ∈ (0, ρmax) , no (positive) solution for ρ2 to (2.25) exists. In this case we
take ρ2 to be zero and a cluster forms on [−l, l], regardless of L. Let ρc denote the maximum such ρ1; it satisfies∫ ρc

0

cosh(1/ρ)− 3

ρ2 sinh(1/ρ)
(
3ρ− 5

2 sinh (1/ρ)
)dρ = log

(
µ1

µ2

)
. (2.27)
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FIG. 4. Left: Steady state for piece-wise constant µ(x). The figure shows final steady state for the full PDE system (1.3a).
Parameter values are: D = 0.005, ε = 0.01, x ∈ (0, L), µ(x) as in (2.23) with µ1 = 1, µ2 = 1.25, l = 1 and L = 2. Theory
predicts 64% of spikes inside [0, 1] and 36% of spikes inside [1,2], in excellent agreement with full numerics. Right: space-time
plot of the transient dynamics. For initial conditions, 10.5 spikes uniformly distributed along [0, 2] were used.
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FIG. 5. Left: Space-time plot of the solution to (1.1) on the domain x ∈ [0, 2.5] with µ(x) given by (2.23) with µ1 = 1, µ2 = 2;
ε = 0.01, asd D = 0.00128. Two distinct clusters result after complex transient dynamics. Right: plot of ρc defined by (2.27)
versus µ1/µ2.

Figure 5 (right) shows the plot of ρc ∈ [0, ρmax] as a function of the ratio µ1/µ2. Then for any ρ1 ≤ ρc, ρ2 is taken
to be zero. In this case, the density has a compact support [−l, l] regardless of L , corresponding to a spike cluster.
Conversely, if ρ1 > ρc, then the density is nonzero on [0, L] with ρ2 given by (2.25). From Figure 5(right), we see
that when µ1/µ2 < 0.7046, we have ρ2 = 0 for all ρ1 ∈ (0, ρmax) . In this case, the spike cluster has compact support
[0, l]; and the instability threshold is given by dmax = 2lρmax.

In Figure 5 (left) we take µ1/µ2 = 0.5 < 0.7046, so that we expect the cluster to have a compact support
[0, l]. However running the simulation, we observe some spikes to the right of x = l. This is due to exponentially
weak interaction between the spikes which can drop below machine precision. In fact, the spikes interact on the

O(exp
(
−r/
√
D
)

) where r is the inter-spike distance. In this example, the gap between the cluster and the spike to

its right is around r = 0.7 and D = 0.00128 which gives exp
(
−r/
√
D
)
≈ 3× 10−9 which presumably falls below the

computational precision.

3. DISCUSSION

As we have shown (see Main Result 2.2), the maximum spike density is given by ρmax. From (1.3b), this implies
that the minimum inter-spike distance is bounded from below by min |xj − xj−1| ≥ d

N arccos(3). In terms of the
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original diffusion parameter D, we obtain

min |xj − xj−1| ≥
√
D arccos(3). (3.28)

Intruigingly, this result is independent of the choice of precursor µ(x). In other words, there is an intrinsic minimal
spike distance that cannot be reduced by choosing a different precursor.

Let us now come back to the case of constant µ on a bounded domain [−L,L], for which the instability threshold
was first derived in [1] (see formula (4.65) there, reproduced as formula (1.2) in the present paper). In this, case
|xj − xj−1| = 2L/N for all j, so that (1.2) becomes

L/N ≥
√
D

arccos(3)

2
= 0.8814

√
D. (3.29)

It is an elementary excercise to show that arccos(3)
2 = log

(
1 +
√

2
)

= 0.8814; as such, threshold (3.29) is identical to
(1.2), which was derived by entirely different methods. So our analysis recovers previously known results in the case
of constant µ.

Recently, we studied a similar question for the Klausmeyer (or Schnakenberg) model of spotty vegetation with
spatially-variable precipitation rate [8]. There, we also found instability thresholds. But unlike the GM model (1.1),
the model in [8] did not have localized clusters of spikes: the spike desnity was found to be non-zero along the entire
domain regardless of the choice of precipitation rate. In addition, the analysis in [8] required completely different
techniques; the problem there was more “nonlocal”, and required a fully non-local analysis including the use of
Euler-Maclaurin formula.

Another recent study of collective motion in PDE’s is [9]. There, we studied the Gross-Pitaevskii Equation used to
model Bose-Einstein condensates and whose solutions consist of vortex-like structures [9–11]. For a two-dimensional
trap, an asymptotic reduction for motion of vortex centers yields an interacting particle system [12–14], which in
turn can be reformulated as a nonlocal PDE in the continuum limit of many vortices [15, 16]. While the analysis
is quite different than the present paper, the end result is similar in spirit: one obtains instability thresholds which
yields the maximum number of allowable vortices as a function of trap rotation rate and its chemical potential.

Generally speaking, looking at the limit of many localized structures (be it spikes, vortices, or other structures)
can lead to exciting new challenges. Compared to a very large literature on behaviour of individual or finitely many
spikes, there are still relatively few results about the collective behaviour of many spikes. This is a very promising
avenue for further research with many problems still to be explored.

4. APPENDIX: EQUATIONS OF MOTION

In this appendix we derive the equations of motion (1.4) starting with the PDE system (1.1),

ε2ut = ε2uxx − µ (x)u+ u2/v, 0 =
d2

N2
vxx − v +

u2

ε
. (4.30)

Let xk(t) denote the position of k-th spike. In the inner region near xk we expand,

x = xk(t) + εy, µ = µk + εyµ′k + . . .

u(x, t) = U0(y) + εU1(y) + . . . ,

v(x, t) = V0(y) + εV1(y) + . . . ,

Then to leading order we have

0 = U0yy − µkU0 +
U2
0

V0
, 0 = V0yy (4.31)

and at the next order we obtain

−x′kU0y = U1yy − µkU1 + 2
U0U1

V0
− U2

0

V 2
0

V1 − µ′kyU0 (4.32)

0 = V1yy + U2
0 (4.33)

Then V0 is a constant and therefore U0 can be written as

U0 = w(y
√
µk)V0µk (4.34)
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where w(z) = 3
2 sech2(z/2) is the homoclinic ground-state solution to wzz − w + w2 = 0.

In the outer region, we write

v ∼
N∑
j=1

SjG(x, xj) (4.35)

where G is the Green’s function solution to

d2

N2
Gxx −G+ δ(x, y) = 0 (4.36)

given, on an infinite domain, by

G(x, y) =
N

2d
e−|x−y|

N
d . (4.37)

The weights Sk are computed as

Sk =

∫ x+
j

xj−

u2(x)

ε
dx ∼

∫ ∞
−∞

(w(y
√
µk)V0µk)

2
dy.

Matching inner and outer region we obtain

V0 ∼ vk
and using

∫∞
−∞ w2(z)dz = 6, we obtain

Sk ∼ 6µ
3/2
k v2k.

Finally we formulate the solvability condition to determine xk. Multiplying (4.32) by U0y and integrating by parts,
we then obtain

−x′k
∫
U2
0y = −

∫
U0y

U2
0

V 2
0

V1 −
∫
µ′kyU0U0y (4.38)

We simplify ∫
µ′kyU0U0y ∼ −

µ′k
2

∫
U2
0 = −3v2kµ

3/2
k µ′k; (4.39)

and, using
∫
w2
zdz = 6/5, ∫

U2
0y ∼

∫ ∞
−∞

(
d

dy
(w(y

√
µk)V0µk)

)2

dy ∼ µ2
kv

2
k

6

5
(4.40)

Finally, we compute ∫
U0y

U2
0

V 2
0

V1 =
1

V 2
0

∫
U3
0

3
V1y ∼ −

〈vx〉k
v3k

∫
U3
0

3
dy ∼ −〈vx〉k

12

5
µ
5/2
k , (4.41)

where we used
∫
w3 = 36

5 , and where 〈vx〉k denotes the average of the slopes in the outer regions for v(x), 〈vx〉k :=
vx(x

+
k )+vx(x

−
k )

2 . We have

〈vx〉k =

N∑
j=1

Sj 〈Gx(x, xj)〉k

=

N∑
j=1

Sj
N2

2d2
e−|xk−xj |Nd sign(xj − xk)

Here, sign(x− y) is taken to be zero when x = y.
Substituting (4.39-4.41) into (4.38) yields the system (1.4).
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