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Abstract. Spatially localized 1-D spike patterns occur for various two-component reaction-diffusion (RD) systems4
in the singular limit of a large diffusivity ratio. A competition instability of a steady-state spike pattern is a linear5
instability that locally preserves the sum of the heights of the spikes. This instability, which results from a zero-6
eigenvalue crossing of a nonlocal eigenvalue problem at a certain critical value of the inhibitor diffusivity, has been7
implicated from full PDE numerical simulations of various RD systems of triggering a nonlinear event leading to spike8
annihilation. As a result, this linear instability is believed to be a key mechanism for initiating a coarsening process9
of 1-D spike patterns. As an extension of the linear theory, we develop and implement a weakly nonlinear theory to10
analyze competition instabilities associated with symmetric two-boundary spike equilibria on a finite 1-D domain for11
the Gierer-Meinhardt and Schnakenberg RD models. Two symmetric boundary spikes interacting through a long-range12
bulk diffusion field is the simplest spatial configuration of interacting localized spikes that can undergo a competition13
instability. Within a neighborhood of the parameter value for the competition instability threshold, a multi-scale14
asymptotic expansion is used to derive an explicit amplitude equation for the heights of the boundary spikes. This15
amplitude equation confirms that the competition instability is subcritical and, moreover, it shows that the competition16
instability threshold corresponds to a symmetry-breaking bifurcation point where an unstable branch of asymmetric17
two-boundary spike equilibria emerges from the symmetric branch. Results from our weakly nonlinear analysis are18
confirmed from full numerical solutions of the steady-state problem using numerical bifurcation software.19

1. Introduction. Spike patterns are a common class of localized structures that can occur for20

certain 1-D two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity21

ratio. In the large diffusivity ratio, localized spikes in the solution component with small diffusivity22

interact strongly with each other through the effect of the long-range diffusion of the second solution23

component. In this so-called semi-strong regime, there is a rather well-developed theory to analyze24

the existence, linear stability, and slow dynamics of 1-D spike patterns in a variety of specific RD25

systems such as the Gierer-Meinhardt, Gray-Scott and Brusselator models (see [5], [6], [7], [8], [14],26

[13], [17], [18], [20], [22], [29], [23], [25], [30] and the references therein). Through linear stability27

analysis, combined with numerically-generated global bifurcation diagrams and full PDE simulations,28

it is well-known that spike patterns for certain RD systems can exhibit a variety of instabilities such as,29

temporal oscillations in the height of the spikes, spike annihilation events, and spike self-replication.30

In particular, a competition instability is a linear instability of a steady-state spike pattern that31

locally preserves the sum of the heights of the spikes, and it occurs most typically when the long-32

range diffusivity exceeds a threshold or when spikes become too-closely spaced (cf. [13], [29], [18],33

[23]). Based on observations from full PDE numerical simulations of various RD systems, it has been34

conjectured that this linear instability provides the trigger for the onset of fully nonlinear events leading35

to the ultimate annihilation of certain spikes in a 1-D spike pattern (cf. [14], [22]). As a result, this36

instability is believed to be a key mechanism in initiating a coarsening process of 1-D spike patterns.37

More recently, in [1], spike annihilation events in 1-D have been interpreted in terms of saddle-node38

points and bifurcations that are associated with quasi-equilibrium manifolds for the heights of the39

spikes. These manifolds depend on the instantaneous locations of the spikes in the domain and they40

evolve slowly in time as the spikes drift towards their steady-state spatial configuration.41

Motivated by these previous numerical PDE studies exhibiting spike annihilation events, we de-42

velop and implement a weakly nonlinear theory to analyze whether competition instabilities of spike43

patterns for the singularly perturbed 1-D Gierer-Meinhardt and Schnakenberg RD models are sub-44

critical. To facilitate the analysis we will focus only on competition instabilities associated with45

symmetric two-boundary spike equilibria. For this simple spatial pattern, the linearization of the RD46
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system around the steady-state leads to a nonlocal eigenvalue problem (NLEP) whose unstable dis-47

crete eigenvalues correspond to an instability in the heights of the two boundary spikes. A competition48

instability of the spike heights is an instability due to a zero-eigenvalue crossing of the NLEP, and49

it has the effect of locally preserving the sum of the heights of the two boundary spikes. In contrast50

to the more delicate case of performing a weakly nonlinear analysis for spike patterns interior to the51

domain, for boundary-spike patterns there is no complicating feature due to the small eigenvalues in52

the linearization that are associated with the slow dynamics of the centers of the spikes.53

A multi-scale perturbation framework is a well-established theoretical approach for analyzing the54

weakly nonlinear development of small amplitude patterns near bifurcation points for PDE models,55

and it has been used in a wide variety of applications (cf. [3], [27]). When the base-state is spatially56

uniform, it is rather straightforward to derive amplitude, or normal form, equations characterizing the57

onset and stability of bifurcating small amplitude spatially non-uniform structures that occur near the58

bifurcation point. In contrast, it is considerably more challenging to implement a weakly nonlinear59

theory to analyze the branching behavior near bifurcation points associated with localized structures,60

such as spikes, for singularly perturbed RD systems. In this spatially non-uniform context, there are61

several key challenges in implementing a weakly nonlinear theory based on multi-scale perturbation62

theory. The first challenge is that the linearization of the RD system around a localized spike solution63

leads to a singularly perturbed eigenvalue problem in which the underlying linearized operator has64

spatially variable coefficients. As such, a singular perturbation approach for this eigenvalue problem65

is needed to identify bifurcation points and to formulate a solvability condition based on the adjoint66

spectral problem, which is required to derive the amplitude equation. The second key challenge67

is that certain spatially inhomogeneous boundary value problems (BVPs) arise at various orders in68

the multi-scale expansion and, most typically, these problems can only be solved numerically. For69

singularly perturbed reaction-diffusion systems in the weak-interaction regime, characterized by an70

exponentially weak inter-spike interaction, a weakly nonlinear theory based on center-manifold and71

multi-scale perturbation theory has been used previously (cf. [9], [2]) to analyze typical spike-drift72

instabilities, such as spike-layer oscillations and spike pinning, for a wide range of applications.73

In contrast, there have only been a few previous weakly nonlinear analyses of localized spike74

patterns near bifurcation points for singularly perturbed RD systems in which the localized spikes75

interact strongly through a long-range bulk diffusion field (the so-called semi-strong regime). For76

such a 1-D spike steady-state solution, a weakly nonlinear analysis of a temporal oscillation in the77

height of the spike, referred to as a breathing instability and resulting from a Hopf bifurcation of78

the linearization, was developed recently for the Schnakenberg model and the GM model and its79

variants in [26], [11] and [12]. For these RD models, an amplitude equation characterizing the local80

branching behavior of breathing oscillations was derived in terms of coefficients that must be computed81

numerically from some BVPs. This hybrid analytical-numerical approach showed that, in certain82

parameter regimes, the Hopf bifurcation for temporal spike height oscillations is subcritical. This83

theoretical result supports numerical evidence, based on full PDE simulations that small amplitude84

temporal oscillations of a spike can be unstable in certain parameter regimes, and can trigger a fully85

nonlinear event leading to the oscillatory collapse of a spike. In a 2-D spatial context, a weakly86

nonlinear analysis was recently undertaken in [32] to show that a small amplitude peanut-shaped87

instability of a locally radially symmetric spot solution to the singularly perturbed Schnakenberg and88

Brusselator RD models is always subcritical. This theoretical result provides a partial explanation89

for observations based on numerical PDE simulations of these RD models that, near a critical value90

of the feed-rate, a non-radially symmetric peanut-shape deformation of a localized spot can trigger a91

fully nonlinear spot self-replication event (see [32] and [27] for references in this area).92

Our analysis will focus on two-boundary spike equilibria for the 1-D GM and Schnakenberg RD93

models in the semi-strong spike interaction regime. The dimensionless prototypical GM model [10]94
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Fig. 1. Plot of the asymptotic result for the steady-state two-boundary spike solution for the GM model
(1.1) when L = 2, ε = 0.02, and µ = 0.7768. The inhibitor u is given by (2.5) while the activator v is
v ∼ U0

[
w
(
ε−1x

)
+ w

(
ε−1(L− x)

)]
, where w(y) is the homoclinic in (2.3) and U0 is given in (2.5).

for the activator v and inhibitor u on the 1-D domain 0 ≤ x ≤ L is conveniently formulated as95

(1.1) vt = ε2vxx − v +
v2

u
, τ0ut = uxx − µu+ ε−1v2 ,96

with vx = ux = 0 at x = 0, L. Here ε � 1, µ = O(1) and τ0 = O(1) are positive constants. In97

this non-dimensionalization of the GM model, where the inhibitor diffusivity is set to unity, the key98

bifurcation parameter µ represents the decay rate for the inhibitor in the bulk region 0 < x < L.99

As µ decreases, the interaction of the spatially segregated boundary spikes near x = 0 and x = L100

increases, until eventually a competition instability occurs at some critical value µ = µc. For µ101

below this critical value, symmetric two-boundary spike equilibria are unstable. In Fig. 1 we plot the102

steady-state symmetric two-boundary spike solution for L = 2, µ = µc ≈ 0.7768, and ε = 0.02. For103

L = 2 and ε = 0.02, in the left panel of Fig. 2 we plot time-dependent PDE results for (1.1) for the104

amplitudes v(0, t) and v(L, t) of the two boundary spikes, which shows that a competition instability in105

the spike amplitudes occurs as µ is slowly ramped in time below the competition instability threshold106

µc. This instability is observed to trigger a fully nonlinear boundary spike annihilation event. In107

terms of the maximum max(u(0, t), u(L, t)) of the inhibitor field, in the right panel of Fig. 2 we108

superimpose these results from the PDE simulation on the global bifurcation diagram of two- and one-109

boundary spike equilibria for (1.1). This figure shows that the slow ramping in µ below the competition110

instability threshold triggers a transition between a symmetric two-boundary spike steady-state and a111

one-boundary spike steady-state. At the competition instability threshold value of µ, we observe that112

an unstable (subcritical) asymmetric branch of two-boundary spike equilibria emerges. One main goal113

of this paper is to provide a detailed analysis of this local branching behavior. From the left panel of114

Fig. 2, we observe that although the linear competition instability initially preserves the sum of the115

spike amplitudes, this conservation principle does not hold at later times. We remark that although116

the time-dependent ramping of µ provides the simplest numerical approach for illustrating the onset117

of the competition instability and the ultimate long-time fate of the two-boundary spike pattern, one118

must expect a delayed onset of the instability that is independent of the speed of ramping, as is typical119

in transcritical or pitchfork bifurcation problems in simple ODE systems (cf. [19]). This delayed onset120

is evident in both panels of Fig. 2. Delayed competition instabilities and delayed Hopf bifurcations121

for spike patterns due to slow parameter ramping have been analyzed in [24] for a few RD systems122

(see also [15] and the references therein).123

Similarly, the dimensionless Schnakenberg model on the 1-D domain 0 ≤ x ≤ L is formulated as124

(1.2) vt = ε2vxx − v + uv2 , τ0ut = uxx + µ− ε−1uv2 ,125
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Fig. 2. Left panel: Plot of the spike heights v(0, t) and v(L, t) versus time, as computed from (1.1), showing a
competition instability followed by a boundary spike annihilation event as µ is ramped below µc ≈ 0.7768 (red dot) with
µ = 1.25 − δt and δ = 0.0025. Since the slow ramping in µ induces the typical delayed bifurcation effect, the onset
of the instability occurs for µ < µc. Parameters in (1.1) are L = 2, ε = 0.02, and τ0 = 0.2. Right panel: Plot of
max(UL, UR), where UL ≡ u(0) and UR ≡ u(L), for the inhibitor field versus µ for the global branches of symmetric
(black solid curve) and asymmetric (black dashed-dotted curve) two-boundary spike equilibria and a one-boundary spike
(blue dashed curve) equilibrium. The labeled linear stability properties are as follows: U : linearly unstable for all
τ0 > 0. S1: a one-boundary spike steady-state is linearly stable if 0 ≤ τ0 < τH1(µ) (see Fig. 3). S2: a symmetric
two-boundary spike steady-state is linearly stable if 0 ≤ τ0 < min(τH+(µ), τH−(µ)) (see Fig. 3). The dotted red curve is
from the time-dependent PDE simulation of (1.1) shown in the left panel. The slow ramping of µ below the competition
instability threshold at µ = µc ≈ 0.7768 is observed to trigger a (delayed) transition to a one-boundary spike solution.

with vx = ux = 0 at x = 0, L. Here ε � 1, µ = O(1) and τ0 = O(1) are positive constants. In126

this context, the bifurcation parameter µ is the feed-rate or “fuel” from the external substrate. As µ127

is decreased below some threshold µc, there is insufficient “fuel” to support a stable symmetric two-128

boundary spike steady-state, and this solution is destabilized through a competition instability. We129

remark that our weakly nonlinear approach for analyzing competition instabilities for (1.1) and (1.2)130

shares some similarities with the theoretical framework developed in [21] for analyzing instabilities131

associated with dynamically active 1-D membranes that are coupled via a passive bulk diffusion field.132

The outline of this paper is as follows. For the GM model (1.1), in §2 a symmetric two-boundary133

spike steady-state is constructed using matched asymptotic expansions for ε � 1. In §2.1 we derive134

and analyze an NLEP whose spectrum characterizes the linear stability of this steady-state. From135

this NLEP we derive the critical value µc of µ, given in (2.17), at which the symmetric two-boundary136

spike loses stability to an anti-phase perturbation of the heights of the two boundary spikes. This137

competition instability results from a zero-eigenvalue crossing of the NLEP, and when τ0 is below a138

Hopf bifurcation threshold there are no additional unstable discrete eigenvalues of the NLEP. In §3 we139

formulate and implement a weakly nonlinear analysis to derive an amplitude equation characterizing140

the branching behavior associated with the competition instability when µ − µc = O(σ2). By using141

a boundary-layer theory for ε � 1 to calculate the terms at various orders in σ in the multi-scale142

expansion, we obtain explicit analytical results for the coefficients in the amplitude equation when143

ε � 1. This amplitude equation confirms that the competition instability is in fact subcritical.144

From an asymptotic construction of asymmetric two-boundary spike equilibria in §3.2 for ε � 1,145

we show explicitly that the competition instability threshold corresponds to a symmetry-breaking146

bifurcation point where an unstable branch of asymmetric two-boundary spike equilibria emerges147

from the symmetric solution branch. Moreover, in terms of the bifurcation parameter µ, we confirm148

our weakly nonlinear analysis with corresponding numerical results computed using the bifurcation149

software COCO [4] after first spatially discretizing the BVP system for the steady-state of the GM150

model (1.1) when ε = 0.01.151

For the Schnakenberg model (1.2), in §4 we perform a similar weakly nonlinear analysis near the152
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bifurcation point µ = µc to establish that competition instabilities for symmetric two-boundary spike153

steady-states are also subcritical. In §4.3 we show that, as similar to that for the GM model, the154

competition instability threshold corresponds to a symmetric-breaking bifurcation point at which an155

unstable branch of asymmetric two-boundary spike equilibria emerge from the symmetric branch.156

In §5 we construct solution branches of asymmetric and symmetric two-boundary spike equilbria157

for an extended GM model with a general exponent set for the nonlinear reaction kinetics. The158

branching structure associated with this steady-state analysis suggests that competition instabilities159

for this generalized GM model are also subcritical. The paper concludes with a brief discussion in §6.160

2. Gierer-Meinhardt Model. We use the method of matched asymptotic expansions to con-161

struct a symmetric steady-state boundary spike solution to (1.1) with spikes at x = 0 and x = L. We162

only focus on the boundary layer near x = 0 since we can impose the symmetry condition ux = vx = 0163

at the midpoint x = L/2.164

In the boundary layer region near x = 0, we let U(y) = u(εy) and V (y) = v(εy) and we expand165

(2.1) V = V0(y) + εV1(y) + . . . , U = U0(y) + εU1(y) + . . . , with y = ε−1x .166

Upon substituting (2.1) into the steady-state problem for (1.1), and collecting powers of ε, we obtain167

that U0 is a constant to be determined, and that168

(2.2) V0yy − V0 +
V 2
0

U0
= 0 , U1yy = −V 2

0 , y ≥ 0 ,169

with V0y = U1y = 0 at y = 0. We conclude that V0 = U0w(y), where170

(2.3) w =
3

2
sech2 (y/2) ,171

is the homoclinic solution to wyy − w + w2 = 0 on y ≥ 0. From integrating the U1 equation in (2.2),172

we get the far-field behavior Uy ∼ εU1y = −εU2
0

∫∞
0
w2 dy as y → +∞. This expression provides the173

matching condition for the outer solution for the inhibitor u as x→ 0+.174

In the outer region, v is exponentially small while from the steady-state of (1.1), and from match-175

ing to the boundary layer solution, we obtain that u satisfies176

(2.4) uxx − µu = 0 , 0 ≤ x ≤ L/2 ; ux(0+) = −U2
0

(∫ ∞
0

w2 dy

)
, ux (L/2) = 0 ,177

with u(0+) = U0. The solution to (2.4) on 0 < x ≤ L/2 is178

(2.5) u(x) = U0

cosh
[√
µ (x− L/2)

]
cosh

[√
µL/2

] , U0 =

√
µ

b
tanh

(√
µL

2

)
, b ≡

∫ ∞
0

w2 dy .179

The solution on L/2 ≤ x < L is obtained from an even extension about x = L/2.180

2.1. Linear Stability Analysis. To formulate the linear stability problem, we let ve and ue181

denote the steady-state solution for (1.1) and we substitute v = ve + eλtφ(x) and u = ue + eλtη(x)182

into (1.1) and linearize. This yields the following eigenvalue problem on 0 ≤ x ≤ L:183

ε2φxx − φ+
2ve
ue

φ− v2e
u2e
η = λφ ; φx = 0 at x = 0, L ,(2.6a)184

ηxx − (µ+ τ0λ) η = −2ε−1veφ ; ηx = 0 at x = 0, L .(2.6b)185186

Since the spikes are centered at x = 0 and x = L, we look for a localized eigenfunction for (2.6a)187

in terms of some constants c1 and c2 in the form188

(2.7) φ(x) = c1Φ(x/ε) + c2Φ [(L− x)/ε] .189
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Since ve/ue ∼ w near each endpoint, we obtain from (2.6a) that Φ(y) satisfies190

(2.8) cjL0Φ− w2η(xj) = λcjΦ , 0 ≤ y <∞ , where L0Φ ≡ Φyy − Φ + 2wΦ .191

Here η(x1) and η(x2) are the constant leading-order approximations for η(x) near x1 ≡ 0 and x2 ≡ L,192

which are to be determined by matching the boundary layer regions to an outer expansion.193

In the inner region near x = 0 we expand η = η(x1) + εη1(y) + . . ., with y = x/ε, to obtain, upon194

collecting O(ε−1) terms in (2.6b), that195

(2.9) η1yy = −2c1U0wΦ , 0 ≤ y <∞ ; η1y(0) = 0 ,196

so that limy→∞ η1y = −2c1U0

∫∞
0
wΦ dy. This provides the matching condition for the leading-order197

outer solution, denoted by N0(x), in the form N0x → limy→∞ η1y and N0 → η(0) as x → 0+. In a198

similar way near x = L, we set y = (L− x)/ε and we expand η = η(x2) + εη1(y) + . . ., to obtain199

(2.10) η1yy = −2c2U0wΦ , 0 ≤ y <∞ ; η1y(0) = 0 ,200

which yields limy→∞ η1y = −2c2U0

∫∞
0
wΦ dy and the matching conditions N0x → − limy→∞ η1y and201

N0 → η(L) as x → L− for the outer solution. By using these matching conditions we conclude that202

the leading-order outer solution N0(x) for (2.6b) satisfies203

N0xx − (µ+ τ0λ)N0 = 0 , 0 < x < L ; N0(0) = η(0+) , N0(L−) = η(L) ,

N0x(0+) = −2c1U0

∫ ∞
0

wΦ dy , N0x(L−) = 2c2U0

∫ ∞
0

wΦ dy .
(2.11)204

The solution to (2.11) is205

(2.12) N0(x) = N0x(L−)
cosh(θλx)

θλ sinh(θλL)
−N0x(0+)

cosh(θλ(L− x))

θλ sinh(θλL)
, θλ ≡

√
µ+ τ0λ ,206

where we have specified the principal branch for the square root for θλ. We then set N(0+) = η(0)207

and N(L−) = η(L), and use (2.5) for U0. This yields that208

(2.13a)

(
η(0)
η(L)

)
=

2
√
µ

√
µ+ τ0λ

tanh

(√
µL

2

)
(Gλc)

(∫∞
0
wΦ dy∫∞

0
w2 dy

)
,209

where the 2× 2 symmetric and cyclic Green’s matrix Gλ and c are given by210

(2.13b) Gλ ≡
(

coth(θλL) csch(θλL)
csch(θλL) coth(θλL)

)
, c ≡

(
c1
c2

)
.211

Upon substituting (2.13) into (2.8), we obtain the vector-valued NLEP212

(2.14) (L0Φ) c−
2w2√µ
√
µ+ τ0λ

tanh

(√
µL

2

)
(Gλc)

(∫∞
0
wΦ dy∫∞

0
w2 dy

)
= λΦc .213

Since Gλ is symmetric and cyclic, its matrix spectrum Gλc = κc is readily calculated as214

c+ ≡
(

1
1

)
, in-phase (+) ; κ+ ≡ coth(θλL) + csch(θλL) = coth

(
θλL

2

)
,

c− ≡
(

1
−1

)
, anti-phase (−) ; κ− ≡ coth(θλL)− csch(θλL) = tanh

(
θλL

2

)
.

(2.15)215
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Defining Q ≡ (c+, c−), Λ = diag(κ+, κ−) and b ≡ Q−1c, we use Gλ = QΛQ−1 to obtain that (2.14)216

reduces to the following scalar NLEPs, defined on 0 ≤ y < ∞, governing the linear stability of the217

steady-state two-boundary spike solution to either in-phase (+) or anti-phase (−) perturbations:218

(2.16a) L0Φ− χ±(λ, µ)w2

(∫∞
0
wΦ dy∫∞

0
w2 dy

)
= λΦ ; Φy(0) = 0 , lim

y→∞
Φ(y) = 0 .219

In (2.16a) the two choices for the multiplier χ±(λ, µ) of the NLEP are220

(2.16b)

χ+(λ, µ) =
2
√
µ

√
µ+ τ0λ

tanh
(√
µL/2

)
tanh (θλL/2)

, χ−(λ, µ) =
2
√
µ

√
µ+ τ0λ

tanh
(√
µL/2

)
coth (θλL/2)

; θλ ≡
√
µ+ τ0λ .221

Since NLEPs of the general form (2.16) have been analyzed previously in [29] and [22], we now only222

briefly summarize the main results for the spectrum of (2.16).223

For the in-phase mode, we have spectral stability, i.e. Re(λ) < 0, only when τ0 < τH+(µ).224

Here τH+(µ) is a Hopf bifurcation threshold, depending on µ, for the in-phase mode for which λ =225

±iλIH+(µ) is an eigenvalue for (2.16). In contrast, for the anti-phase mode, we have an unstable real226

positive eigenvalue of the NLEP for any τ0 ≥ 0 whenever µ < µc, where µc satisfies227

(2.17) sinh (
√
µcL/2) = 1 so that µc ≡

4

L2

[
ln(1 +

√
2)
]2
.228

This critical value of µ, termed the competition instability threshold, is characterized by229

(2.18) χ−(0, µ) = 1 , λ = 0 , Φ = w ,230

which follows by using the identity L0w = w2 together with the explicit expression for χ− given in231

(2.16b). On the range µ > µc, there is additionally a Hopf bifurcation that occurs when τ = τH−(µ)232

and λ = ±iλIH−(µ). As µ → µc from above, we have that λIH−(µ) → 0. For L = 2, in Fig. 3 we233

illustrate these linear stability results for both the in-phase and anti-phase modes in the τ0 versus µ234

parameter plane. In particular, for L = 2 and µ = µc ≈ 0.7768 we calculate that235

(2.19) τH+ ≈ 0.9336 , τH− =
3
√

2µc
2

[√
2− ln(1 +

√
2)
]−1
≈ 3.981µc ≈ 3.0925 .236

In Appendix A we give the procedure, similar to that of [22], for numerically computing the Hopf237

bifurcation curves shown in Fig. 3. Moreover, we derive the explicit result in (2.19) for τH− at µ = µc.238

In Fig. 3 we also give corresponding results for the Hopf bifurcation threshold, τH1, and pure imaginary239

eigenvalue λI1 for the linearization of a one-boundary spike steady-state solution. Since the stability240

threshold for this one-boundary spike solution is equivalent to that for an interior spike solution on a241

domain of twice the length, we conclude from [29] that the one-boundary spike steady-state is linearly242

stable for all µ > 0 provided that τ0 < τH1(µ).243

3. Weakly Nonlinear Analysis. We now perform a weakly nonlinear analysis near the zero-244

eigenvalue crossing at µ = µc for the anti-phase mode when 0 ≤ τ0 < min(τH+(µc), τH−(µc)) =245

τH+(µc) ≈ 0.9336. As discussed in §2.1, this zero-eigenvalue crossing corresponds to the onset of the246

sign-fluctuating competition instability of the two boundary spikes. To perform a weakly nonlinear247

analysis of this instability, we first introduce a neighborhood near µc and a slow time scale T by248

(3.1) µ = µc − kσ2 , k = ±1 , µc ≡
4

L2

[
ln(1 +

√
2)
]2

; T = σ2t ,249

where σ � 1. On this time-scale, we obtain from (1.1) that v(x, T ) and u(x, T ) satisfy250

(3.2) σ2vT = ε2vxx− v+
v2

u
, τ0σ

2uT = uxx− (µc− kσ2)u+ ε−1v2 ; ux = vx = 0 at x = 0, L .251
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Fig. 3. Spectral results from NLEP theory for the linearization of symmetric two-boundary spike equilibria for the
GM model (1.1). Numerically computed Hopf bifurcation thresholds τH± (left panel) and corresponding imaginary parts
λIH± (right panel) of the eigenvalues of the NLEP (2.16) versus µ when L = 2, as computed using Newton’s method
on (A.1), for both the in-phase (+) and anti-phase (−) modes. The Hopf threshold for the anti-phase mode exists only
when µ > µc, where µc = 4L−2[ln(1 +

√
2)]2. For L = 2, as µc tends to 0.7768 from above we have τH− ≈ 3.0925 and

λIH− → 0. At µ = µc, the Hopf threshold for the in-phase mode is τH+ ≈ 0.9336. For any µ < µc, the anti-phase
mode is always unstable due to a positive real eigenvalue for the NLEP (2.16). For µ > µc, the two-boundary spike
solution is linearly stable only when τ0 < min(τH−, τH+). The dashed blue curves are the corresponding results τH1

and λI1 for a one-boundary spike steady-state solution.

We let ve(x) and ue(x) denote the steady-state two-boundary spike solution and we expand252

v = ve(x) + σv1(x, T ) + σ2v2(x, T ) + σ3v3(x, T ) + . . . ,

u = ue(x) + σu1(x, T ) + σ2u2(x, T ) + σ3u3(x, T ) + . . . ,
(3.3)253

where ve, ue, vj and uj for j = 1, . . . , 3 can depend on ε. In our expansion, we will treat ε and σ as254

independent parameters. Upon substituting (3.3) into (3.2), and collecting powers of σ, we obtain the255

leading order problem on 0 ≤ x ≤ L256

(3.4) ε2vexx − ve +
v2e
ue

= 0 , uexx − µcue = −ε−1v2e ,257

and the problem at order O(σ):258

(3.5) ε2v1xx − v1 +
2ve
ue

v1 =
v2e
u2e
u1 , u1xx − µcu1 = −2ε−1vev1 .259

From the O(σ2) terms we obtain that260

ε2v2xx − v2 +
2ve
ue

v2 =
v2e
u2e
u2 −

v21
ue
− v2e
u3e
u21 +

2ve
u2e

u1v1 ,

u2xx − µcu2 = −kue − ε−1
(
2vev2 + v21

)
.

(3.6)261

Finally, after some lengthy but straightforward algebra, the problem at O(σ3) is262

ε2v3xx − v3 +
2ve
ue

v3 =
v2e
u2e
u3 −

2v1v2
ue

+
2ve
u2e

(v1u2 + u1v2)− 2v2e
u3e

u1u2

+
v21u1
u2e
− 2ve

u3e
v1u

2
1 +

v2e
u4e
u31 + v1T ,

u3xx − µcu3 = −ku1 + τ0u1T − ε−1 (2vev3 + 2v1v2) .

(3.7)263
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For (3.4)–(3.7) we impose vex = uex = 0 at x = 0, L and vjx = ujx = 0 at x = 0, L, for j = 1, . . . , 3.264

Although the BVPs (3.4)–(3.7) can be solved numerically for a given ε small but fixed, in order to265

obtain an explicit analytical theory we will solve (3.4)–(3.7) using a boundary layer theory for ε� 1.266

The key observation is that each vj is non-negligible only in the boundary layer regions near x = 0, L.267

In these boundary layers, the leading-order-in-ε theory shows that we can approximate ue and uj for268

j = 1, . . . , 3 by pointwise values.269

In the boundary layer near x = 0 or x = L we have ve ∼ U0w and ue ∼ U0, where U0 is defined270

in (2.5) and w(y) is the homoclinic given in (2.3) with either y = x/ε or y = (L− x)/ε. In either271

boundary layer we obtain from (3.5) that the boundary-layer variables V1(y) and U1(y) satisfy272

(3.8) L0V1 ≡ V1yy − V1 + 2wV1 = w2U1 , U1yy = −2εU0wV1 +O(ε2) ,273

so that to leading-order U1 is a constant. As shown in §2.1 a competition instability is due to a sign274

fluctuation in the spike heights in the two boundary layer regions. Since L0w = w2, we conclude that275

U1 = A(T ) +O(ε) , V1 = wA(T ) +O(ε) , near x = 0 ;

U1 = −A(T ) +O(ε) , V1 = −wA(T ) +O(ε) , near x = L .
(3.9)276

Our goal is to derive an ODE for A(T ), which characterizes the height of the boundary spikes near277

the competition instability threshold. By integrating the U1 equation in (3.8), we obtain the following278

matching conditions between the outer inhibitor field u1 and the two boundary layer solutions:279

u1(0+) = A , u1x(0+) = lim
y→∞

ε−1U1y = −2U0

∫ ∞
0

wV1 dy = −2AU0

∫ ∞
0

w2 dy ,

u1(L−) = −A , u1x(L−) = − lim
y→∞

ε−1U1y = 2U0

∫ ∞
0

wV1 dy = −2AU0

∫ ∞
0

w2 dy .

(3.10)280

In this way, we obtain from (3.5) and (3.10) that the outer solution u1 satisfies281

u1xx − µcu1 = 0 , 0 < x < L ; u1(0+) = A , u1(L−) = −A ,

u1x(0+) = −2AU0b , u1x(L−) = −2AU0b ; b ≡
∫ ∞
0

w2 dy .
(3.11)282

The solution to (3.11) is283

u1(x) = − 2AU0b√
µ
c

sinh(
√
µcL)

[cosh(
√
µcx)− cosh(

√
µc(L− x))] .284

To calculate the pre-factor in u1(x) we use U0b =
√
µc tanh

(√
µcL/2

)
as given in (2.5) when µ = µc285

together with the identity 2 tanh(z/2)/ sinh(z) = sech2(z/2) and the fact that cosh
(√
µcL/2

)
=
√

2,286

as obtained by using (3.1) for µc. This yields that287

(3.12) u1(x) = −A
2

[cosh(
√
µcx)− cosh(

√
µc(L− x))] .288

By using the expression for µc in (3.1) it is readily verified that u1(0) = A and u1(L) = −A.289

Next, we proceed to analyze the O(σ2) system in (3.6). We denote V2L(y), with y = x/ε, and290

V2R(y), with y = (L− x)/ε, to be the inner solutions for v2 in the left and right boundary layers,291

respectively. By using V1 ∼ wA and U1 ∼ A in the left layer and V1 ∼ −wA and U1 ∼ −A in the292

right layer, as given in (3.9), respectively, we readily calculate from (3.6) that293

L0V2L ∼ w2U2(0) , U2yy = −ε(2wU0V2L +A2w2) +O(ε2) , (left layer) ,

L0V2R ∼ w2U2(L) , U2yy = −ε(2wU0V2R +A2w2) +O(ε2) , (right layer) .
(3.13)294
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Since L0w = w2, we conclude that295

(3.14) V2L(y) = U2(0)w(y) , V2R(y) = U2(L)w(y) .296

Upon using these results for V2L and V2R, we integrate the two expressions in (3.13) for U2yy on297

0 < y <∞ to obtain asymptotic matching conditions for u2x(0+) and u2x(L−).298

In this way, we obtain that the outer correction u2 in (3.6) satisfies299

u2xx − µcu2 = −kue , 0 < x < L ; u2(0+) = U2(0) , u2(L−) = U2(L) ,

u2x(0+) = −
(
2U0U2(0) +A2

)
b , u2x(L−) =

(
2U0U2(L) +A2

)
b ,

(3.15)300

where b =
∫∞
0
w2 dy. When µ = µc, the leading-order approximation for the steady-state solution301

ue(x) on 0 < x < L :, satisfying (3.4), is302

(3.16) ue(x) =
U0

4
[cosh(

√
µcx) + cosh(

√
µc(L− x))] ; U0 ≡

√
µc

b
tanh

(√
µcL

2

)
=

√
µc√
2b
.303

We readily verify that ue(0) = ue(L) = U0 by using sinh
(√
µcL/2

)
= 1 from (2.17).304

Our goal is to determine the constants U2(0) and U2(L), which are needed in the derivation of305

the amplitude equation. To do so, we calculate u2(x), satisfying (3.15), by first decomposing it as306

(3.17) u2(x) = u2h(x) + u2p(x) ,307

where the particular solution u2p(x) for (3.15), which is even about x = L/2, is308

(3.18) u2p(x) = − U0k

8
√
µc

(x− L/2) [sinh(
√
µcx)− sinh(

√
µc(L− x))] .309

Upon formulating the problem for u2h, and using u2p(0) = u2p(L) together with u2px(0) = −u2px(L),310

we obtain after some algebra that U2(0) and U2(L) satisfy the matrix problem311

(3.19a)

(
I − 2 tanh

(√
µcL

2

)
G
)(

U2(0)
U2(L)

)
=

(
u2p(0) +

[
A2b+ u2px(0)

]
√
µc

coth

(√
µcL

2

))
e ,312

where e ≡ (1, 1)T and G is the cyclic Green’s matrix313

(3.19b) G ≡
(

coth(
√
µcL) csch(

√
µcL)

csch(
√
µcL) coth(

√
µcL)

)
.314

Since Ge = coth(
√
µcL/2)e, we obtain from (3.19) that315

(3.20) U2(0) = U2(L) = −u2p(0)−
[
A2b+ u2px(0)

] coth
(√
µcL/2

)
√
µc

.316

Then, we use (3.18) together with sinh
(√
µcL/2

)
= 1 to calculate317

u2p(0) = − kU0L

16
√
µc

sinh(
√
µcL) = −

√
2kU0L

8
√
µc

,

u2px(0) =
kU0

8
√
µc

[
sinh(

√
µcL) +

√
µcL

2
(1 + cosh(

√
µcL))

]
=

kU0

4
√
µc

(√
2 +
√
µcL

)
.

(3.21)318
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Finally, upon substituting (3.21) into (3.20), and using U0 =
√
µc/(
√

2b), we obtain that319

(3.22) U2(0) = U2(L) = −kL
8b
− A2

U0
−
√

2k

4b
√
µc
, where k = ±1 .320

Next, we consider the O(σ3) problem, given by (3.7), and formulate a solvability condition to321

derive the amplitude equation. We label V3L(y), with y = x/ε, and V3R(y), with y = (L− x)/ε, to322

be the inner solution for v3 in the left and right boundary layers, respectively. We use V1 ∼ wA,323

U1 ∼ A, V2 ∼ wU2(0) and U2 ∼ U2(0) in the left layer and V1 ∼ −wA, U1 ∼ −A, V2 ∼ wU2(L)324

and U2 ∼ U2(L) in the right layer, where U2(0) = U2(L) as given in (3.22). Upon substituting these325

expressions into (3.7) we obtain that many terms cancel, leaving only326

(3.23) L0

(
V3L
V3R

)
− w2

(
U3(0)
U3(L)

)
= wA′

(
1
−1

)
,327

where A′ = dA/dT . Moreover, from the u3 equation in (3.7) we get that328

U3yy ∼ −ε(2wU0V3L + 2Aw2U2(0)) , (left) ; U3yy ∼ −ε(2wU0V3R − 2Aw2U2(L)) , (right) .

(3.24)
329

We use the matching conditions u3x(0+) = limy→∞ ε−1U3y and u3x(L−) = − limy→∞ ε−1U3y for the330

left and right boundary layers, respectively. In this way, from the u3 equation in (3.7) we obtain that331

the outer solution u3(x) satisfies332

u3xx − µcu3 = τ0u1T − ku1 ≡ γ(T )g(x) , 0 < x < L ; u3(0) = U3(0) , u3(L) = U3(L) ,

u3x(0+) = −
(

2U0

∫ ∞
0

wV3L dy + 2bAU2(0)

)
, u3x(L−) =

(
2U0

∫ ∞
0

wV3R dy − 2bAU2(L)

)
.

(3.25a)

333

By using (3.12) for u1, we have that γ(T ) and g(x) in (3.25a) are defined by334

(3.25b) γ(T ) ≡ 1

2
(τ0A

′ − kA) , g(x) ≡ cosh [
√
µc(L− x)]− cosh(

√
µcx) .335

The solution to (3.25a) can be decomposed as336

(3.26a) u3(x) = u3p(x)− αL
sinh

[√
µc(L− x)

]
sinh(

√
µcL)

+ αR
sinh

(√
µcx
)

sinh(
√
µcL)

,337

where the particular solution u3p(x), which is odd about x = L/2, is calculated as338

(3.26b) u3p(x) = −γ(T ) (x− L/2)

2
√
µc

(sinh [
√
µc(L− x)] + sinh(

√
µcx)) .339

We substitute (3.26b) into the boundary conditions in (3.25a) and, after some straightforward but340

lengthy algebra, we obtain that341

(3.27a)

(
αL
αR

)
= u3p(0)

(
1
1

)
+

(
−U3(0)
U3(L)

)
,342

where U3(0) and U3(L) satisfy343

(3.27b)

(
U3(0)
U3(L)

)
=

(
u3p(0)− β0

κ+

)(
1
−1

)
+

2

b
tanh

(√
µcL

2

)
PG−1P

( ∫∞
0
wV3L dy∫∞

0
wV3R dy

)
,344
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where G is the Green’s matrix of (3.19b). Here κ+ = coth
(√
µcL/2

)
is obtained from the matrix345

eigenvalue problem Ge = κ+e, where e = (1, 1)T , while β0 and the matrix P are defined by346

(3.27c) β0 ≡ −
[2bAU2(0) + u3px(0)]

√
µc

, P ≡
(
−1 0
0 1

)
.347

Finally, we substitute (3.27b) into (3.23) to obtain a vector-valued NLEP for V3 ≡ (V3L, V3R)T :348

(3.28) L0V3 − 2w2 tanh

(√
µcL

2

)
PG−1P

∫∞
0
wV3 dy∫∞

0
w2 dy

=

[
wA′ + w2

(
u3p(0)− β0

κ+

)](
1
−1

)
.349

3.1. The Solvability Condition and the Amplitude Equation. To determine the solvability350

condition, leading to the amplitude equation, we need to diagonalize (3.28). To do so, we first351

diagonalize G and introduce a new variable Ψ by352

(3.29a)

G = QΛQ−1 , Q ≡
(

1 1
1 −1

)
, Ψ ≡ Q−1PV3 = −1

2

(
V3L − V3R
V3L + V3R

)
, Q−1P

(
1
−1

)
=

(
1
0

)
.353

Here the matrix of eigenvalues of G is354

(3.29b) Λ ≡
(
κ+ 0
0 κ−

)
, κ+ = coth

(√
µcL

2

)
, κ− = tanh

(√
µcL

2

)
.355

We multiply both sides of (3.28) by Q−1P and use P2 = I together with (3.29a) to obtain356

(3.30) L0Ψ− 2w2 tanh

(√
µcL

2

)
Λ−1

∫∞
0
wΨ dy∫∞

0
w2 dy

= −
[
wA′ + w2

(
u3p(0)− β0

κ+

)](
1
0

)
,357

with Ψ′(0) = 0 and Ψ → 0 as y → ∞. In this diagonalized NLEP (3.30), Ψ ≡ (Ψ1,Ψ2)T with358

Ψ1 = (V3R − V3L)/2 and Ψ2 = −(V3R + V3L)/2.359

For the second component in (3.30) we obtain that360

(3.31) L0Ψ2 − 2w2

∫∞
0
wΨ2 dy∫∞

0
w2 dy

= 0 .361

where we readily conclude that Ψ2 ≡ 0, and consequently V3L = −V3R is the only solution. For the362

first component we use
[
tanh

(√
µcL/2

)]2
= 1/2 to obtain that363

(3.32) LΨ1 ≡ L0Ψ1 − w2

∫∞
0
wΨ1 dy∫∞

0
w2 dy

= R ≡ −
[
wA′ + w2

(
u3p(0)− β0

κ+

)]
.364

To determine the solvability condition for (3.32) we observe that the homogeneous adjoint problem365

(3.33a) L?Ψ? ≡ L0Ψ? − w
∫∞
0
w2Ψ? dy∫∞

0
w2 dy

= 0 ,366

has the nontrivial solution L?Ψ?
c = 0 given explicitly by (cf. [31])367

(3.33b) Ψ?
c ≡ w +

yw′

2
.368

As such, the solvability condition for (3.32) is that
∫∞
0

Ψ?
cR dy = 0, which yields369

(3.34) A′ =

(
β0
κ+
− u3p(0)

)(∫∞
0
w2Ψ?

c dy∫∞
0
wΨ?

c dy

)
.370
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Upon integrating by parts, we use (2.3) for w to calculate the integral ratio in (3.34) as371

(3.35)

∫∞
0
w2Ψ?

c dy∫∞
0
wΨ?

c dy
=

∫∞
0
w2 (w + yw′/2) dy∫∞

0
w (w + yw′/2) dy

=
(5/6)

∫∞
0
w3 dy

(3/4)
∫∞
0
w2 dy

=
4

3
,372

where we used
∫∞
0
w3 dy/

∫∞
0
w2 dy = 6/5. Then, from (3.34) and together with (3.27c) for β0 and373

(3.29b) for κ+ we conclude that, with U0 =
√
µc/(
√

2b),374

(3.36) A′ =
4

3

[
β0
κ+
− u3p(0)

]
,

β0
κ+

=
tanh

(√
µcL/2

)
√
µc

[
kA

4

(
L+

2
√

2
√
µc

)
+

2bA3

U0
− u3px(0)

]
.375

The final step in the derivation of an explicit amplitude equation is to calculate u3p(0) and u3px(0)376

using (3.26b), as is needed in (3.36). We obtain that377

u3p(0) =
L

8
√
µc

(τ0A
′ − kA) sinh(

√
µcL) =

√
2L

4
√
µc

(τ0A
′ − kA) ,

u3px(0) =
(kA− τ0A′)

4
√
µc

[
sinh(

√
µcL)−

L
√
µc

2
(1− cosh(

√
µcL))

]
=

(kA− τ0A′)
2
√
µc

(√
2 +

L
√
µc

2

)
.

(3.37)

378

In obtaining (3.37) we used sinh(
√
µcL/2) = 1, sinh(

√
µcL) = 2

√
2 and cosh(

√
µcL) = 3.379

Upon substituting (3.37) into (3.36) and solving for A′ we obtain an explicit amplitude equation.380

The result is summarized as follows:381

Proposition 1. Consider a small amplitude perturbation of a symmetric two-boundary spike382

steady-state solution of (1.1) for µ = µc−kσ2, where k = ±1 and µc = 4L−2
[
ln(1 +

√
2)
]2

, and when383

τ0 < τH+(µc) ≈ 0.9336. In the O(ε) boundary layers near x = 0 and x = L, we have for σ � 1 and384

ε� 1 that385

v ∼ w
[
U0 + σA(T ) +O(σ2)

]
, u ∼ U0 + σA(T ) +O(σ2) , (left boundary layer) ,

v ∼ w
[
U0 − σA(T ) +O(σ2)

]
, u ∼ U0 − σA(T ) +O(σ2) , (right boundary layer) ,

(3.38)386

where U0 =
√
µc/(
√

2b). On the slow time-scale T = σ2t, the amplitude equation for A(T ) is387

(3.39a)
dA

dT
=
θ2
θ1
A+

θ3
θ1
A3 ,388

where the coefficients in the amplitude equation are389

(3.39b) θ1 ≡ 1 +
2τ0
3µc

(√
2

2
ln(1 +

√
2)− 1

)
, θ2 ≡

√
2kL

3
√
µ
c

, θ3 ≡
8b2

3µc
> 0 ,390

where k = ±1 and b ≡
∫∞
0
w2 dy = 3. The competition instability associated with the zero-eigenvalue391

crossing of the NLEP for the anti-phase mode of the linearization around the symmetric two-boundary392

steady state is subcritical.393

On the range τ0 < τH+(µc) < τH−(µc) we have θ1 > 0. In fact, by comparing the expression for394

θ1 in (3.39b) with the Hopf bifurcation threshold τH−(µc) for the anti-phase mode given in (2.19), we395

observe that θ1 > 0 on 0 < τ0 < τH+(µc) < τH−(µc), and that θ1 = 0 precisely when τ0 = τH−. From396

the amplitude equation (3.39a) we obtain that the equilibrium Ae = 0 is unstable when µ = µc − σ2397

(k = 1) and is linearly stable when µ = µc + σ2 (k = −1). As shown in Appendix B, the growth rate398
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θ2/θ1 is consistent with that obtained by calculating for σ � 1 the near-zero eigenvalue of the NLEP399

(2.16) for the anti-phase mode when µ = µc − σ2.400

On the range µ = µc + σ2 where Ae = 0 is linearly stable, there are unstable steady-state Ae± of401

the amplitude equation (3.39a) given by Ae± = ±
√
θ2/θ3. By calculating the ratio θ2/θ3 for k = −1,402

we observe that this steady-state corresponds to the emergence of a linearly unstable asymmetric403

two-boundary spike steady-state solution ue, for which in the two boundary layers we have404

(3.40) ue ∼ U0 ±
√
µ− µc
b

√√
2ucL

8
(left layer) ; ue ∼ U0 ∓

√
µ− µc
b

√√
2ucL

8
(right layer) ,405

when µ = µc + σ2 and U0 =
√
µc/(
√

2b). This weakly nonlinear analysis shows that the competition406

instability for a symmetric two-boundary spike steady-state that occurs at µ = µc is subcritical.407

3.2. Asymmetric Boundary Spike Equilibria. We now construct global branches of asym-408

metric two-boundary spike steady-state solutions of (1.1) for ε� 1. We show that these asymmetric409

equilibria bifurcate from the symmetric two-boundary spike branch at µ = µc, and near the bifurcation410

point their local behavior agrees with (3.40), as was obtained from our weakly nonlinear analysis.411

In the left boundary layer near x = 0 we have v ∼ ULw and u = UL + O(ε), while in the right412

boundary layer near x = L, we have v ∼ URw and u = UR + O(ε). Proceeding as in the matched413

asymptotic analysis of symmetric two-boundary spike equilibria in §2, we obtain in the outer region414

that the leading-order inhibitor field satisfies415

(3.41) uxx − µu = 0 , 0 < x < L ; ux(0+) = −U2
Lb , ux(L−) = U2

Rb ,416

where b ≡
∫∞
0
w2 dy, u(0+) = UL, and u(L−) = UR. The explicit solution to (3.41) is417

(3.42) u(x) = UL
sinh(

√
µ(L− x))

sinh(
√
µL)

+ UR
sinh(

√
µx)

sinh(
√
µL)

.418

Then, by satisfying the flux boundary conditions, we obtain the nonlinear algebraic system419

(3.43a)

(
z2L
z2R

)
= A

(
zL
zR

)
, with A ≡

(
coth(

√
µL) −csch(

√
µL)

−csch(
√
µL) coth(

√
µL)

)
,420

where zL and zR are related to UL and UR by421

(3.43b) UL =

√
µ

b
zL , UR =

√
µ

b
zR .422

The symmetric two-boundary spike solution is obtained by setting z ≡ (zL, zR)T = zc(1, 1)T . Since423

A is a cyclic symmetric matrix, e ≡ (1, 1)T is an eigenvector and we obtain424

(3.44) UL = UR =

√
µzc

b
, where zc = tanh

(√
µL

2

)
and Ae = tanh

(√
µL

2

)
e .425

Next, we linearize (3.43a) about z = zce by writing z = zce + η, where |η| � 1. From (3.43a)426

we obtain the linearized problem Aη = 2zcη. Since Aq = coth
(√
µL/2

)
q, where q = (1,−1)T , we427

conclude that η = (1,−1)T is a nontrivial solution to the linearized problem provided that 2zc =428

coth
(√
µL/2

)
. This determines a critical value µ = µc. By using (3.44) for zc, we conclude that429

sinh
(√
µcL/2

)
= 1, which yields

√
µcL = 2 ln(1+

√
2). This critical value of µ, where asymmetric two-430

boundary spike steady-states emerge from the symmetric branch, coincides with the zero-eigenvalue431

crossing of the NLEP (2.16) for the anti-phase mode, as was analyzed in §2.1.432
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To calculate global branches of asymmetric two-boundary spike equilibria, we rewrite (3.43a) as433

(3.45) z2L+z2R = k2(zL+zR) , z2L−z2R = k1(zL−zR) ; k1 ≡ coth

(√
µL

2

)
, k2 ≡ tanh

(√
µL

2

)
.434

From the second equation in (3.45) we observe that for asymmetric equilibria where zL 6= zR, we must435

have zL + zR = k1. Upon substituting this relation into the first equation of (3.45) we conclude that436

zL and zR must be the roots of the quadratic 2z2 − 2k1z + k21 − k1k2 = 0. In this way, and upon437

calculating 2k1k2 − k21 = 2− k21, the global branches of asymmetric two-boundary spike equilibria are438

characterized by439

(3.46)

(
UL
UR

)
=

√
µ

b

(
zL
zR

)
, zL =

1

2

(
k1 ±

√
2− k21

)
, zR =

1

2

(
k1 ∓

√
2− k21

)
,440

provided that µ > µc. As µ → µc from above, we remark that a straightforward Taylor series441

expansion, together with the identity tanh
(√
µcL/2

)
= 1/

√
2, shows that UL and UR reduce to442

(3.47)

UR ∼
√
µc√
2b
± 1

b

√√
2µcL

8

√
µ− µc +O((µ− µc)) ; UL ∼

√
µc√
2b
∓ 1

b

√√
2µcL

8

√
µ− µc +O((µ− µc)) .443

This recovers the result given in (3.40) from the amplitude equation of the weakly nonlinear theory.444

In the right panel of Fig. 4 we plot global branches of asymmetric two-boundary spike equilibria445

versus µ as obtained from (3.46) when L = 2. The symmetric branch, as given in (3.44), is also446

shown. The dashed-dotted curves in this figure are the steady-state results (3.40) from the amplitude447

equation obtained from the weakly nonlinear theory, which is valid near the bifurcation point. In the448

left panel of Fig. 4 we plot an asymmetric two-boundary spike solution when µ = 1.0 and L = 2.449

In Fig. 5 we plot numerically-computed bifurcation branches of symmetric and asymmetric two-450

boundary spike equilibria for the GM model versus µ when L = 2 and ε = 0.01, as computed using451

the bifurcation software COCO [4] upon discretizing the steady-state of (1.1) with N = 800 mesh452

points. As shown in Fig. 4, the prediction (3.47) of the weakly nonlinear theory compares favorably453

with these full numerical bifurcation results.454
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Fig. 4. Left panel: The asymmetric two-boundary spike solution for L = 2, ε = 0.02, and µ = 1.0 with u as given
in (3.42) and v ∼ ULw(ε−1x) +URw(ε−1(L−x)), where w(y) is the homoclinic in (2.3). Right panel: Global branches
of asymmetric and symmetric two-boundary spike equilibria obtained from (3.46) and (3.44), respectively, together with
the local behavior in (3.40) predicted from the weakly nonlinear theory for L = 2 and ε = 0.02. Linear stability results
are indicated.

4. Schnakenberg Model. In this section we perform a similar weakly nonlinear analysis to455

show that a competition instability of a symmetric two-boundary spike steady-state solution to the456
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Fig. 5. Left panel: Numerical bifurcation branches of symmetric (full black curve) and asymmetric (dashed black
curve) two-boundary spike equilibria for the GM model versus µ, as computed with COCO [4] upon discretizing the
steady-state of the PDE system (1.1) with N = 800 mesh points. The dot-dashed red curve is the weakly nonlinear
prediction (3.47) for the asymmetric pattern. Parameters are L = 2 and ε = 0.01. Right panel: A zoomed-in view of
the amplitude of the asymmetric equilibria shifted to the origin.

Schnakenberg model (1.2) is subcritical. After first using boundary layer theory to construct such457

a steady-state, in §4.1 an NLEP linear stability analysis is developed to determine a critical value458

of µ in (1.2) for the onset of the competition instability. A weakly nonlinear theory, valid near this459

threshold, and that reveals the subcritical behavior is presented in §4.1.460

We first use the method of matched asymptotic expansions to construct symmetric two-boundary461

spike equilibria for (1.2). In the boundary layer region near x = 0 we let u(εy) = U = U0 + εU1 + . . .462

and v(εy) = V0 + εV1 + . . ., where y = x/ε. We obtain that U0 is a constant and that463

(4.1) V0yy − V0 + U0V
2
0 = 0 , U1yy = U0V

2
0 , y ≥ 0 ,464

with V0y = U1y = 0 at y = 0. We conclude that V0 = w(y)/U0, where w(y) is the homoclinic in (2.3).465

From integrating the U1 equation in (4.1) we get Uy ∼ εU1y = εb/U0 where b ≡
∫∞
0
w2 dy, which466

provides the matching condition for the outer solution as x→ 0+. A similar boundary layer analysis467

can be done near x = L. In the outer region, v is exponentially small, while from the steady-state468

of (1.2), together with the matching conditions to the boundary layer solution, we obtain that the469

leading-order outer solution for u satisfies470

(4.2) uxx = −µ , 0 < x < L ; ux(0+) =
b

U0
, ux(L−) = − b

U0
,471

with u(0+) = u(L−) = U0. The solution to (4.2) is472

(4.3) u =
µLx

2

(
1− x

L

)
+ U0 , 0 < x < L ; where U0 =

2b

µL
, b ≡

∫ ∞
0

w2 dy .473

4.1. Linear Stability Analysis. We now derive the NLEP governing the linear stability of the474

symmetric two-boundary spike steady-state, denoted by v = ve and u = ue. We set v = ve + eλtφ(x)475

and u = ue + eλtη(x) in (1.2) and, upon linearization, obtain the eigenvalue problem476

ε2φxx − φ+ 2veueφ+ v2eη = λφ , 0 < x < L ; φx = 0 at x = 0, L ,(4.4a)477

ηxx − τ0λη = ε−1
(
2veueφ+ v2eη

)
, 0 < x < L ; ηx = 0 at x = 0, L .(4.4b)478479

We look for a localized eigenfunction for (4.4a) in the form (2.7). From (4.4a), Φ(y) satisfies480

(4.5) cjL0Φ + η(xj)
w2

U2
0

= λcjΦ , 0 ≤ y <∞ , where L0Φ ≡ Φyy − Φ + 2wΦ .481
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Here η(x1) and η(x2) are the unknown constant leading-order approximations for η(x) near x1 ≡ 0482

and x2 ≡ L, U0 = 2b/(µL), and w is the homoclinic given in (2.3). In the boundary layers near x = xj483

for j = 1, 2, we expand η = η(xj) + εη1(y) + . . ., with y = x/ε for j = 1 and y = ε−1(L− x) for j = 2.484

Upon collecting O(ε−1) terms in (4.4b), and using ve ∼ w/U0 and ue ∼ U0, we get485

(4.6) η1yy = 2wcjΦ + η(xj)
w2

U2
0

, 0 ≤ y <∞ ; η1y(xj) = 0 .486

By integrating (4.6) over 0 < y < ∞ we obtain the matching conditions for the flux of the outer487

solution as x → 0+ and x → L−. In this way, we obtain that the leading-order outer solution N0(x)488

for (4.4b) satisfies489

N0xx − τ0λN0 = 0 , 0 < x < L ; N0(0+) = η(0) , N0(L−) = η(L) ,

N0x(0+) = 2c1

∫ ∞
0

wΦ dy +
b

U2
0

η(0) , N0x(L−) = −2c2U0

∫ ∞
0

wΦ dy − b

U2
0

η(L) .
(4.7)490

The solution to (4.7) is given in (2.12) upon replacing θλ in (2.12) with θλ =
√
τ0λ. We then set491

N(0+) = η(0) and N(L−) = η(L) and, after some algebra, derive that492

(4.8)

(
η(0)
η(L)

)
= −

2
∫∞
0
wΦ dy

θλ

(
I +

b

θλU2
0

Gλ
)−1
Gλ
(
c1
c2

)
,493

where the 2 × 2 symmetric Green’s matrix Gλ is defined in (2.13b) in terms of θλ =
√
τ0λ. Upon494

substituting (4.8) into (4.5) and defining c ≡ (c1, c2)T , we obtain the vector-valued NLEP495

(4.9) (L0Φ) c− 2bw2

U2
0 θλ

(∫∞
0
wΦ dy∫∞

0
w2 dy

)(
I +

b

θλU2
0

Gλ
)−1
Gλc = λΦc .496

To obtain two scalar NLEPs from (4.9), we diagonalize Gλ and introduce ĉ by497

(4.10a) Gλ = QΛQ−1 , Q ≡
(

1 1
1 −1

)
, Λ ≡

(
κ+ 0
0 κ−

)
, ĉ ≡ Q−1c =

1

2

(
c1 + c2
c1 − c2

)
,498

where κ+ = coth (θλL/2) and κ− = tanh (θλL/2). We then calculate499

(4.10b) (I + zGλ)
−1 Gλ = QDQ−1 , D ≡

(
κ+

(1+zκ+) 0

0 κ−
(1+zκ−)

)
, where z ≡ b

θλU2
0

.500

Upon substituting (4.10) into (4.9) we obtain the following scalar NLEPs for the in-phase (+) mode,501

where c = (1, 1)T , and for the anti-phase (−) mode, where c = (1,−1)T :502

(4.11a) L0Φ− χ±(λ, µ)w2

(∫∞
0
wΦ dy∫∞

0
w2 dy

)
= λΦ , y ≥ 0 ; Φy(0) = 0 , lim

y→∞
Φ(y) = 0 .503

In terms of θλ =
√
τ0λ, and with U0 = 2b/(µL), the NLEP multipliers χ±(λ, µ) are defined by504

(4.11b) χ+(λ, µ) ≡ 2

1 +
U2

0

b θλ tanh (θλL/2)
, χ−(λ, µ) ≡ 2

1 +
U2

0

b θλcoth (θλL/2)
.505

Since the analysis of these NLEPs is similar to that in [29] and [22], we now only briefly summarize506

the main results for the spectrum of (2.16).507
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For the in-phase mode, we have Re(λ) < 0 only when τ0 < τH+(µ). For the anti-phase mode,508

there is an unstable real positive eigenvalue of the NLEP for any τ0 ≥ 0 whenever µ < µc where509

µc ≡
√

8b/L3. This critical value is obtained from χ−(0, µ) = 1, λ = 0 and Φ = w. When µ > µc,510

there is a Hopf bifurcation at τ = τH−(µ) and λ = ±iλIH−(µ). As µ → µc from above, we have511

λIH−(µ) → 0. In Appendix C we show that the Hopf curves τH± = τH±(µ) can be computed512

numerically by using a scaling law that is valid for all domain lengths L. For L = 2, in Fig. 6 we plot513

the Hopf bifurcation curves for both the in-phase and anti-phase modes in the τ0 versus µ plane. In514

particular, we calculate515

(4.12) τH+ ≈ 0.906 , τH− =
18

L2
= 4.5 ,516

when µ = µc ≈ 1.732 and L = 2. In Appendix C we derive this explicit result for τH− when µ = µc.517
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Fig. 6. Spectral results from NLEP theory for the linearization of symmetric two-boundary spike equilibria for
the Schnakenberg model (1.2). Numerically computed Hopf bifurcation thresholds τH± (left panel) and corresponding
imaginary parts λIH± (right panel) of the eigenvalues versus µ when L = 2, as computed using Newton’s method on
(C.1), for both the in-phase (+) and anti-phase (−) modes. The Hopf threshold for the anti-phase mode exists only

when µ > µc, where µc =
√

8b/L3. For L = 2, as µ tends to µc ≈ 1.73 from above we have τH− → 4.5 and λIH− → 0.
At µ = µc, the Hopf threshold for the in-phase mode is τH+ ≈ 0.906. For any µ < µc, the anti-phase mode is always
unstable due to a positive real eigenvalue for the NLEP. For µ > µc, the symmetric two-boundary spike steady-state is
linearly stable only when τ0 < min(τH−, τH+).

4.2. Weakly Nonlinear Analysis. We now perform a weakly nonlinear analysis near the zero-518

eigenvalue crossing at µ = µc when 0 ≤ τ0 < min(τH+(µc), τH−(µc)) = τH+(µc). For σ � 1, we519

introduce a neighborhood near µc and a slow time scale T by520

(4.13) µ = µc − kσ2 , k = ±1 , µc ≡
√

8b

L3
; T = σ2t .521

We obtain from (1.2) that v(x, T ) and u(x, T ), with ux = vx = 0 at x = 0 and x = L, satisfies522

(4.14) σ2vT = ε2vxx − v + uv2 , τ0σ
2uT = uxx + (µc − kσ2)u− ε−1uv2 .523

We let ve(x) and ue(x) denote the steady-state boundary spike solution and we expand as in (3.3).524

Upon substituting (3.3) into (4.14) we collect powers of σ to get leading order problem525

(4.15) ε2vexx − ve + uev
2
e = 0 , uexx = −µc + ε−1uev

2
e ,526

on 0 < x < L and the following problem at order O(σ):527

(4.16) ε2v1xx − v1 + 2veuev1 = −u1v2e , u1xx = ε−1
(
u1v

2
e + 2veuev1

)
.528
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From the O(σ2) terms we obtain on 0 < x < L that529

ε2v2xx − v2 + 2veuev2 = −u2v2e − uev21 − 2u1v1ve ,

u2xx = k + ε−1
(
u2v

2
e + uev

2
1 + 2uevev2 + 2veu1v1

)
.

(4.17)530

Finally, we obtain that the problem at O(σ3) is531

ε2v3xx − v3 + 2veuev3 = v1T − v2eu3 − 2veu2v1 − u1v21 − 2veu1v2 − 2uev1v2

u3xx = ε−1
(
v2eu3 + 2veu2v1 + u1v

2
1 + 2veu1v2 + 2uev1v2 + 2uevev3

)
+ τ0U1T .

(4.18)532

For (4.15)–(4.18) we impose vex = uex = 0 at x = 0, L and vjx = ujx = 0 at x = 0, L, for j = 1, . . . , 3.533

In the boundary layer near x = 0 or x = L we have ve ∼ V0 ≡ w/U0 and ue ∼ U0, where534

U0 =
√
bL/2 when µ = µc (see (4.3) and (4.13)) and w(y) is the homoclinic in (2.3) with either535

y = x/ε or y = (L− x)/ε. The steady-state outer solution satisfying uexx = −µc is given by setting536

µ = µc in (4.3). At next order, we obtain from (4.16) that in either of the two boundary layers537

(4.19) L0V1 ≡ V1yy − V1 + 2wV1 = −U1

U2
0

w2 , U1yy = ε
(
U1V

2
0 + 2V0U0V1

)
,538

so that to leading-order U1 is a constant. Since L0w = w2, and a competition instability is due to a539

sign-fluctuating eigenfunction, we conclude that540

U1 = −U2
0A+O(ε) , V1 = wA+O(ε) , near x = 0 ;

U1 = U2
0A+O(ε) , V1 = −Aw +O(ε) , near x = L .

(4.20)541

Our analysis will derive an ODE for the amplitude A = A(T ).542

From integrating the U1 equation in (4.19), and by calculating U1V
2
0 + 2U0V0V1 ∼ ±Aw2 in the543

two boundary layers, we readily obtain the following matching conditions between the outer inhibitor544

field u1 and the two boundary layer solutions:545

u1(0+) = −U2
0A , u1x(0+) = lim

y→∞
ε−1U1y = A

∫ ∞
0

w2 dy = Ab

u1(L−) = U2
0A , u1x(L−) = − lim

y→∞
ε−1U1y = A

∫ ∞
0

w2 dy = Ab ,

(4.21)546

where b =
∫∞
0
w2 dy = 3. From (4.21) and (4.16), the outer solution u1 satisfies547

(4.22) u1xx = 0 , 0 < x < L ; u1(0+) = −U2
0A , u1(L−) = U2

0A ; u1x(0+) = u1x(L−) = Ab ,548

which has the solution549

(4.23) u1(x) = A
(
bx− U2

0

)
.550

Since 2U2
0 = bL, we readily verify that u1(L) = U2

0A.551

Next, we analyze the O(σ2) system given in (4.17). We denote V2L(y) with y = x/ε and V2R(y)552

with y = (L− x)/ε to be the inner solution for v2 in the left and right boundary layers, respectively.553

By using V1 ∼ wA and U1 ∼ −U2
0A in the left layer and V1 ∼ −wA and U1 ∼ U2

0A in the right layer,554

we readily calculate from (4.17) that555

L0V2L ∼ w2

(
−U2(0)

U2
0

+A2U0

)
, U2yy = ε

[(
U2(L)

U2
0

−A2U0

)
w2 + 2wV2L

]
+O(ε2) , (left) ,

L0V2R ∼ w2

(
−U2(L)

U2
0

+A2U0

)
, U2yy = ε

[(
U2(L)

U2
0

−A2U0

)
w2 + 2wV2R

]
+O(ε2) , (right) .

(4.24)

556
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Since L0w = w2, we conclude that557

(4.25) V2L(y) =

(
−U2(0)

U2
0

+A2U0

)
w(y) , V2R(y) =

(
−U2(L)

U2
0

+A2U0

)
w(y) .558

We then substitute (4.25) into the expressions for U2yy in (4.24) and integrate over 0 < y < ∞ to559

obtain asymptotic matching conditions that determine u2x(0+) and u2x(L−). Then, from (4.17), the560

outer correction u2 satisfies561

(4.26) u2xx = k , 0 < x < L ; u2x(0+) =

(
−u2(0)

U2
0

+A2U0

)
b , u2x(L−) =

(
u2(L)

U2
0

−A2U0

)
b ,562

where U2(0) = u2(0) and U2(L) = u2(L). The solution to (4.26) is even about x = L/2, and by563

integrating over 0 < x < L, we obtain that u2x(L)− u2x(0) = kL. Since u2(0) = u2(L), we get564

(4.27) U2(0) = U2(L) =
kU2

0L

2b
+A2U3

0 .565

Upon using these expressions in (4.25), we obtain in the two boundary layers that566

(4.28) V2L(y) = − L
2b
w(y) , V2R(y) = − L

2b
w(y) .567

Next, we derive a solvability condition from the O(σ3) problem, given by (4.18), which determines568

the amplitude equation. We denote V3L(y), with y = x/ε, and V3R(y), with y = (L− x)/ε, to be the569

inner solution for v3 in the left and right boundary layers, respectively. In the left and right boundary570

layers, we use respectively,571

V0 ∼
w

U0
, V1 ∼ Aw , V2 ∼ −

L

2b
w , U1 ∼ −U2

0A , U2 ∼
kU2

0L

2b
+A2U3

0 , U3 ∼ U3(0) ,

V0 ∼
w

U0
, V1 ∼ −Aw , V2 ∼ −

L

2b
w , U1 ∼ U2

0A , U2 ∼
kU2

0L

2b
+A2U3

0 , U3 ∼ U3(L) ,

572

to calculate that573

(4.29)

U3V
2
0 + 2U2V0V1 + U1V

2
1 + 2U1V0V2 + 2U0V1V2 ∼

{
U3(0)w

2

U2
0

+ kU0L
b Aw2 +A3U2

0w
2 , (left) ,

U3(L)w
2

U2
0
− kU0L

b Aw2 −A3U2
0w

2 , (right) .
574

We then use V1T ∼ A′w and V1T ∼ −A′w in the left and right boundary layers, respectively, together575

with (4.29), to calculate the right-hand side of the v3 equation in (4.18) in the two boundary layers.576

In this way, we obtain that577

(4.30) L0

(
V3L
V3R

)
+
w2

U2
0

(
U3(0)
U3(L)

)
=

[
wA′ − kLU0

b
Aw2 −A3U2

0w
2

](
1
−1

)
,578

where A′ = dA/dT . Moreover, by using (4.29) in the u3 equation of (4.18) we obtain in the two579

boundary layers that580

U3yy ∼ ε
[
2wV3L +

(
U3(0)

U2
0

+
kLU0

b
A+A3U2

0

)
w2

]
+O(ε2) , (left layer) ,

U3yy ∼ ε
[
−2wV3R +

(
−U3(L)

U2
0

+
kLU0

b
A+A3U2

0

)
w2

]
+O(ε2) , (right layer) .

(4.31)581
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Then, we use the matching conditions u3x(0+) = limy→∞ ε−1U3y and u3x(L−) = − limy→∞ ε−1U3y582

for the left and right boundary layers, respectively, to derive the boundary conditions for the outer583

solution u3(x). In this way, we obtain from (4.18), and upon using U2
0 = bL/2 and the expression584

(4.23) for u1, that u3 with u3(0) = U3(0) and u3(L) = U3(L) satisfies585

u3xx = τ0u1T = τ0A
′b

(
x− L

2

)
, 0 < x < L ,

u3x(0+) = 2

∫ ∞
0

wV3L dy +
2

L
U3(0) + kLU0A+

b2L

2
A3 ,

u3x(L−) = −2

∫ ∞
0

wV3R dy −
2

L
U3(L) + kLU0A+

b2L

2
A3 .

(4.32)586

Next, we calculate U3(0) and U3(L), which is used to determine the vector-valued NLEP from587

(4.30). We derive a linear algebraic system for U3(0) and U3(L) by multiplying the equation for u3588

by 1 and then by (x− L/2) and integrating the resulting expressions. Since
∫ L
0
u3xx dx = 0, we have589

u3x(L) = u3x(0), which yields590

(4.33a) U3(L) + U3(0) = −L (IR + IL) , where IR ≡
∫ ∞
0

wV3R dy , II ≡
∫ ∞
0

wV3L dy .591

Upon multiplying the u3 equation in (4.32) by (x− L/2) and integrating by parts we obtain592 ∫ L

0

(
x− L

2

)
u3xx dx =

(
x− L

2

)
u3x|L0 − [U3(L)− U3(0)] = τ0A

′b

∫ L

0

(
x− L

2

)2

dx =
τ0bL

3

12
A′ .593

Then, by using (4.32) for u3x(0) and u3x(L) in this expression, we obtain after some algebra that594

(4.33b) U3(0)− U3(L) =
L

2
(IR − IL)− kL2U0

2
A− b2L2

4
A3 +

τ0bL
3

24
A′ .595

The linear system (4.33) for U3(0) and U3(L) is readily solved to obtain596

(4.34)(
U3(0)
U3(L)

)
= −L

4
B
(
IL
IR

)
+

1

2

[
−kL

2U0

2
A− b2L2

4
A3 +

τ0bL
3

24
A′
](

1
−1

)
; B ≡

(
3 1
1 3

)
.597

Upon substituting (4.34) into (4.30) we obtain a vector-valued NLEP for V3 ≡ (V3L, V3R)T :598

(4.35) L0V3 −
w2

2

∫∞
0
wBV3 dy∫∞

0
w2 dy

=

[
−kLU0

2b
Aw2 − bL

4
A3w2 − τ0L

2

24
A′w2 +A′w

](
1
−1

)
.599

Next, we diagonalize B and introduce a new variable Ψ by600

(4.36) B = QΛQ−1 , Q ≡
(

1 1
1 −1

)
, Λ ≡

(
4 0
0 2

)
, Ψ ≡ Q−1V3 =

1

2

(
V3R + V3L
V3L − V3R

)
,601

so that in terms of Ψ ≡ (Ψ1,Ψ2)T , with Ψ′(0) = 0 and Ψ→ 0 as y → +∞, (4.35) becomes602

(4.37) L0Ψ−
w2

2
Λ

∫∞
0
wΨ dy∫∞

0
w2 dy

= R
(

0
1

)
, R ≡ −kLU0

2b
Aw2 − bL

4
A3w2 − τ0L

2

24
A′w2 +A′w .603

We conclude from the two components in (4.37) that604

(4.38) L0Ψ1 − 2w2

∫∞
0
wΨ1 dy∫∞

0
w2 dy

= 0 , LΨ2 ≡ L0Ψ2 − w2

∫∞
0
wΨ2 dy∫∞

0
w2 dy

= R .605
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As for (3.31) in §3 we conclude that Ψ1 ≡ 0. Proceeding as in (3.33) of §3, the solvability condition for606

the second component is that
∫∞
0

Ψ?
cR dy = 0 where Ψ?

c ≡ w+ yw′/2 is the nontrivial solution to the607

homogeneous adjoint problem L?Ψ? = 0. By using the integral ratio (3.35), this condition provides608

an explicit amplitude equation for A(T ). We summarize this main result as follows:609

Proposition 2. Consider a small amplitude perturbation of a symmetric two-boundary spike610

steady-state solution of (1.2) when µ = µc − kσ2, where k = ±1 and µc =
√

8b/L3 and when611

τ0 < τH+(µc) ≈ 0.906. In the O(ε) boundary layers near x = 0 and x = L, we have for σ � 1 that612

v ∼ w
[

1

U0
+ σA(T ) +O(σ2)

]
, u ∼ U0 − σ[A(T )]2U0 +O(σ2) , (left boundary layer) ,

v ∼ w
[

1

U0
− σA(T ) +O(σ2)

]
, u ∼ U0 + σ[A(T )]2U0 +O(σ2) , (right boundary layer) ,

(4.39)

613

where U0 =
√
bL/2. The amplitude equation for A(T ) is614

(4.40)
dA

dT
=
θ2
θ1
A+

θ3
θ1
A3 , where θ1 ≡ 1− τ0L

2

18
, θ2 ≡

kL

3

√
2L

b
, θ3 ≡

Lb

3
> 0 ,615

where T = σ2t, k = ±1, and b =
∫∞
0
w2 dy = 3. Since the nontrivial steady-state of (4.40) exists only616

when k = −1, for which µ = µc + σ2, we conclude that the competition instability associated with the617

zero-eigenvalue crossing of the anti-phase mode of the linearization of the symmetric two-boundary618

steady-state is subcritical.619

On the range τ0 < τH+(µc) < τH−(µc), we have θ1 > 0, with θ1 = 0 when τ0 = τH−(µc) = 18/L2.620

As shown in (C.2) of Appendix C, the growth rate θ2/θ1 for the steady-state Ae = 0 of the amplitude621

equation (4.40) agrees with that obtained by calculating the near-zero eigenvalue of the NLEP (4.11)622

for the anti-phase mode when µ = µc − σ2. From (4.40), the steady-state Ae = 0 is unstable623

when µ = µc − σ2 (k = 1). On the range µ = µc + σ2 (k = −1) where Ae = 0 is linearly stable,624

Ae± = ±
√
θ2/θ3 are unstable equilibria of (4.40). From (4.39) the local behavior, near the bifurcation625

point, of the asymmetric two-boundary spike steady-state solution in the boundary layers is given by626

(4.41)

ue ∼ U0

[
1±

(
L3

2b

)1/4√
µ− µc

]
, (left layer) ; ue ∼ U0

[
1∓

(
L3

2b

)1/4√
µ− µc

]
, (right layer) ,627

where U0 =
√
bL/2 and µ − µc = σ2 � 1. This weakly nonlinear analysis establishes that the628

competition instability at µ = µc for a symmetric two-boundary spike steady-state is subcritical.629

4.3. Asymmetric Boundary Spike Equilibria. Here we construct global branches of asym-630

metric two-boundary spike steady-state solutions of (1.2) for ε � 1. We verify that these solutions631

bifurcate from the symmetric two-boundary spike branch at µ = µc and have the local behavior near632

the bifurcation point as given by the weakly nonlinear theory in (4.41).633

In the left boundary layer near x = 0 we have v ∼ w/UL and u = UL + O(ε), while in the634

right boundary layer near x = L, we have v ∼ w/UR and u = UR + O(ε). By proceeding as in the635

asymptotic construction of the symmetric two-boundary spike equilibria in the beginning of §4, we636

obtain in the outer region that637

(4.42) uxx = −µ , 0 < x < L ; ux(0+) = b/UL , ux(L−) = −b/UR ,638

where b ≡
∫∞
0
w2 dy, u(0+) = UL, and u(L−) = UR. The explicit solution to (3.41) satisfying639

u(0) = UL and ux(0) = b/UL is640

(4.43) u(x) = −µx
2

2
+

b

UL
x+ UL .641
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Then, by satisfying u(L) = UR and ux(L) = −b/UR, we obtain that UR and UL satisfy642

(4.44)
1

UR
+

1

UL
=
µL

b
, (UR − UL)

(
1− bL

2ULUR

)
= 0 .643

The symmetric two-boundary spike solution is obtained by setting UR = UL, which yields644

(4.45) UL = UR =
2b

µL
, b ≡

∫ ∞
0

w2 dy = 3 .645

In contrast, for the asymmetric solutions where UL 6= UR, we obtain from (4.44) that ULUR = bL/2646

and that UL and UR are the two roots of the quadratic equation U2−µL2U/2+bL/2 = 0. This yields647

(4.46)

UL =
µL2

4

1±

√
1−

(
µc
µ

)2
 , UR =

µL2

4

1∓

√
1−

(
µc
µ

)2
 , where µc ≡

√
8b

L3
,648

provided that µ > µc. As µ→ µc from above, a Taylor series approximation of (4.46) yields that649

(4.47)

UL ∼
√
bL

2

[
1±

(
L3

2b

)1/4√
µ− µc

]
, UR ∼

√
bL

2

[
1∓

(
L3

2b

)1/4√
µ− µc

]
, as µ→ µc .650

This expression agrees with the result given in (4.41) from the amplitude equation.651

In the right panel of Fig. 7 we use (4.46) to plot global branches of asymmetric two-boundary652

spike equilibria versus µ when L = 2. In this figure the symmetric branch is given by (4.45), while the653

dashed-dotted curves are the steady-state results (4.47) from the amplitude equation, as obtained from654

the weakly nonlinear theory in §4.2. In the left panel of Fig. 7 we plot an asymmetric two-boundary655

spike solution when µ = 2.0 and L = 2.656
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Fig. 7. Left panel: The asymmetric two-boundary spike solution for L = 2, ε = 0.02, and µ = 2.0 with u as
given in (4.43) and v ∼ w(ε−1x)/UL +w(ε−1(L− x))/UR, where w(y) is the homoclinic in (2.3). Right panel: Global
branches of asymmetric and symmetric two-boundary spike equilibria obtained from (4.46) and (4.45), respectively,
together with the local behavior in (4.47) predicted from the weakly nonlinear theory for L = 2 and ε = 0.02. Linear
stability results are indicated.

In Fig. 8 we show a favorable comparison between the asymptotic result (4.47) obtained from657

the weakly nonlinear theory with corresponding full numerical results computed using COCO [4]658

for branches of symmetric and asymmetric two-boundary spike equilibria for the steady-state of the659

Schnakenberg model (1.2). The comparison is shown near the symmetry-breaking bifurcation point660

µ = µc when L = 2 and ε = 0.01.661

This manuscript is for review purposes only.



24 T. KOLOKOLNIKOV, F. PAQUIN-LEFEBVRE, M. J. WARD

1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 8. Left panel: Numerical bifurcation branches of symmetric (full black curve) and asymmetric (dashed black
curve) two-boundary spike equilibria for the Schnakenberg model versus µ, as computed with COCO [4] upon discretizing
the steady-state of the PDE system (1.2) with N = 800 mesh points. The dot-dashed red curve is the weakly nonlinear
prediction (4.47) for the asymmetric pattern. Parameters are L = 2 and ε = 0.01. Right panel: A zoomed-in view of
the amplitude of the asymmetric equilibria shifted to the origin.

5. Generalized GM Model: Asymmetric Boundary Spike Equilibria. In this section we662

consider the generalized GM model on 0 ≤ x ≤ L with exponent set (p, q,m, s), formulated as663

(5.1) vt = ε2vxx − v +
vp

uq
, τ0ut = uxx − µu+ ε−1

vm

us
,664

with vx = ux = 0 at x = 0, L. Here ε � 1, µ = O(1) and τ0 = O(1) are positive constants, and the665

exponent set satisfies p > 1, q > 0, m > 1, s ≥ 0, with ξ ≡ mq/(p− 1)− (s+ 1) > 0.666

An NLEP linear stability theory can be used to show that symmetric two-boundary spike equi-667

libria for this general GM model are linearly stable only on the range µ > µc when τ0 is below some668

threshold. This competition instability threshold µc obtained from NLEP theory is the symmetry-669

breaking bifurcation value for the emergence of asymmetric two-boundary spike equilibria, and is given670

in (5.6) below. For µ < µc, symmetric two-boundary spike equilibria are unstable for any τ0 ≥ 0. To671

determine whether the competition instability is subcritical, as for the case of the prototypical expo-672

nent set (p, q,m, s) = (2, 1, 2, 0), we will proceed to derive and analyze a nonlinear algebraic system673

characterizing asymmetric two-boundary spike equilibria for (5.1). By plotting such global branches of674

equilibria and analytically characterizing their local branching behavior near the symmetry-breaking675

bifurcation point, we will infer that a competition instability of symmetric two-boundary spike equi-676

libria is always subcritical for the general GM model (5.1). This simple approach allows us to infer677

subcriticality of the competition instability without having to directly derive an amplitude equation678

based on retaining weakly nonlinear terms beyond the linearized NLEP theory. Such a derivation of679

an amplitude equation for this generalized GM model (5.1) is rather intractable analytically.680

The matched asymptotic analysis approach to calculate asymmetric two-boundary spike equilibria681

for (5.1) is similar to that described in §3.2, and so we only outline the analysis. In the left boundary682

layer near x = 0 we have v ∼ U
q/(p−1)
L w and u = UL +O(ε), while in the right boundary layer near683

x = L, we have v ∼ U
q/(p−1)
R w and u = UR + O(ε). Here w(y) is the unique homoclinic solution to684

w′′ − w + wp = 0, which is given explicitly by685

(5.2) w(y) =

[(
p+ 1

2

)
sech2

(
(p− 1)

2
y

)]1/(p−1)
.686

By matching the boundary layer solutions for u to the outer solution, we obtain in the outer region687

that the leading-order inhibitor field satisfies688

(5.3) uxx − µu = 0 , 0 < x < L ; ux(0+) = −Uξ+1
L bm , ux(L−) = Uξ+1

R bm ,689
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where bm ≡
∫∞
0
wm dy, u(0+) = UL and u(L−) = UR. The explicit solution to (5.3) is (3.42) and, by690

satisfying the flux boundary conditions at the endpoints, we obtain the nonlinear algebraic system691

(5.4a)

(
zξ+1
L

zξ+1
R

)
= A

(
zL
zR

)
; A ≡

(
coth(

√
µL) −csch(

√
µL)

−csch(
√
µL) coth(

√
µL)

)
, ξ ≡ mq

p− 1
− (s+ 1) ,692

where zL and zR are related to UL and UR by693

(5.4b) UL =

(√
µ

bm

)1/ξ

zL , UR =

(√
µ

bm

)1/ξ

zR .694

Symmetric two-boundary spike equilibria are obtained by setting z ≡ (zL, zR)T = zce, where e ≡695

(1, 1)T . Upon using Ae = tanh
(√
µL/2

)
e, we obtain696

(5.5) UL = UR =

(√
µ

b

)1/ξ

zc , where zc =

[
tanh

(√
µL

2

)]1/ξ
.697

To determine the bifurcation point along the symmetric branch where asymmetric equilibra698

emerge, we linearize (5.4a) about z = zce by writing z = zce + η, where |η| � 1. This yields the lin-699

earized problem Aη = (ξ+ 1)zξcη. Since Aq = coth
(√
µL/2

)
q, where q = (1,−1)T , we conclude that700

η = (1,−1)T is a nontrivial solution to the linearized problem provided that (ξ+1)zξc = coth
(√
µL/2

)
.701

Using (5.5) for zξc , we conclude that the symmetry-breaking bifurcation value µ = µc occurs when702

(5.6) tanh

(√
µL

2

)
=

√
1

ξ + 1
, so that µc =

4

L2

[
ln

(
1√
ξ

+

√
1

ξ
+ 1

)]2
.703

Observe that when (p, q,m, s) = (2, 1, 2, 0), for which ξ = 1, µc in (5.6) reduces to that given in (2.17).704

To obtain global branches of asymmetric two-boundary spike equilibria we rewrite (5.4a) as705

(5.7) zξ+1
L + zξ+1

R = tanh

(√
µL

2

)
(zL + zR) , zξ+1

L − zξ+1
R = coth

(√
µL

2

)
(zL − zR) .706

Next, we define ω ≡ zL/zR, and from (5.7) we readily obtain the following parameterization of707

asymmetric two-boundary spike equilibria in terms of ω:708

zR =

(
1

2ωξ+1

[√
R(ω)(ω + 1) +

1√
R(ω)

(ω − 1)

])1/ξ

, zL = ωzR ,

µ =
4

L2

[
ln

(
1 +

√
R(ω)√

1−R(ω)

)]2
, where R(ω) ≡ (ω − 1)

(ωξ+1 − 1)

(ωξ+1 + 1)

(ω + 1)
.

(5.8)709

In terms of the parameter ω > 0, the parameterization (5.8) together with (5.4b) determines the710

global bifurcation diagram of UL and UR in terms of µ for asymmetric two-boundary spike equilibria711

of (5.1) without the need for having to numerically solve any nonlinear algebraic system.712

The symmetry-breaking bifurcation point occurs when ω → 1. Using L’hopital’s rule we obtain713

R(1) = 1/(ξ + 1), which recovers µ = µc from (5.8) and (5.6). To determine the local branching714

behavior of asymmetric two-boundary spike equilibria we first use Taylor series on (5.8) to get715

(5.9) R(ω) ∼ 1

(ξ + 1)

[
1 +

1

12
(ξ2 + 2ξ)(ω − 1)2 + . . .

]
, as ω → 1 .716
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Then, we relate µ− µc to ω − 1 by using tanh
(√
µL/2

)
= [R(ω)]

1/2
, which yields717

(5.10) (ω − 1)2 ∼ 6L

(ξ + 2)
√
µc(ξ + 1)

(µ− µc) , as µ→ µ+
c .718

From this key expression we observe that asymmetric two-boundary spike equilibria exist near the719

bifurcation point only in the subcritical range where µ > µc.720

Next, we calculate zR as ω → 1. Since R(ω) ∼ 1/(ξ + 1) +O((ω − 1)2) as ω → 1, we calculate721 √
R(ω)(ω + 1) +

1√
R(ω)

(ω − 1) ∼ 2
√
R(1)

[
1 +

(ω − 1)

2

(
1 +

1

R(1)

)
+O((ω − 1)2)

]
.722

By using this expression to estimate zR(ω) in (5.8) we get723

zR(ω) ∼
(√

R(1)
)1/ξ

(1 + (ω − 1))
−1−1/ξ

(
1 +

(ξ + 2)

2
(ω − 1)

)1/ξ

+O((ω − 1)2) ,

∼
(√

R(1)
)1/ξ (

1− (ξ + 1)

ξ
(ω − 1)

)(
1 +

(ξ + 2)

2ξ
(ω − 1)

)
+O((ω − 1)2) ,

∼
(√

R(1)
)1/ξ (

1− 1

2
(ω − 1)

)
+O((ω − 1)2) .

(5.11)724

By using this expression in (5.4b), and recalling that R(1) = 1/(ξ + 1), we get725

(5.12) UR ∼
( √

µ

bm
√
ξ + 1

)1/ξ (
1− 1

2
(ω − 1) +O((ω − 1)2)

)
.726

Finally, by using (5.10) together with
√
µ =
√
µc +O(µ− µc), we conclude that727

(5.13) UR ∼
( √

µc

bm
√
ξ + 1

)1/ξ
(

1±
√

3L

2(ξ + 2)
√
µc(ξ + 1)

√
µ− µc +O(µ− µc)

)
, as µ→ µ+

c .728

Here µc is defined in (5.6) and bm ≡
∫∞
0
wm dy, where w is the homoclinic in (5.2). An identical729

expression holds for UL upon replacing ± by ∓ in (5.13). For the prototypical GM model with730

exponent set (p, q,m, s) = (2, 1, 2, 0), where ξ = 1, we obtain that (5.13) reduces to that in (3.47).731

For the exponent sets (p, q,m, s) = (2, 1, 3, 0) and (p, q,m, s) = (4, 2, 2, 0), in the left and right732

panels of Fig. 9, respectively, we plot global branches of asymmetric two-boundary spike equilibria733

versus µ as obtained from (5.8) and (5.4b) when L = 2. The symmetric branch, as given in (5.5),734

is also shown. The dashed-dotted curves in these figures are the local results (5.13), valid near the735

symmetry-breaking bifurcation point, characterizing the local behavior of the subcritical bifurcation.736

6. Discussion. Competition, or overcrowding, instabilities of localized 1-D spike patterns for737

singularly perturbed RD systems have previously been implicated through full PDE simulations of738

playing a central role in triggering spike annihilation events, which results in a rather intricate coars-739

ening process of a multi-spike pattern (cf. [1], [14], [22], [29]). Qualitatively, a competition instability740

for a spike pattern for the 1-D GM model, which has the effect of locally preserving the sum of the741

heights of the spikes, occurs when either the inhibitor decay rate is slowly ramped below a critical742

value or, equivalently, when the inter-spike distance falls below a threshold. For the 1-D Schnakenberg743

model, a competition instability will occur when the feed-rate parameter in (1.2) decreases below some744

critical value. Although explicit criteria on the parameters in the 1-D GM and Schnakenberg models745

for the onset of this linear instability can be calculated by analyzing the spectrum of the NLEP of746
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Fig. 9. Global branches of asymmetric and symmetric two-boundary spike equilibria for the generalized GM model
(5.1) as obtained from from (5.8) (with (5.4b)) and (5.5), respectively. The dashed-dotted curves are the local branching
behavior (5.13) near the symmetry-breaking bifurcation point. The domain length is L = 2. Left figure: exponent set
(p, q,m, s) = (2, 1, 3, 0). Right figure: exponent set (p, q,m, s) = (4, 2, 2, 0).

the linearization, it has been an open problem to develop a weakly nonlinear theory to establish that747

a competition instability is subcritical.748

For the 1-D GM and Schnakenberg models we have developed and implemented a weakly non-749

linear theory to show analytically that a competition instability for a symmetric two-boundary spike750

steady-state is subcritical. In this context, we have shown explicitly that the competition instability751

threshold corresponds to a symmetry-breaking bifurcation point where an unstable branch of asym-752

metric two-boundary spike equilibria emerges from the symmetric steady-state solution branch. Two753

boundary spikes interacting through a bulk diffusion field represents the simplest spatial configuration754

of interacting localized spikes that can undergo a competition instability. A competition instability755

can also occur for 1-D multi-spike patterns with spikes interior to the domain, and from PDE simula-756

tions this linear instability mechanism can also trigger a nonlinear process leading to spike annihilation757

(cf. [29], [18], [1]). The challenging feature with providing a weakly nonlinear analysis for patterns758

with interior spikes is that the analysis would have to couple weak spike amplitude instabilities near759

onset to the weak translation instabilities resulting from the slow spatial dynamics of the centers of760

the spikes. For our weakly nonlinear boundary spike analysis, where the spike locations are fixed761

at the boundaries, there was no complicating feature of having to include in the analysis any small762

eigenvalues associated with drift instabilities of the spike locations.763

We conclude by briefly remarking on two possible extensions of this study. One open problem764

is to determine whether there are specific singularly perturbed RD systems for which competition765

instabilities are supercritical and not subcritical. One simple method to try to identify such an RD766

system consists of extending the approach used in §5 for constructing asymmetric two-boundary spike767

equilibria of the generalized GM model (5.1) to a general class of singularly perturbed RD system. For768

an RD system where the competition instability is supercritical, in the bifurcation diagram of two-769

boundary spike equilibria there should exist a branch of asymmetric equilibria on the parameter range770

where the symmetric steady-state branch is linearly unstable. In [16], it was shown for a GM model771

with a spatially variable precursor field that linear stable asymmetric equilibria with two-interior772

spikes can occur for a certain parameter range. However, it is an open problem to determine if one773

construct linearly stable asymmetric spike equilibria for an RD system without the spatial gradient774

in the reaction-kinetics. Finally, a second open direction is to extend the weakly nonlinear analysis775

of competition instabilities of 1-D spike patterns to the 2-D context of localized spot patterns near776

parameter values where the 2-D NLEP associated with the linearization has a zero-eigenvalue crossing.777
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Appendix A. Numerical Computation of Hopf Bifurcation Thresholds: GM Model.780

We outline the approach used to compute Hopf bifurcation thresholds for (2.16). From (2.16a)781

we have Φ = χ±(L0 − λ)−1w2
∫∞
0
wΦ dy/

∫∞
0
w2 dy. Upon multiplying by w and integrating we get782 ∫ ∞

0

wΦ dy

[
1

χ±
−
∫∞
0
w(L0 − λ)−1w2 dy∫∞

0
w2 dy

]
= 0 .783

Any unstable eigenvalue of the NLEP (2.16) must be such that
∫∞
0
wΦ dy 6= 0. As such, discrete784

eigenvalues of the NLEP are roots of g±(λ) = 0, where785

(A.1) g±(λ) ≡ 1

χ±(λ, µ)
−F(λ) , where F(λ) ≡

∫∞
0
w(L0 − λ)−1w2 dy∫∞

0
w2 dy

.786

Here χ±(λ, µ) for the in-phase (+) and anti-phase modes (−) are defined in (2.16b). The competition787

instability threshold, obtained from the anti-phase mode, is found by setting g−(0) = 0. Since788

F(0) = 1, this occurs when χ−(0, µ) = 1, which yields µ = µc where
√
µcL = 2 ln(1 +

√
2).789

To determine the Hopf bifurcation thresholds for a given domain length L we set λ = iλI , with790

λI > 0, and use Newton’s method on g±(iλI) = 0 to compute τH± = τH±(µ) and λIH± = λIH±(µ).791

The results were shown in Fig. 3 when L = 2. For the anti-phase mode, a Hopf threshold exists only792

when µ > µc, and λIH− → 0 as µ → µc from above. To determine the Hopf threshold value of τH−793

at µ = µc, we set µ = µc and use a perturbation approach to estimate Im (g−(iλI)) ∼ acλI +O(λ3I)794

as λI → 0. By setting ac = 0, we obtain τH−.795

To this end, we set Im(g−(iλI)) = 0 to obtain, upon using the explicit expression for χ− in796

(2.16b), together with tanh
(√
µcL/2

)
= 1/

√
2, that797

(A.2) Im(g−(iλI)) = Im

[√
1 + iz√

2
coth

(
β
√

1 + iz
)
−F(iλI)

]
,798

where we have defined z ≡ τH−λI/µ and β ≡ √µcL/2. For λI → 0 we use
√

1 + z ∼ 1 + z/2,799

coth(β + βz/2) ∼ coth(β) − βz
2 csch2(β) for z � 1, together with coth(β) =

√
2 and csch(β) = 1.800

Moreover, we have Im (F(iλI)) ∼ 3λI/4 from Proposition 3.2 of [29]. In this way, and upon recalling801 √
µcL = 2 ln(1 +

√
2), we obtain from (A.2) that as λI → 0,802

(A.3) Im(g−(iλI)) ∼ acλI +O(λ3I) , where ac ≡
τH−

2
√

2µc

(√
2− ln(1 +

√
2)
)
− 3

4
.803

Upon setting ac = 0, we obtain the explicit expression for τH− as given in (2.19).804

Appendix B. Perturbation of Linear Instability Threshold: GM Model.805

In this appendix we verify the expression for the coefficient θ2/θ1 of A in the amplitude equation806

(3.39a) by setting µ = µc − σ2 and calculating for σ � 1 the near-zero eigenvalue for807

(B.1) L0Φ− χ−(λ, µ)w2

(∫∞
0
wΦ dy∫∞

0
w2 dy

)
= λΦ ; χ−(λ, µ) =

2
√
µ

√
µ+ τ0λ

tanh
(√
µL/2

)
coth (θλL/2)

,808

with θλ =
√
µ+ τ0λ, for which Φy(0) = 0 and limy→∞ Φ(y) = 0. Since χ−(0, µc) = 1 and L0w = w2,809

we expand the critical eigenpair as810

(B.2) λ = σ2λ1 + . . . , Φ = w + σ2Φ1 + . . . , when µ = µc − σ2 .811
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Upon substituting (B.2) into (B.1), we collect powers of σ2 to obtain that812

(B.3) LΦ1 ≡ L0Φ1 − w2

(∫∞
0
wΦ1 dy∫∞

0
w2 dy

)
= R ≡ λ1w − ∂µχ−(0, µc)w

2 + λ1w
2∂λχ−(0, µc) .813

Since the homogeneous adjoint problem L?Ψ? = 0 has the nontrivial solution Ψ? = Ψ?
c ≡ w + yw′/2814

(see (3.33b)), the solvability condition
∫∞
0

Ψ?
cR dy = 0 for (B.3) yields that815

(B.4) λ1 = [λ1∂λχ−(0, µc) + ∂µχ−(0, µc)] J , where J ≡
∫∞
0
w2Ψ?

c dy∫∞
0
wΨ?

c dy
.816

Since J = 4/3, as calculated in (3.35), we get817

(B.5) λ1

(
1− 4

3
∂λχ−(0, µc)

)
=

4

3
∂µχ−(0, µc) .818

By using (B.1) for χ−(λ, µ), we evaluate the required partial derivatives and use sinh
(√
µcL/2

)
= 1819

and cosh
(√
µcL/2

)
=
√

2 to simplify the resulting expressions. In this way, we calculate that820

∂µχ−(0, µc) =
L
√
µc

sech2

(√
µcL

2

)
tanh

(√
µcL

2

)
=

√
2L

4
√
µc
,

∂λχ−(0, µc) = − τ0
µc

tanh2

(√
µcL

2

)
+

τ0L

2
√
µc

tanh

(√
µcL

2

)
sech2

(√
µcL

2

)
=

τ0
2µc

(
−1 +

L
√

2µc
4

)
.

(B.6)821

Finally, by substituting (B.6) into (B.5), and by recalling
√
µcL = 2 ln(1 +

√
2), we conclude that822

(B.7) λ1 =

√
2L

3
√
µc

[
1 +

2τ0
3µc

(√
2

2
ln(1 +

√
2)− 1

)]−1
.823

We observe, as anticipated, that this expression for λ1 agrees with the ratio θ2/θ1 of the linear term824

in the amplitude equation (3.39a) when k = 1.825

Appendix C. Numerical Computation of Hopf Bifurcation Thresholds: Schnakenberg.826

827

Following the approach in Appendix A, we obtain that the discrete eigenvalues of the NLEP (4.11)828

for the Schnakenberg model are the roots of g±(λ) = 0, where829

(C.1a) g±(λ) ≡ 1

χ±(λ, µ)
−F(λ) ;

1

χ±(λ, µ)
=


1
2

(
1 +

(
µc

µ

)2
z tanh(z)

)
, in-phase (+) ,

1
2

(
1 +

(
µc

µ

)2
z coth(z)

)
, anti-phase (−) .

830

Here F(λ) is defined in (A.1), while z and µc are defined by831

(C.1b) z ≡
√
τ̂λ , τ̂ ≡ τ0L

2

4
, µc ≡

√
8b

L3
, b =

∫ ∞
0

w2 dy = 3 .832

The competition instability threshold, associated with the anti-phase mode, is found by setting833

g−(0) = 0. Since F(0) = 1 this occurs when χ−(0, µc) = 1, which yields µc =
√

8b/L3. When834

µ < µc, the NLEP for the anti-phase mode has an unstable real positive eigenvalue.835
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The Hopf bifurcation thresholds for the anti-phase and in-phase modes are obtained by setting836

λ = iλI , with λI > 0, and using Newton’s method on Re [g±(iλI)] = 0 and Im [g±(iλI)] = 0 to837

determine a parametric form of the Hopf threshold λI = λIH± and τ̂ = τ̂H± depending only on the838

ratio µc/µ. Then, the scaling law in (C.1b) gives the Hopf thresholds in terms of L as τH± = 4τ̂H±/L
2.839

The results were shown in Fig. 6 for L = 2. For the anti-phase mode, a Hopf threshold exists only on840

the range µ > µc, and λIH− → 0 as µ→ µc from above.841

To analytically calculate the Hopf threshold value τH− for the anti-phase mode at µ = µc, we set842

µ = µc and we estimate Im (g−(iλI)) ∼ acλI +O(λ3I) as λI → 0. By setting ac = 0, we obtain τH−.843

To this end, we use z coth(z) ∼ 1 + z2/3 as z → 0 together with Im (F(iλI)) ∼ 3λI/4 (see Proposition844

3.2 of [29]) to calculate for λI → 0 that Im(g−(iλI)) ∼ acλI + O(λ3I) where ac = τ̂ /6 − 3/4. Upon845

setting ac = 0, and using τ̂ ≡ τ0L2/4, we obtain τ0 = τH− = 18/L2 when µ = µc, as given in (4.12).846

Finally, we verify the coefficient of A in the amplitude equation (4.40) by setting µ = µc−σ2 and847

calculating for σ � 1 the unstable eigenvalue to the NLEP (4.11) for the anti-phase mode. Rather848

than working with the NLEP (4.11) directly as in Appendix B, we instead, equivalently, calculate the849

root to g−(λ) = 0 on the positive real axis with λ = σ2λ1 � 1. We set µ = µc − σ2 and calculate850

using z coth(z) ∼ 1 + z2/3 + . . . with z =
√
τ0λL/2 that851

1

χ−
∼ 1

2
+

1

2

(
µc

µc − σ2

)2(
1 +

τ0L
2

12
σ2λ1 + . . .

)
∼ 1 + σ2

(
τ0L

2λ1
24

+
1

µc

)
.852

Moreover, on the real positive axis we have from Proposition 3.5 of [29] that F(λ) ∼ 1 + 3λ/4 as853

λ→ 0. In this way, we conclude for σ → 0 that854

g−(σ2λ1) ∼ σ2

(
τ0L

2

24
λ1 +

1

µc
− 3

4
λ1

)
+ . . . .855

From the condition g−(σ2λ1) = 0, and upon using µc =
√

8b/L3, we obtain that856

(C.2) λ1

(
1− τ0L

2

18

)
=

4

3µc
=
L

3

√
2L

b
, where b =

∫ ∞
0

w2 dy = 3 .857

By comparing (C.2) with the amplitude equation (4.40) when k = 1, we get λ1 = θ2/θ1 as expected.858
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