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COMPETITION INSTABILITIES OF SPIKE PATTERNS FOR THE 1-D
GIERER-MEINHARDT AND SCHNAKENBERG MODELS ARE SUBCRITICAL

THEODORE KOLOKOLNIKOV *, FREDERIC PAQUIN-LEFEBVRE t, AND MICHAEL J. WARD 1

Abstract. Spatially localized 1-D spike patterns occur for various two-component reaction-diffusion (RD) systems
in the singular limit of a large diffusivity ratio. A competition instability of a steady-state spike pattern is a linear
instability that locally preserves the sum of the heights of the spikes. This instability, which results from a zero-
eigenvalue crossing of a nonlocal eigenvalue problem at a certain critical value of the inhibitor diffusivity, has been
implicated from full PDE numerical simulations of various RD systems of triggering a nonlinear event leading to spike
annihilation. As a result, this linear instability is believed to be a key mechanism for initiating a coarsening process
of 1-D spike patterns. As an extension of the linear theory, we develop and implement a weakly nonlinear theory to
analyze competition instabilities associated with symmetric two-boundary spike equilibria on a finite 1-D domain for
the Gierer-Meinhardt and Schnakenberg RD models. Two symmetric boundary spikes interacting through a long-range
bulk diffusion field is the simplest spatial configuration of interacting localized spikes that can undergo a competition
instability. Within a neighborhood of the parameter value for the competition instability threshold, a multi-scale
asymptotic expansion is used to derive an explicit amplitude equation for the heights of the boundary spikes. This
amplitude equation confirms that the competition instability is subcritical and, moreover, it shows that the competition
instability threshold corresponds to a symmetry-breaking bifurcation point where an unstable branch of asymmetric
two-boundary spike equilibria emerges from the symmetric branch. Results from our weakly nonlinear analysis are
confirmed from full numerical solutions of the steady-state problem using numerical bifurcation software.

1. Introduction. Spike patterns are a common class of localized structures that can occur for
certain 1-D two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity
ratio. In the large diffusivity ratio, localized spikes in the solution component with small diffusivity
interact strongly with each other through the effect of the long-range diffusion of the second solution
component. In this so-called semi-strong regime, there is a rather well-developed theory to analyze
the existence, linear stability, and slow dynamics of 1-D spike patterns in a variety of specific RD
systems such as the Gierer-Meinhardt, Gray-Scott and Brusselator models (see [5], [6], [7], [8], [14],
[13], [17], [18], [20], [22], [29], [23], [25], [30] and the references therein). Through linear stability
analysis, combined with numerically-generated global bifurcation diagrams and full PDE simulations,
it is well-known that spike patterns for certain RD systems can exhibit a variety of instabilities such as,
temporal oscillations in the height of the spikes, spike annihilation events, and spike self-replication.
In particular, a competition instability is a linear instability of a steady-state spike pattern that
locally preserves the sum of the heights of the spikes, and it occurs most typically when the long-
range diffusivity exceeds a threshold or when spikes become too-closely spaced (cf. [13], [29], [18],
[23]). Based on observations from full PDE numerical simulations of various RD systems, it has been
conjectured that this linear instability provides the trigger for the onset of fully nonlinear events leading
to the ultimate annihilation of certain spikes in a 1-D spike pattern (cf. [14], [22]). As a result, this
instability is believed to be a key mechanism in initiating a coarsening process of 1-D spike patterns.
More recently, in [1], spike annihilation events in 1-D have been interpreted in terms of saddle-node
points and bifurcations that are associated with quasi-equilibrium manifolds for the heights of the
spikes. These manifolds depend on the instantaneous locations of the spikes in the domain and they
evolve slowly in time as the spikes drift towards their steady-state spatial configuration.

Motivated by these previous numerical PDE studies exhibiting spike annihilation events, we de-
velop and implement a weakly nonlinear theory to analyze whether competition instabilities of spike
patterns for the singularly perturbed 1-D Gierer-Meinhardt and Schnakenberg RD models are sub-
critical. To facilitate the analysis we will focus only on competition instabilities associated with
symmetric two-boundary spike equilibria. For this simple spatial pattern, the linearization of the RD
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system around the steady-state leads to a nonlocal eigenvalue problem (NLEP) whose unstable dis-
crete eigenvalues correspond to an instability in the heights of the two boundary spikes. A competition
instability of the spike heights is an instability due to a zero-eigenvalue crossing of the NLEP, and
it has the effect of locally preserving the sum of the heights of the two boundary spikes. In contrast
to the more delicate case of performing a weakly nonlinear analysis for spike patterns interior to the
domain, for boundary-spike patterns there is no complicating feature due to the small eigenvalues in
the linearization that are associated with the slow dynamics of the centers of the spikes.

A multi-scale perturbation framework is a well-established theoretical approach for analyzing the
weakly nonlinear development of small amplitude patterns near bifurcation points for PDE models,
and it has been used in a wide variety of applications (cf. [3], [27]). When the base-state is spatially
uniform, it is rather straightforward to derive amplitude, or normal form, equations characterizing the
onset and stability of bifurcating small amplitude spatially non-uniform structures that occur near the
bifurcation point. In contrast, it is considerably more challenging to implement a weakly nonlinear
theory to analyze the branching behavior near bifurcation points associated with localized structures,
such as spikes, for singularly perturbed RD systems. In this spatially non-uniform context, there are
several key challenges in implementing a weakly nonlinear theory based on multi-scale perturbation
theory. The first challenge is that the linearization of the RD system around a localized spike solution
leads to a singularly perturbed eigenvalue problem in which the underlying linearized operator has
spatially variable coefficients. As such, a singular perturbation approach for this eigenvalue problem
is needed to identify bifurcation points and to formulate a solvability condition based on the adjoint
spectral problem, which is required to derive the amplitude equation. The second key challenge
is that certain spatially inhomogeneous boundary value problems (BVPs) arise at various orders in
the multi-scale expansion and, most typically, these problems can only be solved numerically. For
singularly perturbed reaction-diffusion systems in the weak-interaction regime, characterized by an
exponentially weak inter-spike interaction, a weakly nonlinear theory based on center-manifold and
multi-scale perturbation theory has been used previously (cf. [9], [2]) to analyze typical spike-drift
instabilities, such as spike-layer oscillations and spike pinning, for a wide range of applications.

In contrast, there have only been a few previous weakly nonlinear analyses of localized spike
patterns near bifurcation points for singularly perturbed RD systems in which the localized spikes
interact strongly through a long-range bulk diffusion field (the so-called semi-strong regime). For
such a 1-D spike steady-state solution, a weakly nonlinear analysis of a temporal oscillation in the
height of the spike, referred to as a breathing instability and resulting from a Hopf bifurcation of
the linearization, was developed recently for the Schnakenberg model and the GM model and its
variants in [26], [11] and [12]. For these RD models, an amplitude equation characterizing the local
branching behavior of breathing oscillations was derived in terms of coefficients that must be computed
numerically from some BVPs. This hybrid analytical-numerical approach showed that, in certain
parameter regimes, the Hopf bifurcation for temporal spike height oscillations is subcritical. This
theoretical result supports numerical evidence, based on full PDE simulations that small amplitude
temporal oscillations of a spike can be unstable in certain parameter regimes, and can trigger a fully
nonlinear event leading to the oscillatory collapse of a spike. In a 2-D spatial context, a weakly
nonlinear analysis was recently undertaken in [32] to show that a small amplitude peanut-shaped
instability of a locally radially symmetric spot solution to the singularly perturbed Schnakenberg and
Brusselator RD models is always subcritical. This theoretical result provides a partial explanation
for observations based on numerical PDE simulations of these RD models that, near a critical value
of the feed-rate, a non-radially symmetric peanut-shape deformation of a localized spot can trigger a
fully nonlinear spot self-replication event (see [32] and [27] for references in this area).

Our analysis will focus on two-boundary spike equilibria for the 1-D GM and Schnakenberg RD
models in the semi-strong spike interaction regime. The dimensionless prototypical GM model [10]
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Fic. 1. Plot of the asymptotic result for the steady-state two-boundary spike solution for the GM model
(1.1) when L = 2, ¢ = 0.02, and p = 0.7768. The inhibitor u is giwven by (2.5) while the activator v is
v~ U [w(e7lz) +w (e (L — 2))], where w(y) is the homoclinic in (2.3) and Uy is given in (2.5).

for the activator v and inhibitor v on the 1-D domain 0 < z < L is conveniently formulated as

2
v

2 -1,2

(1.1) Vg =€ vm—v—&——u, ToUt = Ugy — PU F+ €~ V7,

with v, = u, = 0at x = 0,L. Here e < 1, p = O(1) and 79 = O(1) are positive constants. In
this non-dimensionalization of the GM model, where the inhibitor diffusivity is set to unity, the key
bifurcation parameter p represents the decay rate for the inhibitor in the bulk region 0 < = < L.
As p decreases, the interaction of the spatially segregated boundary spikes near z = 0 and z = L
increases, until eventually a competition instability occurs at some critical value y = u.. For p
below this critical value, symmetric two-boundary spike equilibria are unstable. In Fig. 1 we plot the
steady-state symmetric two-boundary spike solution for L = 2, u = p. ~ 0.7768, and £ = 0.02. For
L =2 and ¢ = 0.02, in the left panel of Fig. 2 we plot time-dependent PDE results for (1.1) for the
amplitudes v(0,t) and v(L, t) of the two boundary spikes, which shows that a competition instability in
the spike amplitudes occurs as p is slowly ramped in time below the competition instability threshold
te- This instability is observed to trigger a fully nonlinear boundary spike annihilation event. In
terms of the maximum max(u(0,t),u(L,t)) of the inhibitor field, in the right panel of Fig. 2 we
superimpose these results from the PDE simulation on the global bifurcation diagram of two- and one-
boundary spike equilibria for (1.1). This figure shows that the slow ramping in p below the competition
instability threshold triggers a transition between a symmetric two-boundary spike steady-state and a
one-boundary spike steady-state. At the competition instability threshold value of 1, we observe that
an unstable (subcritical) asymmetric branch of two-boundary spike equilibria emerges. One main goal
of this paper is to provide a detailed analysis of this local branching behavior. From the left panel of
Fig. 2, we observe that although the linear competition instability initially preserves the sum of the
spike amplitudes, this conservation principle does not hold at later times. We remark that although
the time-dependent ramping of p provides the simplest numerical approach for illustrating the onset
of the competition instability and the ultimate long-time fate of the two-boundary spike pattern, one
must expect a delayed onset of the instability that is independent of the speed of ramping, as is typical
in transcritical or pitchfork bifurcation problems in simple ODE systems (cf. [19]). This delayed onset
is evident in both panels of Fig. 2. Delayed competition instabilities and delayed Hopf bifurcations
for spike patterns due to slow parameter ramping have been analyzed in [24] for a few RD systems
(see also [15] and the references therein).

Similarly, the dimensionless Schnakenberg model on the 1-D domain 0 < x < L is formulated as

(1.2) v = 20gp — U + uv?, ToU = Ugg + ft — € uv?
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Fic. 2. Left panel: Plot of the spike heights v(0,t) and v(L,t) versus time, as computed from (1.1), showing a
competition instability followed by a boundary spike annihilation event as p is ramped below pc = 0.7768 (red dot) with
p = 1.25 — 8t and § = 0.0025. Since the slow ramping in p induces the typical delayed bifurcation effect, the onset
of the instability occurs for p < pe. Parameters in (1.1) are L = 2, € = 0.02, and 79 = 0.2. Right panel: Plot of
max(Ur,UR), where Uy, = u(0) and Ur = u(L), for the inhibitor field versus p for the global branches of symmetric
(black solid curve) and asymmetric (black dashed-dotted curve) two-boundary spike equilibria and a one-boundary spike
(blue dashed curve) equilibrium. The labeled linear stability properties are as follows: U: linearly unstable for all
70 > 0. S1: a one-boundary spike steady-state is linearly stable if 0 < 10 < 7H1(n) (see Fig. 3). Sa2: a symmetric
two-boundary spike steady-state is linearly stable if 0 < 70 < min(Tr4+ (1), TH— (1)) (see Fig. 3). The dotted red curve is
from the time-dependent PDE simulation of (1.1) shown in the left panel. The slow ramping of u below the competition
instability threshold at p = pe = 0.7768 is observed to trigger a (delayed) transition to a one-boundary spike solution.

with v; = uy = 0 at « = 0,L. Here ¢ < 1, p = O(1) and 79 = O(1) are positive constants. In
this context, the bifurcation parameter p is the feed-rate or “fuel” from the external substrate. As u
is decreased below some threshold p., there is insufficient “fuel” to support a stable symmetric two-
boundary spike steady-state, and this solution is destabilized through a competition instability. We
remark that our weakly nonlinear approach for analyzing competition instabilities for (1.1) and (1.2)
shares some similarities with the theoretical framework developed in [21] for analyzing instabilities
associated with dynamically active 1-D membranes that are coupled via a passive bulk diffusion field.

The outline of this paper is as follows. For the GM model (1.1), in §2 a symmetric two-boundary
spike steady-state is constructed using matched asymptotic expansions for ¢ < 1. In §2.1 we derive
and analyze an NLEP whose spectrum characterizes the linear stability of this steady-state. From
this NLEP we derive the critical value p. of u, given in (2.17), at which the symmetric two-boundary
spike loses stability to an anti-phase perturbation of the heights of the two boundary spikes. This
competition instability results from a zero-eigenvalue crossing of the NLEP, and when 7 is below a
Hopf bifurcation threshold there are no additional unstable discrete eigenvalues of the NLEP. In §3 we
formulate and implement a weakly nonlinear analysis to derive an amplitude equation characterizing
the branching behavior associated with the competition instability when pu — u. = O(0?). By using
a boundary-layer theory for ¢ <« 1 to calculate the terms at various orders in ¢ in the multi-scale
expansion, we obtain explicit analytical results for the coefficients in the amplitude equation when
€ < 1. This amplitude equation confirms that the competition instability is in fact subcritical.
From an asymptotic construction of asymmetric two-boundary spike equilibria in §3.2 for ¢ <« 1,
we show explicitly that the competition instability threshold corresponds to a symmetry-breaking
bifurcation point where an unstable branch of asymmetric two-boundary spike equilibria emerges
from the symmetric solution branch. Moreover, in terms of the bifurcation parameter p, we confirm
our weakly nonlinear analysis with corresponding numerical results computed using the bifurcation
software COCO [4] after first spatially discretizing the BVP system for the steady-state of the GM
model (1.1) when ¢ = 0.01.

For the Schnakenberg model (1.2), in §4 we perform a similar weakly nonlinear analysis near the
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COMPETITION INSTABILITIES OF 1-D SPIKE PATTERNS ARE SUBCRITICAL 5

bifurcation point p = u. to establish that competition instabilities for symmetric two-boundary spike
steady-states are also subcritical. In §4.3 we show that, as similar to that for the GM model, the
competition instability threshold corresponds to a symmetric-breaking bifurcation point at which an
unstable branch of asymmetric two-boundary spike equilibria emerge from the symmetric branch.

In §5 we construct solution branches of asymmetric and symmetric two-boundary spike equilbria
for an extended GM model with a general exponent set for the nonlinear reaction kinetics. The
branching structure associated with this steady-state analysis suggests that competition instabilities
for this generalized GM model are also subcritical. The paper concludes with a brief discussion in §6.

2. Gierer-Meinhardt Model. We use the method of matched asymptotic expansions to con-
struct a symmetric steady-state boundary spike solution to (1.1) with spikes at z = 0 and z = L. We
only focus on the boundary layer near x = 0 since we can impose the symmetry condition u; = v, =0
at the midpoint = L/2.

In the boundary layer region near x = 0, we let U(y) = u(ey) and V(y) = v(ey) and we expand

(2.1) V="Voly) +eVily) + ..., U=U(y) +eUi(y) +..., with y=c"'a.

Upon substituting (2.1) into the steady-state problem for (1.1), and collecting powers of &, we obtain
that Uy is a constant to be determined, and that
143 2
(22) ‘/Oyy_%'i'ﬁozoy Ulyy:_V07 y=>0,
with Vo, = U1, =0 at y = 0. We conclude that Vy = Upw(y), where

(2.3) w= %sech2 (y/2) ,

is the homoclinic solution to wy, — w + w? =0 on y > 0. From integrating the U; equation in (2.2),
we get the far-field behavior U, ~ eUy, = —eU? fooo w? dy as y — +00. This expression provides the
matching condition for the outer solution for the inhibitor u as # — 0%.

In the outer region, v is exponentially small while from the steady-state of (1.1), and from match-
ing to the boundary layer solution, we obtain that u satisfies

(2.4) Upe —pu =0, 0<z<L/2; u, (07) = ~UZ (/ w2dy> . uy(L/2)=0,
0
with u(0%) = Uy. The solution to (2.4) on 0 < z < L/2 is

. cosh (VA (z—L/2)] v/ VL [,
(2.5) u(z) = Uy cosh [yiL/2] Uy = Ttanh <2> ) b= /0 w”dy .

The solution on L/2 < x < L is obtained from an even extension about z = L/2.

2.1. Linear Stability Analysis. To formulate the linear stability problem, we let v, and wu,
denote the steady-state solution for (1.1) and we substitute v = v, + eM¢(z) and u = u, + e*n(x)
into (1.1) and linearize. This yields the following eigenvalue problem on 0 < z < L:

20, 2
(2.62) Phre =0+ 0= En=Xdi 6, =0 atz=0,L,
Ue u?
(2.6b) New — (U4 ToN) N = =2 0.0 n, =0 at x=0,L.

Since the spikes are centered at x = 0 and = = L, we look for a localized eigenfunction for (2.6a)
in terms of some constants ¢; and ¢y in the form

(2.7) o) =c1®(x/e) + 2@ (L —x)/e] .
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Since v, /u. ~ w near each endpoint, we obtain from (2.6a) that ®(y) satisfies
(2.8)  ¢;Lo® —w?n(z;) = Ae;®, 0<y<oo, where Ly®=®,, —&+2uwd.

Here n(x1) and n(x2) are the constant leading-order approximations for n(x) near 1 =0 and x5 = L,
which are to be determined by matching the boundary layer regions to an outer expansion.

In the inner region near = 0 we expand n = n(x1) +em (y) +. .., with y = z/e, to obtain, upon
collecting O(¢~!) terms in (2.6b), that

(2.9) Myy = 200w ®, 0<y<oo; my(0) =0,

so that limy_, 71y = —2¢1Up fooo w® dy. This provides the matching condition for the leading-order
outer solution, denoted by Ny(z), in the form No, — limy_,o 71, and No — n(0) as z — 07. In a
similar way near « = L, we set y = (L — x)/e and we expand 1 = n(z2) + en1(y) + ..., to obtain

(2.10) Myy = —2c2Ugw®, 0 <y < o0o; N1y(0) =0,

which yields limy_, o 71y = —2c2Ug fooo w® dy and the matching conditions Ny, — — limy_o 171y and
No — n(L) as  — L~ for the outer solution. By using these matching conditions we conclude that
the leading-order outer solution Ny(z) for (2.6b) satisfies

Nowzw — (+T0A) No =0, 0<z<L; No(0) =n(0"), No(L™)=n(L),

(2.11) o %
Now(0+) = —ZCon/ wd dy, NOI(L_) = 202U()/ wd dy.
0 0

The solution to (2.11) is

B _, cosh(6yz) 4 cosh(0x(L — x)) _
(2.12) No(z) = Noa(L )m Noz (0 )QAST(G/\L)7 Ox = Vi + 7oA,

where we have specified the principal branch for the square root for 65. We then set N(07) = 7(0)
and N(L™) =n(L), and use (2.5) for Uy. This yields that

WO\ BE (VALY g (e ey
(215 (D) ) = s (%5 )(g*)<ﬁmw2dy>’

where the 2 x 2 symmetric and cyclic Green’s matrix Gy and c are given by

_ ( coth(fxL) csch(0,\L) [ a
(2.13b) 9r = ( csch(0)\L) coth(0 L) ]’ e )
Upon substituting (2.13) into (2.8), we obtain the vector-valued NLEP
2u? L Fwdd
(2.14) (Lo®) e — =2V o (ﬂ) Gro) (12U _ e
NITE D) 2 fo w2 dy

Since Gy is symmetric and cyclic, its matrix spectrum Gyc = kc is readily calculated as
1 . 0L

cv=( 4 ) in-phase (4+); k4 = coth(6\L) + csch(f)L) = coth 5 )

(2.15)

L
c_= ( _11 ) , anti-phase (—); k_ = coth(6\L) — csch(f, L) = tanh (0;> .
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Defining Q = (cy,c_), A = diag(k4,x_) and b= Q ¢, we use Gy = QAQ~! to obtain that (2.14)
reduces to the following scalar NLEPs, defined on 0 < y < oo, governing the linear stability of the
steady-state two-boundary spike solution to either in-phase (4) or anti-phase (—) perturbations:

Jo w®dy )
(2.16a) Lo® — x+ (A, p)w <f0 wrdy | T AD; ®,(0)=0, yli)rgo O(y)=0.
In (2.16a) the two choices for the multiplier x4 (A, ) of the NLEP are
(2.16b)

2/f  tanh (/uL/2) _2yp  tanh (RL/2) 7
Vi + 7oA tanh (0,L/2) ' X=(A ) = Vit + 1o\ coth (O5L/2) ' =Vt mod.

Since NLEPs of the general form (2.16) have been analyzed previously in [29] and [22], we now only
briefly summarize the main results for the spectrum of (2.16).

For the in-phase mode, we have spectral stability, i.e. Re(A) < 0, only when 79 < 7g4+(p).
Here 74 (1) is a Hopf bifurcation threshold, depending on p, for the in-phase mode for which A =
+iArg+ (1) is an eigenvalue for (2.16). In contrast, for the anti-phase mode, we have an unstable real
positive eigenvalue of the NLEP for any 79 > 0 whenever u < pu., where p. satisfies

X+ ()‘a ,LL) =

. 4 2
(2.17) sinh (VieL/2) =1 sothat  pe= -5 [In(1+ v2)|
This critical value of u, termed the competition instability threshold, is characterized by
(2.18) x-0,p)=1, A=0, @=w,

which follows by using the identity Low = w? together with the explicit expression for y_ given in
(2.16b). On the range p > ., there is additionally a Hopf bifurcation that occurs when 7 = 7 (1)
and A = +id;g_(p). As p — p. from above, we have that A\jg_(u) — 0. For L = 2, in Fig. 3 we
illustrate these linear stability results for both the in-phase and anti-phase modes in the 7y versus u
parameter plane. In particular, for L = 2 and p = p. = 0.7768 we calculate that

3v/2Le -1
(2.19) Ty ~ 09336,  Tp_ = ‘g” [\/i —In(1+v?2)| =~ 3.981p. ~ 3.0925.

In Appendix A we give the procedure, similar to that of [22], for numerically computing the Hopf
bifurcation curves shown in Fig. 3. Moreover, we derive the explicit result in (2.19) for 7y_ at u = pe.
In Fig. 3 we also give corresponding results for the Hopf bifurcation threshold, 751, and pure imaginary
eigenvalue \j; for the linearization of a one-boundary spike steady-state solution. Since the stability
threshold for this one-boundary spike solution is equivalent to that for an interior spike solution on a
domain of twice the length, we conclude from [29] that the one-boundary spike steady-state is linearly
stable for all u > 0 provided that 7o < 71 ().

3. Weakly Nonlinear Analysis. We now perform a weakly nonlinear analysis near the zero-
eigenvalue crossing at g = p. for the anti-phase mode when 0 < 79 < min(7g4 (), TH—(Kte)) =
Tr+(phe) 7 0.9336. As discussed in §2.1, this zero-eigenvalue crossing corresponds to the onset of the
sign-fluctuating competition instability of the two boundary spikes. To perform a weakly nonlinear
analysis of this instability, we first introduce a neighborhood near . and a slow time scale T' by

== [1n1+\f)} T = o,

where o < 1. On this time-scale, we obtain from (1.1) that v(z,T) and u(x,T) satisfy

(3.1) = e —ko?, k=41, fhe

2
v
(3.2) o%vr = %vpy — U—F;, T002UT = Uy — (fe — koH)u+ e 102 Uy =0, =0 at z=0,L.
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Fi1G. 3. Spectral results from NLEP theory for the linearization of symmetric two-boundary spike equilibria for the
GM model (1.1). Numerically computed Hopf bifurcation thresholds T+ (left panel) and corresponding imaginary parts
A1+ (right panel) of the eigenvalues of the NLEP (2.16) versus u when L = 2, as computed using Newton’s method
on (A.1), for both the in-phase (+) and anti-phase (—) modes. The Hopf threshold for the anti-phase mode exists only
when p > e, where pe = 4L72[In(1 +v/2)]2. For L = 2, as pc tends to 0.7768 from above we have Tg_ = 3.0925 and
ArH— — 0. At o = pe, the Hopf threshold for the in-phase mode is Ty ~ 0.9336. For any pu < pic, the anti-phase
mode is always unstable due to a positive real eigenvalue for the NLEP (2.16). For u > pe, the two-boundary spike
solution is linearly stable only when 79 < min(tg—_,7g+). The dashed blue curves are the corresponding results Tg1
and A1y for a one-boundary spike steady-state solution.

We let v.(z) and u.(z) denote the steady-state two-boundary spike solution and we expand

v = ve(x) + ov(x,T) + 0%va(x, T) + o3v3(z, T) + ... ,

(3.3) ) 5
u=ue(z)+ ouy(z,T) + c°us(z,T) + o”us(z, T) + ...,

where ve, e, v; and u; for j = 1,...,3 can depend on €. In our expansion, we will treat ¢ and o as
independent parameters. Upon substituting (3.3) into (3.2), and collecting powers of o, we obtain the
leading order problem on 0 < x < L

2
V) _
(3.4) 2 Vppy — Ve + 5 =0, Uegy — fhelle = —E 11)3,
e
and the problem at order O(o):
2v v2
(3.5) 2010w — V1 + —S0y = —‘;ul , Ulpe — Pell] = —26 10,01 .
Ue u?
From the O(0?) terms we obtain that
2v v2 v v? 2v
2 e e 1 e, 2 e
E%Voge — V2 + —Vy = Uz — — — — U] + —uvy,
(3.6) o Ue 27w w
Uogy — Mhells = —KUe — g7t (211@112 + v%) .

Finally, after some lengthy but straightforward algebra, the problem at O(o?) is

2v v2 2u1v 2v 2
2 e e 102 e e
V34 — V3 + — U3 = 2l + el (viug + ugvy) — 3 e
€ e € e e

2 2
3.7 viul  20e o VI 4
( ) 5 T T3 v1uq + %Ul + vir,

ue ue ue

-1
Usge — Mels = —kuy + Tourr — € (20,03 + 201v2) .
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For (3.4)—(3.7) we impose vey = Ueg =0 at £ =0,L and vj, =ujp, =0at x=0,L,for j=1,...,3.

Although the BVPs (3.4)—(3.7) can be solved numerically for a given e small but fixed, in order to
obtain an explicit analytical theory we will solve (3.4)—(3.7) using a boundary layer theory for ¢ < 1.
The key observation is that each v; is non-negligible only in the boundary layer regions near x = 0, L.
In these boundary layers, the leading-order-in-¢ theory shows that we can approximate u. and u; for
7 =1,...,3 by pointwise values.

In the boundary layer near x = 0 or x = L we have v, ~ Uyw and u, ~ Uy, where Uy is defined
in (2.5) and w(y) is the homoclinic given in (2.3) with either y = x/e or y = (L — z)/e. In either
boundary layer we obtain from (3.5) that the boundary-layer variables Vi (y) and U (y) satisfy

(3.8) LoV = Viyy — Vi +2uVy = w?Uy, Uy, = —2eUgwVy + O(?),

so that to leading-order U is a constant. As shown in §2.1 a competition instability is due to a sign
fluctuation in the spike heights in the two boundary layer regions. Since Low = w?, we conclude that

Up=AT)+0(), Vi=wA(T)+ O(e), near z=0;

(3.9) U=-AT)+0(), Vi =-wAT)+O(e), near x=1L.

Our goal is to derive an ODE for A(T), which characterizes the height of the boundary spikes near
the competition instability threshold. By integrating the U; equation in (3.8), we obtain the following
matching conditions between the outer inhibitor field u; and the two boundary layer solutions:

u(07) = A, u1,(07) = ILm 5_1U1y = —2U0/ wVidy = —2AU0/ w?dy,
(3.10) Y o o
ur(L7) =—A, u(L7) = - lim e Uy, = 2U0/ wVy dy = 72AU0/ w? dy .
Yoo 0 0

In this way, we obtain from (3.5) and (3.10) that the outer solution w; satisfies

ulxxiucu1207 O<:C<La U1(0+):A, ul(Li):iAa
(3.11) . - _ [
u1,(07) = =2AUpb, wu1,(L7) = —2AUpb; b= w’ dy .
0

The solution to (3.11) is
2AUyb
Vi, sinh(y/pcL)

To calculate the pre-factor in w;(z) we use Upb = /pi. tanh (, /uCL/Q) as given in (2.5) when u = .
together with the identity 2tanh(z/2)/sinh(z) = sech?(z/2) and the fact that cosh (VEeL/2) = V2,
as obtained by using (3.1) for u.. This yields that

[cosh(y/ftex) — cosh(y/pe(L — x))] .

up(xz) = —

(3.12) up(x) = —g [cosh(y/frex) — cosh(y/te(L — 2))] .

By using the expression for u. in (3.1) it is readily verified that u;(0) = A and u; (L) = —A.

Next, we proceed to analyze the O(0?) system in (3.6). We denote Var(y), with y = z/e, and
Vor(y), with y = (L — x)/e, to be the inner solutions for vy in the left and right boundary layers,
respectively. By using V3 ~ wA and U; ~ A in the left layer and V3 ~ —wA and U; ~ —A in the
right layer, as given in (3.9), respectively, we readily calculate from (3.6) that

LoVar, ~ w?Us(0), Uayy = —e(2wUo Vo, + A%w?) + O(£?), (left layer) ,

(3.13) 9 9 o 5 )
LoVag ~ w?Us(L), Usyy = —e(2wlpVar + A*w”) + O(e7) , (right layer) .
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Since Low = w?, we conclude that

(3.14) Var(y) = U2(0)w(y) , Var(y) = U2(L)w(y) .

Upon using these results for Vo5, and Vag, we integrate the two expressions in (3.13) for Usy, on
0 < y < 0o to obtain asymptotic matching conditions for ug,(07) and ug, (L7).
In this way, we obtain that the outer correction uy in (3.6) satisfies

U2zy — M2 = —kue, 0<z<L; u2(0+) = UQ(O) ) uQ(L7> = U2(L)a

(3.15) Uy (07) = — (2UpUs(0) + A%) b, ug.(L7) = (2UUs(L) + A?) b,

where b = fooo w?dy. When p = p., the leading-order approximation for the steady-state solution
ue(x) on 0 < z < L :, satisfying (3.4), is

V (& V CL V C
(3.16) ue(x) = Y% [cosh(y/iex) + cosh(y/ue(L — x))] ; Uy = Fe tann [ Y2 — Ve

4 b 2 V2b
We readily verify that ue(0) = ue(L) = Uy by using sinh (\/zcL/2) =1 from (2.17).

Our goal is to determine the constants Us(0) and Us(L), which are needed in the derivation of
the amplitude equation. To do so, we calculate us(x), satisfying (3.15), by first decomposing it as

(3.17) Uz () = ugp () + usp(w),
where the particular solution ugy(x) for (3.15), which is even about « = L/2, is

_ Uok
8/l

Upon formulating the problem for ugy,, and using us,(0) = ug,(L) together with ugp, (0) = —ugp, (L),
we obtain after some algebra that Us(0) and Us(L) satisfy the matrix problem

a0 (12 (L)) (120 ) = (o Pt (VY )

(3.18) ugp(x) = (x — L/2) [sinh(y/pex) — sinh(y/uc (L — 2))] .

where e = (1,1)7 and G is the cyclic Green’s matrix

_ ( coth(\/ncL) csch(y/peL)
(3.19D) = ( Csch(\/\//%L) coth(\/\//%L) ) ’

Since Ge = coth(,/u.L/2)e, we obtain from (3.19) that

coth (/oL /2
(3.20) Un(0) = Us(L) = —1uny(0) — [A%b + up (0)] (;‘/) .
Then, we use (3.18) together with sinh (/zcL/2) =1 to calculate
kUoL . V2kUo L
uyp(0) = — sinh(y/peL) = —————,
o) 2(0) = — ¢ = (VL) W
kU | . Vel ) _ kUo
Ugpz(0) = S I sinh(\/p.L) + e (1+ cosh(,/McL))] W (\/i—l— ,/,ucL> .
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Finally, upon substituting (3.21) into (3.20), and using Uy = \/fic/(v/2b), we obtain that

kL A% 2k
22 = Ly=——— — — —— h = +1.
(3.22) Uz(0) = Us(L) 8 Up  dbyi’ where k

Next, we consider the O(c3) problem, given by (3.7), and formulate a solvability condition to
derive the amplitude equation. We label V31 (y), with y = x/e, and V3g(y), with y = (L — x)/e, to
be the inner solution for vz in the left and right boundary layers, respectively. We use Vi ~ wA,
Uy ~ A, Vo ~ wlUsy(0) and Uy ~ Us(0) in the left layer and Vi ~ —wA, Uy ~ —A, Vo ~ wUs(L)
and Uy ~ Us(L) in the right layer, where Us(0) = Uz(L) as given in (3.22). Upon substituting these
expressions into (3.7) we obtain that many terms cancel, leaving only

(3.23) no(hen )= (o )=w2 ()

where A’ = dA/dT. Moreover, from the uz equation in (3.7) we get that

(3.24)
U3yy ~ —6(2UJUO‘/3L + 2Aw2U2(0)) R (left) ; U3yy ~ —6(2’LUU0V3,R — 2AU}2U2(L)) R (I‘ight) .

We use the matching conditions us, (07) = lim, 0 e 'Usy and uz,(L7) = — limy o £ *Us, for the
left and right boundary layers, respectively. In this way, from the uz equation in (3.7) we obtain that
the outer solution ug(x) satisfies

(3.25a)
Usgpr — fetts = Tourr — kuy = y(T)g(z), 0<z < L; us(0) = Us(0), wus(L)=Us(L),

U3x(0+) = — <2U0/ wVsp dy + QbAUQ(O)) s ’U,33;(L7) = <2U0/ wVagr dy — 2bAU2(L)> .
0 0
By using (3.12) for u;, we have that v(T') and g(z) in (3.25a) are defined by

(3.25b) YT) = = (104" — kA) , g(z) = cosh [\/le(L — z)] — cosh(y/ucz) .

DN =

The solution to (3.25a) can be decomposed as
sinh [\/fie(L — z)] N sinh (y/tc)
sinh(,/pc L) AR sinh(y/ptc L) ’
where the particular solution ug,(x), which is odd about z = L/2, is calculated as
1(T) (z — L/2)
AVIT

We substitute (3.26b) into the boundary conditions in (3.25a) and, after some straightforward but
lengthy algebra, we obtain that

(3.27a) < Z‘Z ) —ugp(O)( 1 )+ ( _UZ?E())) > ,

where U3 (0) and Us(L) satisfy
(3.27b) ( gj((g)) ) - <u3p(o> - 50) ( ! ) + 7 tanh (\/ZL> Pg—17>< Joo wVar dy ) ,

K4 0 w‘/?’R dy

(3.26a) ug(z) = ugp(z) — «

(3.26D) usgp(z) = — (sinh [/pe(L — z)] + sinh(y/pez)) -
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where G is the Green’s matrix of (3.19b). Here k4 = coth (\/icL/2) is obtained from the matrix
eigenvalue problem Ge = ke, where e = (1,1)7, while 8y and the matrix P are defined by

N [QbAUQ (0) + Uspe (0)] - -1 0
(327C) ﬁo = — T 5 P = 0 1 .
Finally, we substitute (3.27b) into (3.23) to obtain a vector-valued NLEP for V3 = (Var, Vagr)?:
N Vi dy Bo 1
28) LoV — 20’ tanh iple WVady T - .
(3.28) 0Vs — 2w” tan ( 5 ) PGP [Fu?dy + w? { uzp(0) P 1

3.1. The Solvability Condition and the Amplitude Equation. To determine the solvability
condition, leading to the amplitude equation, we need to diagonalize (3.28). To do so, we first
diagonalize G and introduce a new variable ¥ by
(3.29a)

1 1

_ -1 _ _ A1 _ 1/ V3 —VsR 1 1 (1
o a(} 1), omemn d(t ) o (4)-(3)

Here the matrix of eigenvalues of G is

(3.29Db) A= ( fiy 0 ) . Ry :coth(\/l?L> . Kl :tanh(\/fL) .

0 k-
We multiply both sides of (3.28) by QP and use P? = I together with (3.29a) to obtain
I, Ud
(3.30) Lo® — 2w? tanh (\//T > AT 1f0 i A [wA' + w? <u3p(0) - BO)] ( L ) ,
2 fo w? dy Kt 0

with ¥/(0) = 0 and ¥ — 0 as y — oo. In this diagonalized NLEP (3.30), ¥ = (¥, ¥5)T with
= (Vagp — Va1)/2 and ¥y = —(Vap + Var)/2.
For the second component in (3.30) we obtain that

> wWy d
(3.31) LoWs — 2w2M ~0.
Jo w?dy
where we readily conclude that W5 = 0, and consequently V37, = —V3g is the only solution. For the

first component we use [tanh (‘/ucL/2)]2 = 1/2 to obtain that

*wly d
(3.32) LYy = Lo¥, — ng =R=- [wA’ + w? (u3p(0) - ﬂoﬂ .
Jo w?dy Ky
To determine the solvability condition for (3.32) we observe that the homogeneous adjoint problem
Fw?W* d
(3333) E*\II* = LO\I/* — w(%.oiQy = O7
Jo w?dy
has the nontrivial solution £*¥% = 0 given explicitly by (cf. [31])
!/
(3.33b) = w y;“

As such, the solvability condition for (3.32) is that fooo PR dy = 0, which yields

/ Bo f 2\11* dy
(3.34) A= (m —u3p(0)> <f00 ol dy) .
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COMPETITION INSTABILITIES OF 1-D SPIKE PATTERNS ARE SUBCRITICAL 13

Upon integrating by parts, we use (2.3) for w to calculate the integral ratio in (3.34) as

fooo w2 dy B fooo w? (w+ yw'/2) dy ~(5/6) fooo w3 dy 4

fooo wU* dy N fooow(eryw’/Q) dy B (3/4) fooo w2dy 3’

(3.35)

where we used [ w®dy/ [;° w?dy = 6/5. Then, from (3.34) and together with (3.27c) for B, and
(3.29b) for x4 we conclude that, with Uy = \/fic/(v/2b),

an - 3
(3.36) A = % {fﬁ _ u3,,(0)] , % - W % <L+ ig) + % - U3m(0)] .

The final step in the derivation of an explicit amplitude equation is to calculate us,(0) and ugp,(0)
using (3.26b), as is needed in (3.36). We obtain that

(3.37)
L ’ . _ \/§L ,
uzp(0) = S (r0A’ — kA)sinh(y/f.L) = Ty (oA’ — kA) ,
uspz(0) = (ki—\/g‘l) sinh(y/feL) — LT\/’T (1 — cosh(y/icL)) | = (/@42—\//;214) (\/5+ L\gﬁ) |

In obtaining (3.37) we used sinh(\/icL/2) = 1, sinh(,/ficL) = 2v/2 and cosh(,/ftcL) = 3.

Upon substituting (3.37) into (3.36) and solving for A’ we obtain an explicit amplitude equation.
The result is summarized as follows:

PRrROPOSITION 1. Consider a small amplitude perturbation of a symmetric two-boundary spike

steady-state solution of (1.1) for p = p.—ko?, where k = +1 and p. = 4L72 [In(1 + \@)} 2, and when
To < TH+(pe) = 0.9336. In the O(e) boundary layers near v = 0 and x = L, we have for o < 1 and
e K 1 that

v~w [Up+cA(T) + 0(02)] , u~Uy+ cA(T) 4+ O(c?), (left boundary layer),

(338) 2 2 ;
v~w [Ug—dA(T) 4+ O(c?)] u~Uy—cA(T)+ O(c?), (right boundary layer),
where Uy = \/lic/(V2b). On the slow time-scale T = o*t, the amplitude equation for A(T) is

dA_ 0, 0 s

where the coefficients in the amplitude equation are

2 2 2%k L 2
(3.39b) Oy =1+ (f In(1+v2) — 1) ) 0o vk 05 = 80 >0,

300 \ 2 REN e

where k = £1 and b = fooo w?dy = 3. The competition instability associated with the zero-eigenvalue
crossing of the NLEP for the anti-phase mode of the linearization around the symmetric two-boundary
steady state is subcritical.

On the range 79 < T+ (te) < TH— (1) we have 6; > 0. In fact, by comparing the expression for
61 in (3.39b) with the Hopf bifurcation threshold 7 _ (1) for the anti-phase mode given in (2.19), we
observe that 6, > 0on 0 < 79 < Tr4 (pe) < TH—(te), and that 6; = 0 precisely when 79 = 77—. From
the amplitude equation (3.39a) we obtain that the equilibrium A, = 0 is unstable when p = p. — o2
(k = 1) and is linearly stable when u = . + 02 (k= —1). As shown in Appendix B, the growth rate
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02/6, is consistent with that obtained by calculating for o < 1 the near-zero eigenvalue of the NLEP
(2.16) for the anti-phase mode when p = . — o2.

On the range it = p. + 02 where A, = 0 is linearly stable, there are unstable steady-state A+ of
the amplitude equation (3.39a) given by A.1 = £4/65/05. By calculating the ratio 65/63 for k = —1,
we observe that this steady-state corresponds to the emergence of a linearly unstable asymmetric
two-boundary spike steady-state solution wu., for which in the two boundary layers we have

- Mc 2(:L — He 2(»L
(3.40) ueNUOiV“b“‘ ”g “b“ Vg

(left layer) ; ue ~ Uy F (right layer) ,
when p = pi. + 02 and Uy = \/Ji/(v/2b). This weakly nonlinear analysis shows that the competition
instability for a symmetric two-boundary spike steady-state that occurs at p = p. is subcritical.

3.2. Asymmetric Boundary Spike Equilibria. We now construct global branches of asym-
metric two-boundary spike steady-state solutions of (1.1) for ¢ < 1. We show that these asymmetric
equilibria bifurcate from the symmetric two-boundary spike branch at u = u., and near the bifurcation
point their local behavior agrees with (3.40), as was obtained from our weakly nonlinear analysis.

In the left boundary layer near = 0 we have v ~ Upw and u = Uy, + O(e), while in the right
boundary layer near x = L, we have v ~ Ugw and u = Ugr + O(e). Proceeding as in the matched
asymptotic analysis of symmetric two-boundary spike equilibria in §2, we obtain in the outer region
that the leading-order inhibitor field satisfies

(3.41) Ugg —pu =0, 0<x<L; uy(07) = ~UZb, wu.(L™)=Uzb,
where b= [ w?dy, u(0") = UL, and u(L~) = Ug. The explicit solution to (3.41) is

(3.42) w(z) = U, sinh(yi(L —2)) |, sinh(y/fw)

sinh(y/iL) " sinh(y/iL)

Then, by satisfying the flux boundary conditions, we obtain the nonlinear algebraic system

oo (F)=a(5) e A= (S0 U )

where z;, and zp are related to Uy, and Ug by

(3.43b)

S
Il
=
&
S
Il
=[§

ZR .

The symmetric two-boundary spike solution is obtained by setting z = (21, 2r)7 = 2.(1,1)T. Since
A is a cyclic symmetric matrix, e = (1,1)7 is an eigenvector and we obtain

c L L
(3.44) Up=Ugr= \/gz , where z.=tanh (@) and Ae = tanh (\/l;> e

Next, we linearize (3.43a) about z = z.e by writing z = z.e + 7, where || < 1. From (3.43a)
we obtain the linearized problem An = 2z.n. Since Aq = coth (\/zL/2) q, where g = (1,-1)T, we
conclude that n = (1,—1)T is a nontrivial solution to the linearized problem provided that 2z, =
coth (\/rL/2). This determines a critical value g = p.. By using (3.44) for z., we conclude that
sinh (\/ftcL/2) = 1, which yields /L = 21In( 14-+/2). This critical value of i, where asymmetric two-
boundary spike steady-states emerge from the symmetric branch, coincides with the zero-eigenvalue
crossing of the NLEP (2.16) for the anti-phase mode, as was analyzed in §2.1.
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To calculate global branches of asymmetric two-boundary spike equilibria, we rewrite (3.43a) as
L L
(3.45) 27 +2% = ko(zr+2R), 27 —2% =ki(21—2r); ki =coth (\//;) , ko = tanh (\//;> .

From the second equation in (3.45) we observe that for asymmetric equilibria where zj, # zg, we must
have zp, + zg = k1. Upon substituting this relation into the first equation of (3.45) we conclude that
zr, and zr must be the roots of the quadratic 222 — 2k12z + k% — k1ky = 0. In this way, and upon
calculating 2k1ks — k% = 2 — k?, the global branches of asymmetric two-boundary spike equilibria are

characterized by
_ \/l7 2L _ 1 2 _ 1 2
>_b . ) ZL—§ kli\/Q—k’l ) ZR—§ k’l:F\/Q—]ﬁ )

Ur

Ur

provided that g > p.. As p — p. from above, we remark that a straightforward Taylor series
expansion, together with the identity tanh (,/fcL/2) = 1/v/2, shows that Uy, and Ug reduce to

(3.47)

Ug ~ gii\/@MJrO((u—uc)); UL ~ g¢i¢@m+0((u—uc))-

This recovers the result given in (3.40) from the amplitude equation of the weakly nonlinear theory.

In the right panel of Fig. 4 we plot global branches of asymmetric two-boundary spike equilibria
versus u as obtained from (3.46) when L = 2. The symmetric branch, as given in (3.44), is also
shown. The dashed-dotted curves in this figure are the steady-state results (3.40) from the amplitude
equation obtained from the weakly nonlinear theory, which is valid near the bifurcation point. In the
left panel of Fig. 4 we plot an asymmetric two-boundary spike solution when g = 1.0 and L = 2.

In Fig. 5 we plot numerically-computed bifurcation branches of symmetric and asymmetric two-
boundary spike equilibria for the GM model versus @ when L = 2 and € = 0.01, as computed using
the bifurcation software COCO [4] upon discretizing the steady-state of (1.1) with N = 800 mesh
points. As shown in Fig. 4, the prediction (3.47) of the weakly nonlinear theory compares favorably
with these full numerical bifurcation results.

(3.46)

0.5
p 0.8 -|[——symmetric
04 eeuw - - - asymmetric
P weakly nonlinear e
N Q: . i -
0.3 . .. - -
| . 3 0.4 et
0.2 ... = U 2
~co ’
_______________ 2 S
01 | g 0.2 - U
U "‘".‘ ~
. o ‘ St "' —————— e ===
0 0.5 1 1.5 2 0 1 2 3 4
T M

F1G. 4. Left panel: The asymmetric two-boundary spike solution for L =2, ¢ = 0.02, and pu = 1.0 with u as given
in (3.42) and v ~ Upw(e~1z) + Upw(e (L —x)), where w(y) is the homoclinic in (2.3). Right panel: Global branches
of asymmetric and symmetric two-boundary spike equilibria obtained from (3.46) and (3.44), respectively, together with
the local behavior in (3.40) predicted from the weakly nonlinear theory for L = 2 and € = 0.02. Linear stability results
are indicated.

4. Schnakenberg Model. In this section we perform a similar weakly nonlinear analysis to
show that a competition instability of a symmetric two-boundary spike steady-state solution to the
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0.5 T T T 0.12
045 | |=——symmetric _ - - -
o4 | |= =asymmetric o1t - .
B r -
=—==weakly nonlinear - -
0.35 J— -
= 0.08 | - |
s
0.3 1 -
& I <~
3 0.25 N 0.06 |- P N
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Fic. 5. Left panel: Numerical bifurcation branches of symmetric (full black curve) and asymmetric (dashed black
curve) two-boundary spike equilibria for the GM model versus u, as computed with COCO [/] upon discretizing the
steady-state of the PDE system (1.1) with N = 800 mesh points. The dot-dashed red curve is the weakly nonlinear
prediction (3.47) for the asymmetric pattern. Parameters are L = 2 and € = 0.01. Right panel: A zoomed-in view of
the amplitude of the asymmetric equilibria shifted to the origin.

Schnakenberg model (1.2) is subcritical. After first using boundary layer theory to construct such
a steady-state, in §4.1 an NLEP linear stability analysis is developed to determine a critical value
of u in (1.2) for the onset of the competition instability. A weakly nonlinear theory, valid near this
threshold, and that reveals the subcritical behavior is presented in §4.1.

We first use the method of matched asymptotic expansions to construct symmetric two-boundary
spike equilibria for (1.2). In the boundary layer region near x = 0 we let u(ey) =U = Uy +eU; + ...
and v(ey) = Vo +eVi + ..., where y = x/e. We obtain that Uj is a constant and that

(4.1) Vogy —Vo+UoVE =0, Uy =UoVy, y>0,

with Vp, = U1y = 0 at y = 0. We conclude that Vo = w(y) /Uy, where w(y) is the homoclinic in (2.3).
From integrating the Uy equation in (4.1) we get U, ~ Uy, = eb/Uy where b = fooo w? dy, which
provides the matching condition for the outer solution as  — 07. A similar boundary layer analysis
can be done near x = L. In the outer region, v is exponentially small, while from the steady-state
of (1.2), together with the matching conditions to the boundary layer solution, we obtain that the
leading-order outer solution for u satisfies

b b
(4.2) Upy = —, 0<x<L; uZ(O+):FO’ ux(L_):—ﬁO,
with w(0") = u(L~) = Up. The solution to (4.2) is
_plz @ . _2 /OO 2
(4.3) u== (1 L)—l—UO, 0<z<L; where UO_uL’ b= ; wdy.

4.1. Linear Stability Analysis. We now derive the NLEP governing the linear stability of the
symmetric two-boundary spike steady-state, denoted by v = v, and u = u.. We set v = v, + eMp(x)
and u = u, + eMn(x) in (1.2) and, upon linearization, obtain the eigenvalue problem

(4.4a) 20pe — ¢+ 2eucd FVPn=Xp, 0<z<L; ¢y =0 at z=0,L,
(4.4Db) New — ToA =€ (2ueuep +02n) , 0<z <L; Ne=0 at 2=0,L.
We look for a localized eigenfunction for (4.4a) in the form (2.7). From (4.4a), ®(y) satisfies

2
(4.5) ¢; Lo® + n(mj)z—g = Ac; P, 0<y<oo, where Ly® =@, — @+ 2wd.
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Here n(x1) and n(x2) are the unknown constant leading-order approximations for n(x) near 1 = 0
and zo = L, Up = 2b/(uL), and w is the homoclinic given in (2.3). In the boundary layers near « = z;
for j = 1,2, we expand n = n(z;) +em(y)+..., withy =z/efor j =1 and y = e (L —z) for j = 2.
Upon collecting O(e~1) terms in (4.4b), and using v ~ w/Uy and u,. ~ Uy, we get

2

w
(4.6) Myy = 2we; @ + n(xj)m , 0<y < oo; My(z;) =0.

0
By integrating (4.6) over 0 < y < oo we obtain the matching conditions for the flux of the outer
solution as x — 0% and z — L~. In this way, we obtain that the leading-order outer solution Ny(z)
for (4.4b) satisfies

NOmsz())\NO:O» 0<.’£<L; N0(0+):77(0)3 NO(Li):n(L)?

(4.7) 0),  Now(L™) = —2e5Us /°° wd dy —
0

No,.(07) = 201/ w® dy + b
0

2" (L).

0"

The solution to (4.7) is given in (2.12) upon replacing 6y in (2.12) with 6y = /7oA. We then set
N(0%) =n(0) and N(L™) = n(L) and, after some algebra, derive that

(49 (3)) =25 (e ge) o (%)

where the 2 X 2 symmetric Green’s matrix Gy is defined in (2.13b) in terms of 65 = /7oA. Upon
substituting (4.8) into (4.5) and defining ¢ = (c;,c2)T, we obtain the vector-valued NLEP

2bw? [ [ wd dy b -t
4.9 Lo®)c — 0 I+ — = \®c.
. e U(%GA(fo”wwy)(*wggQ oAt

To obtain two scalar NLEPs from (4.9), we diagonalize G, and introduce ¢ by

_ ~1 _(1 1 _( r+ O A 1 ate
(410&) g/\—QAQ y Q:(l _1>, A:<0 Ii)’ C Q (:—2(61_02>7

where k4 = coth (0xL/2) and x_ = tanh (0xL/2). We then calculate

K+ 0 b
(4.10Db) (I+2G,)'Gr=0p0', D= OFz) . , where z=_—.
0 (14+2zK-) 9>\UO

Upon substituting (4.10) into (4.9) we obtain the following scalar NLEPs for the in-phase (4) mode,
where ¢ = (1,1)7, and for the anti-phase (—) mode, where ¢ = (1, —1)7":

Cwdd
(110)  Lo® v (272 Caa ys0r a,0)=0. tim a(y) =0,
Jo w?dy y—oo

In terms of 8y = /7oA, and with Uy = 2b/(uL), the NLEP multipliers x4 (A, ) are defined by

2 2

(411b) X+()‘7 /1’) = 2 ) X—(Aa :U') = 2 .
1+ 520 tanh (62 L/2) 1+ Y8, coth (63 L/2)

Since the analysis of these NLEPs is similar to that in [29] and [22], we now only briefly summarize
the main results for the spectrum of (2.16).
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18 T. KOLOKOLNIKOV, F. PAQUIN-LEFEBVRE, M. J. WARD

For the in-phase mode, we have Re(\) < 0 only when 79 < 7g4(u). For the anti-phase mode,
there is an unstable real positive eigenvalue of the NLEP for any 79 > 0 whenever u < p. where
te = 4/8b/L3. This critical value is obtained from y_(0,u) =1, A = 0 and ® = w. When p > p,,
there is a Hopf bifurcation at 7 = 7_(u) and A = +idrg_ (). As p — p. from above, we have
Ara— () — 0. In Appendix C we show that the Hopf curves 7+ = 7m4+(p) can be computed
numerically by using a scaling law that is valid for all domain lengths L. For L = 2, in Fig. 6 we plot
the Hopf bifurcation curves for both the in-phase and anti-phase modes in the 7y versus p plane. In
particular, we calculate

(4.12) Ty 0906, Ty =5 =45,

when p = p. ~ 1.732 and L = 2. In Appendix C we derive this explicit result for 77— when p = ..

50 1.4
——anti-phase 1o l==an ——anti-phase]| |
40 M- - - in-phase ] .1 RRTN ---in-phase
4y 30 [ g os |
E / = 06t
20 | ~< O
0.4
a4
10 | 7 ]
P 0.2
Y e ‘ 0
0 1 2 3 4 0 1

FiG. 6. Spectral results from NLEP theory for the linearization of symmetric two-boundary spike equilibria for
the Schnakenberg model (1.2). Numerically computed Hopf bifurcation thresholds T+ (left panel) and corresponding
tmaginary parts Arp+ (right panel) of the eigenvalues versus p when L = 2, as computed using Newton’s method on
(C.1), for both the in-phase (+) and anti-phase (—) modes. The Hopf threshold for the anti-phase mode exists only
when > e, where pe = 1/8b/L3. For L =2, as pu tends to pc ~ 1.73 from above we have Tg_ — 4.5 and A\jg_ — 0.
At o = pic, the Hopf threshold for the in-phase mode is Ty ~ 0.906. For any p < pe, the anti-phase mode is always
unstable due to a positive real eigenvalue for the NLEP. For ju > pc, the symmetric two-boundary spike steady-state is
linearly stable only when 1o < min(tg_,7H+).

4.2. Weakly Nonlinear Analysis. We now perform a weakly nonlinear analysis near the zero-
eigenvalue crossing at g = p. when 0 < 79 < min(rg4(te), TH— (1)) = T+ (tte). For 0 < 1, we
introduce a neighborhood near p. and a slow time scale T by

/8b
(4.13) = e —ko?, k=41, pe=1\/73 T =o2t.

We obtain from (1.2) that v(z,T) and u(z,T), with u, = v, =0 at © = 0 and & = L, satisfies
(4.14) o2vp = e2vgy — v 4+ w?, Too2Up = Ugy + (e — koz)u — e huw?.

We let ve(x) and u(x) denote the steady-state boundary spike solution and we expand as in (3.3).
Upon substituting (3.3) into (4.14) we collect powers of o to get leading order problem

(4.15) 2 Vezz — Ve + U2 =0, Uezz = —fle + € uev?
on 0 < z < L and the following problem at order O(o):

2 2 -1 2
(4.16) Ve — V1 + 2VeUeV1 = —ULVS Ulge = € (ulve + 2veuevl) .

This manuscript is for review purposes only.
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From the O(0?) terms we obtain on 0 < z < L that

2 2 2
(417) € Vazg — V2 + 2VeUeV2 = —UV, — UeV] — 2U1 V1 Ve,

: -1 2 2
Uoge = k + € (UQ'Ue + UV + 2U VeV + 2veu1111) .

Finally, we obtain that the problem at O(c3) is

2 2 2

(4.18) E7U3zz — V3 + 2VelUeV3 = V1T — VU3 — 2UeUV] — UIV] — 2VeU1V2 — 2U V1 V2
: —1¢,2 2

U3pe = € (Ueug + 2V UV + w1 V] + 20.u102 + 2u V1 V2 + 2uevev3) + 10Uz .

For (4.15)(4.18) we impose Vey = Uez = 0 at = 0, L and vj, = uj, =0at 2 =0,L, for j =1,...,3.

In the boundary layer near x = 0 or x = L we have v, ~ Vy = w/Uy and u, ~ Uy, where
Up = +/bL/2 when p = p. (see (4.3) and (4.13)) and w(y) is the homoclinic in (2.3) with either
y=ux/e or y = (L —x)/e. The steady-state outer solution satisfying ue,, = —p. is given by setting
i = e in (4.3). At next order, we obtain from (4.16) that in either of the two boundary layers

(4.19) LoVi = Viyy — Vi + 2wV = 2 Uryy = € (U1 Vg + 2VoUgV1)

2
Us

so that to leading-order U; is a constant. Since Low = w?, and a competition instability is due to a
sign-fluctuating eigenfunction, we conclude that

Uy =-UZA+0e), Vi =wA+ O(e), near z=0;

(4.20) )
Uy =U;A+ O(e), Vi=—-Aw+ O(e), near x=1L.

Our analysis will derive an ODE for the amplitude 4 = A(T).

From integrating the U; equation in (4.19), and by calculating Uy ViZ + 2UgVo Vi ~ £Aw? in the
two boundary layers, we readily obtain the following matching conditions between the outer inhibitor
field u; and the two boundary layer solutions:

ur(0%) = —UZA, uy,(0") = lim e Uy, = A/ w? dy = Ab
—00
(4.21) Y o
ui(L7) =UZA, wup(L7)=— lim e Uy, = A/ w? dy = Ab,
yA)OO 0
where b = fooo w? dy = 3. From (4.21) and (4.16), the outer solution u; satisfies
(4.22) e =0, 0<z<L; uw(0")=-U2A, wui(L7)=UZA; u1,(07) =wu, (L") = Ab,
which has the solution
(4.23) uy(z) = A (bx —UF) .

Since 2U¢ = bL, we readily verify that u; (L) = U3 A.

Next, we analyze the O(0?) system given in (4.17). We denote Var,(y) with y = z/e and Vag(y)
with y = (L — z)/e to be the inner solution for v in the left and right boundary layers, respectively.
By using V; ~ wA and U; ~ —UZ A in the left layer and V; ~ —wA and U; ~ U2 A in the right layer,
we readily calculate from (4.17) that

(4.24)
L
LoVar, ~ w? (—Ué@ + A2U0> , Usyy=c¢ [(U;(Q ) _ A2U0> w? + 2wV2L] + 0%, (left),
0 0
L L
LoVag ~ w? (— U;](Q ) + A2U0> ;o Uy =e¢ |:<U;](2 ) A2U0> w? + 21UV2R] +O(e?), (right).
0 0
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Since Low = w?, we conclude that

429 Vol = (g AT ut). Varto) = (- + 400 ) ut).

We then substitute (4.25) into the expressions for Usy, in (4.24) and integrate over 0 < y < oo to
obtain asymptotic matching conditions that determine us,(07) and ug, (L™ ). Then, from (4.17), the
outer correction uq satisfies

(4.26) ugpe =k, 0<x<L; wuy(0T)= ( u2(0) + A%U, ) b, us(L”)= (uQ( ) A2U0) b,
Ug Us

where Uz(0) = uz(0) and Uz(L) = us(L). The solution to (4.26) is even about x = L/2, and by

integrating over 0 < z < L, we obtain that us, (L) — u2,(0) = kL. Since u2(0) = uz(L), we get

kUZL

(4.27) Us(0) = Uz2(L) = 2%

+ AU .

Upon using these expressions in (4.25), we obtain in the two boundary layers that

(4.28) Var(y) = —£w( ), Var(y) = —£w( )-

2b 2b
Next, we derive a solvability condition from the O(c?) problem, given by (4.18), which determines
the amplitude equation. We denote V31 (y), with y = /¢, and Vsgr(y), with y = (L — x) /e, to be the
inner solution for vs in the left and right boundary layers, respectively. In the left and right boundary
layers, we use respectively,

w L kUZL
Vowio, Vi ~ Aw, VQN—%W U ~-UZA, Uy~ 2‘; + A2U3, U ~ Us(0),
L kUZL
Vo =, Vi~ —Aw, Varm ——w, Up~UZA, Uy~ 0% 4 A2U3, Uy~ Us(L),
Uo 2b 2b

to calculate that
(4.29)
Ug(o)g;— + KoL Aw? + A3UZw?,  (left),

Ug(L)Uz — UL pyy? — A3UZw?,  (right).

UsVE + 20 VoVi + UiV + 201 VoV + 20 ViV ~ {

We then use Vir ~ A'w and Vi ~ —A’w in the left and right boundary layers, respectively, together
with (4.29), to calculate the right-hand side of the v equation in (4.18) in the two boundary layers.
In this way, we obtain that

(4.30) L0< “2; >+U0( 538) ) — {wA’— kLTUOAw2 —A3U§w2} ( ! ) ,

where A’ = dA/dT. Moreover, by using (4.29) in the ugz equation of (4.18) we obtain in the two
boundary layers that

kL
Usyy ~ € {2wV3L + <U(3](20) + bUOA + A?’Ug) wQ} +0(e%), (left layer),
(4.31) 0
L kL
Usyy ~ € {—Qw%R + (— U?’U(2 ) + UOA + A3UO> wQ] +O(e?), (right layer).
0
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Then, we use the matching conditions ug,(07) = lim, e £ Usy and us, (L) = —limy 00 71 Usy
for the left and right boundary layers, respectively, to derive the boundary conditions for the outer
solution us(z). In this way, we obtain from (4.18), and upon using U3 = bL/2 and the expression
(4.23) for uy, that uz with uz(0) = Us(0) and uz(L) = Us(L) satisfies
, L
U3I$=Tou1T=7‘0Ab<CB—2> , O<ax< L,

> 2 VL
(4.32) s, (07) = 2/ wVar dy + TUs(0) + kLU A + == A%
0

= 2 b2L
Uz (L7) = —2/0 wVap dy — ng(L) + kLU, A + 7AS ,

Next, we calculate U3(0) and Us(L), which is used to determine the vector-valued NLEP from
(4.30). We derive a linear algebraic system for Us(0) and Us(L) by multiplying the equation for wug

by 1 and then by (x — L/2) and integrating the resulting expressions. Since fOL U3y, dz = 0, we have
use (L) = us,(0), which yields
(4.33a) Us(L)+Us(0)=—-L(Ir+1L), where IRE/ wVsr dy, IIE/ wVsr, dy .

0 0

Upon multiplying the us equation in (4.32) by (z — L/2) and integrating by parts we obtain

L L 2 3
/ (m — L> Uy dT = <x - L) uze |t — [Us(L) — U3(0)] = TOA'b/ <x — L) dx = TobL A
A 2 2 ; 2 12

Then, by using (4.32) for us;(0) and us, (L) in this expression, we obtain after some algebra that

TQbL3

kL?U, b2L?

L
4.33b Us(0) = Us(L) == (Ig — I1) — A-— A A
(4.33b) 3(0) = Us(L) = 5 (Ur — I) 5 Y
The linear system (4.33) for Us(0) and Us(L) is readily solved to obtain
(4.34)
Us) \ LI\ L[ kL2Uy, BL* 5 mbL® ([ 1 . (31
(Ug(L)>_ B\ 1 ) T3 o A At A ) B=ELr )

Upon substituting (4.34) into (4.30) we obtain a vector-valued NLEP for V3 = (V31 V3r)7:

w? foo wBV3dy kLU,
4.35 LoVy — — 20 = |-
(4.35) 0T e [Cuzdy [ 2b

bL . To L2 1
2 3,2 0 7,2 ’
Aw——Aw—72 A'w +Aw}< 1).

Next, we diagonalize B and introduce a new variable ¥ by
_ -1 _ (1 1 _(4 0 — -1y _ L[ Vap+ Vs
(4.36) B=QAQ™ ", Q_<1 IR A= 0 2 ) v =9 V3—2 Var — Van )

so that in terms of ¥ = (¥, ¥5)T, with ¥/(0) =0 and ¥ — 0 as y — +00, (4.35) becomes

w? | [oS w¥ dy 0  kLUy , 4 WL 5 o TL® , 5

We conclude from the two components in (4.37) that

) fooo wlydy

Cw¥sd
- -0, £@2ELOQ2_w2M_
fo w2 dy

4.38 LoV, —2 = =R.
( ) 0¥1 w fo dey
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As for (3.31) in §3 we conclude that ¥; = 0. Proceeding as in (3.33) of §3, the solvability condition for
the second component is that fooo UrR dy = 0 where UX = w + yw’/2 is the nontrivial solution to the
homogeneous adjoint problem £*¥* = 0. By using the integral ratio (3.35), this condition provides
an explicit amplitude equation for A(T"). We summarize this main result as follows:

PROPOSITION 2. Consider a small amplitude perturbation of a symmetric two-boundary spike
steady-state solution of (1.2) when p = p. — ko?, where k = +£1 and p. = +/8b/L3 and when
To < TH+(te) = 0.906. In the O(e) boundary layers near x =0 and x = L, we have for o < 1 that

(4.39)

1
v~ w [U +0A(T) + 0(02)] , u ~ Uy — o[A(T)]2Uy + O(c?), (left boundary layer),
0
1
v~ w [U —cA(T) + (9(02)] , u ~ Uy + o[A(T)]2Uy + O(0?), (right boundary layer),
0
where Uy = \/bL/2. The amplitude equation for A(T) is
dA 92 93 7'0L2 kL 2L Lb
44 — = A4+ A3 =1- =—1\/— = —
(4.40) aT o, +91 , where 6, 8 0 3 p 03 3 >0,
where T = 0°t, k = +1, and b = fooc w?dy = 3. Since the nontrivial steady-state of (4.40) exists only
when k = —1, for which u = u. + o2, we conclude that the competition instability associated with the

zero-eigenvalue crossing of the anti-phase mode of the linearization of the symmetric two-boundary
steady-state is subcritical.

On the range 179 < Tr+ (pte) < TH—(ptc), we have 61 > 0, with 6; = 0 when 79 = 77— (u.) = 18/L2.
As shown in (C.2) of Appendix C, the growth rate 62/6; for the steady-state A, = 0 of the amplitude
equation (4.40) agrees with that obtained by calculating the near-zero eigenvalue of the NLEP (4.11)
for the anti-phase mode when pu = p. — 0?. From (4.40), the steady-state A, = 0 is unstable
when 1 = p. — 02 (k = 1). On the range p = . + 02 (k = —1) where A, = 0 is linearly stable,
Aex = £4/05/605 are unstable equilibria of (4.40). From (4.39) the local behavior, near the bifurcation
point, of the asymmetric two-boundary spike steady-state solution in the boundary layers is given by
(4.41)

ueNUO

2b

L3 1/4
oA 1;( ) Vi — pe| 5 (right layer),

L3 1/4
1+ ( ) Vit —pe| 5 (left layer); wue ~ Uy

where Uy = /bL/2 and p — p. = 02 < 1. This weakly nonlinear analysis establishes that the
competition instability at u = p. for a symmetric two-boundary spike steady-state is subcritical.

4.3. Asymmetric Boundary Spike Equilibria. Here we construct global branches of asym-
metric two-boundary spike steady-state solutions of (1.2) for e < 1. We verify that these solutions
bifurcate from the symmetric two-boundary spike branch at p = p. and have the local behavior near
the bifurcation point as given by the weakly nonlinear theory in (4.41).

In the left boundary layer near x = 0 we have v ~ w/Uy and u = Ur + O(e), while in the
right boundary layer near z = L, we have v ~ w/Ug and u = Ug + O(e). By proceeding as in the
asymptotic construction of the symmetric two-boundary spike equilibria in the beginning of §4, we
obtain in the outer region that

(4.42) Ugy = —4, 0<z<L; u,(07) =b/Ur, wu,(L7)=—b/Ug,

where b = [[Fw?dy, u(0T) = U, and w(L™) = Ug. The explicit solution to (3.41) satisfying
u(0) = U, and ug(0) = b/Uy is
pua®

(4.43) u(z) = -t ULLI +Ur.
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Then, by satisfying u(L) = Ugr and u,(L) = —b/Ug, we obtain that Ur and U}, satisfy

1 1 ul bL
ot RO ( 2ULUR)

The symmetric two-boundary spike solution is obtained by setting Ur = Uy, which yields

(4.44)

2b <,
(4.45) Up,=Upr=—, b= w dy = 3.
0

uL

In contrast, for the asymmetric solutions where U, # Ug, we obtain from (4.44) that ULUr = bL/2
and that Uy, and Ug are the two roots of the quadratic equation U2 — uL2U/2+bL/2 = 0. This yields
(4.46)

_pL

2 2 2
Pe _ kL fhe _ /8b
1 (M) s UR = T 1F (M) s where Me = ﬁ s

Ur, 1+

provided that g > p.. As p — p. from above, a Taylor series approximation of (4.46) yields that

(4.47)
[bL 3\ bL s\

Ur ~ - 1i<2b) M= fhe - 11F(2b> H—=fe| , as [ [lc-
This expression agrees with the result given in (4.41) from the amplitude equation.

In the right panel of Fig. 7 we use (4.46) to plot global branches of asymmetric two-boundary
spike equilibria versus g when L = 2. In this figure the symmetric branch is given by (4.45), while the
dashed-dotted curves are the steady-state results (4.47) from the amplitude equation, as obtained from
the weakly nonlinear theory in §4.2. In the left panel of Fig. 7 we plot an asymmetric two-boundary
spike solution when p = 2.0 and L = 2.

; URN

3.5 10
ghammTTTTTT ) —|| ——symmetric |
S R 8 | |- - - asymmetric g
257 Sso i ------weakly nonlinear e
. -
3 2r AR

= 1.5 S
15

0.5 \
0

0 0.5 1 1.5 2
X

Fic. 7. Left panel: The asymmetric two-boundary spike solution for L = 2, ¢ = 0.02, and p = 2.0 with u as
given in (4.43) and v ~ w(e~1x)/Ur + w(e (L — z))/Ur, where w(y) 4s the homoclinic in (2.3). Right panel: Global
branches of asymmetric and symmetric two-boundary spike equilibria obtained from (4.46) and (4.45), respectively,
together with the local behavior in (4.47) predicted from the weakly nonlinear theory for L = 2 and € = 0.02. Linear
stability results are indicated.

In Fig. 8 we show a favorable comparison between the asymptotic result (4.47) obtained from
the weakly nonlinear theory with corresponding full numerical results computed using COCO [4]
for branches of symmetric and asymmetric two-boundary spike equilibria for the steady-state of the
Schnakenberg model (1.2). The comparison is shown near the symmetry-breaking bifurcation point
w=p. when L =2 and € = 0.01.
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Fia. 8. Left panel: Numerical bifurcation branches of symmetric (full black curve) and asymmetric (dashed black
curve) two-boundary spike equilibria for the Schnakenberg model versus u, as computed with COCO [/] upon discretizing
the steady-state of the PDE system (1.2) with N = 800 mesh points. The dot-dashed red curve is the weakly nonlinear
prediction (4.47) for the asymmetric pattern. Parameters are L = 2 and € = 0.01. Right panel: A zoomed-in view of
the amplitude of the asymmetric equilibria shifted to the origin.

5. Generalized GM Model: Asymmetric Boundary Spike Equilibria. In this section we
consider the generalized GM model on 0 < z < L with exponent set (p, g, m, s), formulated as
vP ™
ToUt = Uggy — PU + €

(5.1) v = 2Ugy — U+ —

e’ us ’

with v, =uy, =0at z =0,L. Here ¢ < 1, p = O(1) and 79 = O(1) are positive constants, and the
exponent set satisfies p >1,¢>0,m>1,s>0, with { =mq/(p—1) — (s+1) > 0.

An NLEP linear stability theory can be used to show that symmetric two-boundary spike equi-
libria for this general GM model are linearly stable only on the range p > p. when 7y is below some
threshold. This competition instability threshold u. obtained from NLEP theory is the symmetry-
breaking bifurcation value for the emergence of asymmetric two-boundary spike equilibria, and is given
in (5.6) below. For p < p., symmetric two-boundary spike equilibria are unstable for any 79 > 0. To
determine whether the competition instability is subcritical, as for the case of the prototypical expo-
nent set (p,q,m,s) = (2,1,2,0), we will proceed to derive and analyze a nonlinear algebraic system
characterizing asymmetric two-boundary spike equilibria for (5.1). By plotting such global branches of
equilibria and analytically characterizing their local branching behavior near the symmetry-breaking
bifurcation point, we will infer that a competition instability of symmetric two-boundary spike equi-
libria is always subcritical for the general GM model (5.1). This simple approach allows us to infer
subcriticality of the competition instability without having to directly derive an amplitude equation
based on retaining weakly nonlinear terms beyond the linearized NLEP theory. Such a derivation of
an amplitude equation for this generalized GM model (5.1) is rather intractable analytically.

The matched asymptotic analysis approach to calculate asymmetric two-boundary spike equilibria
for (5.1) is similar to that described in §3.2, and so we only outline the analysis. In the left boundary
layer near x = 0 we have v ~ Uz/(pfl)w and u = U, + O(e), while in the right boundary layer near

x = L, we have v ~ U}q%/(p_l)w and u = Ug + O(¢). Here w(y) is the unique homoclinic solution to
w” —w + wP = 0, which is given explicitly by
1/(p-1)
)

(25 (052

By matching the boundary layer solutions for u to the outer solution, we obtain in the outer region
that the leading-order inhibitor field satisfies

(5.3) u (0Y) = =UE b,

(5.2)

Upg —pu=0, 0<z<0L; U (L) = U5 by
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where by, = [;° w™ dy, u(07) = Uy, and u(L~) = Ug. The explicit solution to (5.3) is (3.42) and, by
satisfying the flux boundary conditions at the endpoints, we obtain the nonlinear algebraic system

s (o )=a( ) A= (Sl enm ) e ey,

where zy, and zgr are related to Uy, and Ug by

1/¢ 1/€
(54b) UL = <})/ﬁ> ZL UR: <Z/ﬁ) ZR -
Symmetric two-boundary spike equilibria are obtained by setting z = (21, zr)"
(1,1)T. Upon using Ae = tanh (\/zzL/2) e, we obtain

1/¢€ " 1/¢
(5.5) U, =Ugr= <\/ﬁ) Ze where Ze = [tanh (@)] )

= z.e, where e =

b
To determine the bifurcation point along the symmetric branch where asymmetric equilibra
emerge, we linearize (5.4a) about z = z.e by writing z = z.e + 1, where |n| < 1. This yields the lin-
earized problem An = ({+1)z¢n. Since Aq = coth (\/uL/2) q, where g = (1, —1)”, we conclude that

n = (1,—1)" is a nontrivial solution to the linearized problem provided that ({+1)z¢ = coth (,/aL/2).
Using (5.5) for 2§, we conclude that the symmetry-breaking bifurcation value yu = p. occurs when

(5.6) tanh<\/2ﬁL) :Hfif so that Mc:é[ln (\}E—i— ;—Fl)}

Observe that when (p, ¢, m, s) = (2,1,2,0), for which £ =1, . in (5.6) reduces to that given in (2.17).
To obtain global branches of asymmetric two-boundary spike equilibria we rewrite (5.4a) as

2

L L
(57) ZE+1 + Z%—H = tanh <\/§) (ZL + ZR) 5 Z%H — Z%’_l = coth (@) (ZL — ZR).
Next, we define w = z1/zg, and from (5.7) we readily obtain the following parameterization of

asymmetric two-boundary spike equilibria in terms of w:

(w—1)

1/¢
1 1
. 2R = <2w5+1 VR(W)(w+1)+ JR@) ) , ZL = wWzR,
4 (H VR(W))]Q . whee  Rw)= @D W +1)

=1 1- R @ —1) (w+1)

:L2

In terms of the parameter w > 0, the parameterization (5.8) together with (5.4b) determines the
global bifurcation diagram of Uy, and Ug in terms of u for asymmetric two-boundary spike equilibria
of (5.1) without the need for having to numerically solve any nonlinear algebraic system.

The symmetry-breaking bifurcation point occurs when w — 1. Using L’hopital’s rule we obtain
R(1) = 1/(£ + 1), which recovers p = . from (5.8) and (5.6). To determine the local branching
behavior of asymmetric two-boundary spike equilibria we first use Taylor series on (5.8) to get

(5.9) M@~E551+$w+%mhnﬂm.,asw%L
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Then, we relate y — pi. to w — 1 by using tanh (\/uL/2) = [R(w)]l/Q, which yields

w — 2'\‘ 6L — as +.
(5.10) (w-1) €12 NC(€+1)(M 1) » = i

From this key expression we observe that asymmetric two-boundary spike equilibria exist near the
bifurcation point only in the subcritical range where pu > p..
Next, we calculate zr as w — 1. Since R(w) ~ 1/(€ +1) + O((w — 1)?) as w — 1, we calculate

VRW)(w+1) + (w—1) ~2/R(1) {1 C ; D (1 + R21)> +O((w — 1)2)} .

1
R(w)
By using this expression to estimate zp(w) in (5.8) we get

1/
aanle) ~ (VAD) " =) (14 S ) o - 1),

(5.11) ~ ( R(1))1/£ (1 . M(w - 1)) (1 ) (w— 1)) +0((w—1)%),

3 3
~ ( R(1))1/£ (1 - %(w - 1)) +O((w—1)?).

By using this expression in (5.4b), and recalling that R(1) = 1/(£ + 1), we get

(5.12) w~(%filme—;w—n+mw—m0.

Finally, by using (5.10) together with \/u = \/ptec + O(i — pic), we conclude that

(Ve )”E 3L = . +
(5.13) Ur (bm 1 1+ 2T 2) MC(§+1)\/M fe+ O —pe) |, as pw—pg .

Here p. is defined in (5.6) and b, = fooo w™ dy, where w is the homoclinic in (5.2). An identical
expression holds for Uy, upon replacing + by F in (5.13). For the prototypical GM model with
exponent set (p,q,m,s) = (2,1,2,0), where £ = 1, we obtain that (5.13) reduces to that in (3.47).
For the exponent sets (p,q,m,s) = (2,1,3,0) and (p,q,m,s) = (4,2,2,0), in the left and right
panels of Fig. 9, respectively, we plot global branches of asymmetric two-boundary spike equilibria
versus p as obtained from (5.8) and (5.4b) when L = 2. The symmetric branch, as given in (5.5),
is also shown. The dashed-dotted curves in these figures are the local results (5.13), valid near the
symmetry-breaking bifurcation point, characterizing the local behavior of the subcritical bifurcation.

6. Discussion. Competition, or overcrowding, instabilities of localized 1-D spike patterns for
singularly perturbed RD systems have previously been implicated through full PDE simulations of
playing a central role in triggering spike annihilation events, which results in a rather intricate coars-
ening process of a multi-spike pattern (cf. [1], [14], [22], [29]). Qualitatively, a competition instability
for a spike pattern for the 1-D GM model, which has the effect of locally preserving the sum of the
heights of the spikes, occurs when either the inhibitor decay rate is slowly ramped below a critical
value or, equivalently, when the inter-spike distance falls below a threshold. For the 1-D Schnakenberg
model, a competition instability will occur when the feed-rate parameter in (1.2) decreases below some
critical value. Although explicit criteria on the parameters in the 1-D GM and Schnakenberg models
for the onset of this linear instability can be calculated by analyzing the spectrum of the NLEP of
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F1G. 9. Global branches of asymmetric and symmetric two-boundary spike equilibria for the generalized GM model
(5.1) as obtained from from (5.8) (with (5.4b)) and (5.5), respectively. The dashed-dotted curves are the local branching
behavior (5.13) mear the symmetry-breaking bifurcation point. The domain length is L = 2. Left figure: exponent set
(p,g,m,s) = (2,1,3,0). Right figure: exponent set (p,q,m,s) = (4,2,2,0).

the linearization, it has been an open problem to develop a weakly nonlinear theory to establish that
a competition instability is subcritical.

For the 1-D GM and Schnakenberg models we have developed and implemented a weakly non-
linear theory to show analytically that a competition instability for a symmetric two-boundary spike
steady-state is subcritical. In this context, we have shown explicitly that the competition instability
threshold corresponds to a symmetry-breaking bifurcation point where an unstable branch of asym-
metric two-boundary spike equilibria emerges from the symmetric steady-state solution branch. T'wo
boundary spikes interacting through a bulk diffusion field represents the simplest spatial configuration
of interacting localized spikes that can undergo a competition instability. A competition instability
can also occur for 1-D multi-spike patterns with spikes interior to the domain, and from PDE simula-
tions this linear instability mechanism can also trigger a nonlinear process leading to spike annihilation
(ct. [29], [18], [1]). The challenging feature with providing a weakly nonlinear analysis for patterns
with interior spikes is that the analysis would have to couple weak spike amplitude instabilities near
onset to the weak translation instabilities resulting from the slow spatial dynamics of the centers of
the spikes. For our weakly nonlinear boundary spike analysis, where the spike locations are fixed
at the boundaries, there was no complicating feature of having to include in the analysis any small
eigenvalues associated with drift instabilities of the spike locations.

We conclude by briefly remarking on two possible extensions of this study. One open problem
is to determine whether there are specific singularly perturbed RD systems for which competition
instabilities are supercritical and not subcritical. One simple method to try to identify such an RD
system consists of extending the approach used in §5 for constructing asymmetric two-boundary spike
equilibria of the generalized GM model (5.1) to a general class of singularly perturbed RD system. For
an RD system where the competition instability is supercritical, in the bifurcation diagram of two-
boundary spike equilibria there should exist a branch of asymmetric equilibria on the parameter range
where the symmetric steady-state branch is linearly unstable. In [16], it was shown for a GM model
with a spatially variable precursor field that linear stable asymmetric equilibria with two-interior
spikes can occur for a certain parameter range. However, it is an open problem to determine if one
construct linearly stable asymmetric spike equilibria for an RD system without the spatial gradient
in the reaction-kinetics. Finally, a second open direction is to extend the weakly nonlinear analysis
of competition instabilities of 1-D spike patterns to the 2-D context of localized spot patterns near
parameter values where the 2-D NLEP associated with the linearization has a zero-eigenvalue crossing.
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Appendix A. Numerical Computation of Hopf Bifurcation Thresholds: GM Model.
We outline the approach used to compute Hopf bifurcation thresholds for (2.16). From (2.16a)
we have ® = y4 (Lo — A)*lwzfooo wd dy/ fooo w? dy. Upon multiplying by w and integrating we get

/ w® dy
0

Any unstable eigenvalue of the NLEP (2.16) must be such that fooo w®dy # 0. As such, discrete
eigenvalues of the NLEP are roots of g1 (\) = 0, where

1 Faw(Lo — N tw?d
(A1) gi(N) = ——— —F(\), where F())= Jo Ty v

X+ ()\7 M)

Here x+ (A, p) for the in-phase (+) and anti-phase modes (—) are defined in (2.16b). The competition
instability threshold, obtained from the anti-phase mode, is found by setting g_(0) = 0. Since
F(0) =1, this occurs when x_ (0, ) = 1, which yields p = p, where \/ficL = 2In(1 + v/2).

To determine the Hopf bifurcation thresholds for a given domain length L we set A = i\, with
Ar > 0, and use Newton’s method on g4 (iA;) = 0 to compute 7y = 74 (1) and Argy = Arg+ ().
The results were shown in Fig. 3 when L = 2. For the anti-phase mode, a Hopf threshold exists only
when pu > pe, and Ay — 0 as u — p, from above. To determine the Hopf threshold value of 7z _
at i = pi., we set u = p1. and use a perturbation approach to estimate Im (g_(iA;)) ~ acA;r + O(\3)
as A7 — 0. By setting a. = 0, we obtain 77_.

To this end, we set Im(g_(iA;)) = 0 to obtain, upon using the explicit expression for x_ in
(2.16b), together with tanh (y/zcL/2) = 1/v/2, that

1 [ w(Lo = N tw?dy
X+ IS w2 dy

(A.2) Im(g_(iA;)) = Im [ v 1\/—;izcoth (ﬁm) - f(m,)] :

where we have defined z = 7y_A;/p and 8 = \/ucL/2. For A\f — 0 we use V142 ~ 14 2/2,
coth(8 + 82/2) ~ coth(8) — %csch%ﬁ) for z < 1, together with coth(8) = v/2 and csch(B) = 1
Moreover, we have Im (F(iA;)) ~ 3A\;/4 from Proposition 3.2 of [29]. In this way, and upon recalling
VieL =2In(1 + v/2), we obtain from (A.2) that as A; — 0,

(A.3) Tm(g_(iA;)) ~ achr + O\,  where a, = % (\fg ~In(1+ @) _

Upon setting a. = 0, we obtain the explicit expression for 74— as given in (2.19).

Appendix B. Perturbation of Linear Instability Threshold: GM Model.
In this appendix we verify the expression for the coefficient 65/6; of A in the amplitude equation
(3.39a) by setting u = u. — 02 and calculating for 0 < 1 the near-zero eigenvalue for

>

Jo wldy) ~2yp tanh (/uL/2)
(B.1) Lo® — x— (A, p)w (ﬁ) 2dy> BRI D by e T TN AIRE

with 65 = /u+ 1o, for which ®,(0) = 0 and lim,_,o, ®(y) = 0. Since x_ (0, 1) = 1 and Low = w?,
we expand the critical eigenpair as

(B.2) A=\ +..., O=w+0?d +..., when p=p.—o>.
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Upon substituting (B.2) into (B.1), we collect powers of o2 to obtain that

fooo w®; dy
IS wdy

Since the homogeneous adjoint problem £*U* = 0 has the nontrivial solution ¥* = ¥} = w + yw'/2
(see (3.33b)), the solvability condition [;~ W3R dy = 0 for (B.3) yields that

fo w2V dy

T wlrdy

(B.3) LD, = Loy®P, — w? < > =R = Mw — dux— (0, pe)w? + Aw?dxx— (0, e -

(B.4) A1 = [AM0ax—(0, pe) + 0ux—(0, pe)] J where
Since J = 4/3, as calculated in (3.35), we get
4 4
(B.5) (1 300 00 ) = 5901,

By using (B.1) for x_ (A, ), we evaluate the required partial derivatives and use sinh (, /MCL/Q) =
and cosh (, /L) 2) = /2 to simplify the resulting expressions. In this way, we calculate that

Bux— (0, 110) = ——sech’® (\/‘TCL>tanh(\/l7cL) _ V2L

N 2 2 N
70 o [ Vbl 7oL ViveL o (il
(B.6) Oax—(0, 1) e tan ( > ) + NI tan ( 5 sec 5
_ 0 (g BV
2 4

Finally, by substituting (B.6) into (B.5), and by recalling /ficL = 21In(1 + v/2), we conclude that

V2L 2m (V2 o
(B.7) A = 3\//Tcl+3ui< (1+f)—1>] .

We observe, as anticipated, that this expression for \; agrees with the ratio 65/6; of the linear term
in the amplitude equation (3.39a) when k = 1.

Appendix C. Numerical Computation of Hopf Bifurcation Thresholds: Schnakenberg.

Following the approach in Appendix A, we obtain that the discrete eigenvalues of the NLEP (4.11)
for the Schnakenberg model are the roots of g+(A) = 0, where

2
1+ (%) z tanh(z)) , in-phase (4),

2
N') zcoth(z)) , anti-phase (—).

N

1 1

(C.la) g+(A) = m‘fm; X))

—
—_
+

/N
5

Here F(A) is defined in (A.1), while z and . are defined by

L? / 8b o
(C.1b) Z=VTA, %ETO4 , e = T3 b:/ w?dy = 3.
0

The competition instability threshold, associated with the anti-phase mode, is found by setting
g—(0) = 0. Since F(0) = 1 this occurs when x_(0,u.) = 1, which yields p. = /8b/L3. When
< i, the NLEP for the anti-phase mode has an unstable real positive eigenvalue.
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The Hopf bifurcation thresholds for the anti-phase and in-phase modes are obtained by setting
A = iA;, with Ay > 0, and using Newton’s method on Re[g+(iA;)] = 0 and Im[g4(iA;)] = 0 to
determine a parametric form of the Hopf threshold A\; = Ajg+ and 7 = Ty4 depending only on the
ratio p./p. Then, the scaling law in (C.1b) gives the Hopf thresholds in terms of L as 7+ = 475+ /L?.
The results were shown in Fig. 6 for L = 2. For the anti-phase mode, a Hopf threshold exists only on
the range p > p, and Ay — 0 as u — p. from above.

To analytically calculate the Hopf threshold value 74— for the anti-phase mode at p = p., we set
p = . and we estimate Im (g_(i\f)) ~ a.A; + O(A3) as A\; — 0. By setting a. = 0, we obtain 74 _.
To this end, we use z coth(z) ~ 1+ 2%/3 as z — 0 together with Im (F(i\;)) ~ 3\;/4 (see Proposition
3.2 of [29]) to calculate for A\; — 0 that Im(g_(iA;)) ~ acA; + O(A3) where a. = 7/6 — 3/4. Upon
setting a. = 0, and using 7 = 79L?/4, we obtain 79 = 7y = 18/L? when u = p., as given in (4.12).

Finally, we verify the coefficient of A in the amplitude equation (4.40) by setting u = pu. — o2 and
calculating for 0 < 1 the unstable eigenvalue to the NLEP (4.11) for the anti-phase mode. Rather
than working with the NLEP (4.11) directly as in Appendix B, we instead, equivalently, calculate the
root to g_(\) = 0 on the positive real axis with A = 02\; < 1. We set p = . — 02 and calculate
using z coth(z) ~ 1+ 22/3 + ... with 2 = \/7oAL/2 that

1 1 1 e\’ Tol? o (Tol?N 1
— e~ (=) (1 MA...]~1 - AL )
- 2+2(MC_02> (+ L2+ ot (REA L

Moreover, on the real positive axis we have from Proposition 3.5 of [29] that F(A) ~ 1 + 3\/4 as
A — 0. In this way, we conclude for o — 0 that

L? 1 3
g_(0'2>\1) ~ 0'2 (T024 )\1 + ; — 4)\1) + ...

From the condition g_(0?\1) = 0, and upon using u. = /8b/L?, we obtain that

7'0L2> 4 L [2L /OO )
C.2 A 1= =—=—4/—, where b= wdy = 3.
(©2) ' ( 18 ) 3p. 3 0

By comparing (C.2) with the amplitude equation (4.40) when k = 1, we get A; = 02/6; as expected.
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