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We study hexagonal spike cluster patterns for Gierer-Meinhardt reaction-diffusion system with
a precursor on all of R2. These clusters consist of N spikes which form a nearly hexagonal lattice
of a finite size. The lattice density is locally nearly constant, but globally non-uniform. We also
characterize a similar hexagonal spike cluster steady state for a simple elliptic PDE 0 = ∆u − u +
u2 + ε|x|2 with a small ”confinement well” ε|x|2. The key idea is to explicitly exploit the local
hexagonality structure to asymptotically approximate the solution using certain lattice sums. In
the limit of many spikes, we derive the effective spike density as well as the cluster radius. This
effective density is a solution to a certain separable first-order ODE coupled to an integral boundary
condition.

1. INTRODUCTION

Solutions of two-dimensional reaction-diffusion systems often exhibit hexagonally-arranged patterns. In this paper
we study a class of nonlocal problems in two dimensions that play an important role in pattern formation in PDE’s
and formation of hexagonal spike clusters. Our main motivation is to study two-dimensional spike clusters in the
Gierer-Meinhardt reaction-diffusion system [1], in the limit where the number of spikes is large. We consider the
following version of the GM system on all of R2 [1–3],

at = ε2∆a− µ(x)a+
a2

h
, 0 = ∆h− h+

a2

ε2
, x ∈ R2 (1.1)

Here, a and h represent activator and inhibitor concentrations, respectively, and we make the standard assumption
that the activator diffuses much faster than the activator, that is ε2 � 1. The function µ(x) is called a precursor [1],
and spike clusters form near the minimum of µ(x) [1–5]. A typical choice for µ(x) that we will use for illustration is

µ(x) = 1 + α |x|2 , α > 0. (1.2)

A typical spike cluster, computed using full numerical simulations of (1.1), is shown in Figure 1, corresponding to
steady-state of (1.1). The spikes form an almost-regular hexagonal lattice, but whose density is non-uniform. Our
goal is to describe this steady state analytically in the limit of large N, including the radius of the cluster and its
internal density. In particular, we will derive the effective spike density and spike heights (see also comparison to
analytical results in Figure 4). This extends in part the results in [5] from one dimension to two dimensions.

-5 0 5

-6

-4

-2

0

2

4

6

0 2 4 6 8
r

0

0.02

0.04

0.06

0.08

0.1

H

(a) (b) (c) (d)

FIG. 1. Cluster steady-state solution to (1.1) consisting of 20 spikes. Contour plot of a and h are shown in (a) and (b)
respectively. Parameter values are ε = 0.15 and µ(x) = 1 + 0.02 |x|2 . Computational domain was taken to be x ∈ (−15, 15)2;
increasing the computational domain did not change spike locations. (c): Centers of spikes from the PDE simulation compared
with centers generated by the reduced system (4.15). Dashed line denotes spike boundary computed asymptotically from (4.17).
(d): Spike height h(xj) versus |xj | . Comparison between full numerical simulation, the reduced system (4.15) and theoretical
prediction (4.17).
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As a warmup problem, we consider multi-spike solutions of the single elliptic PDE

0 = ∆u− u+ u2 + ε |x|2 (1.3)

in either one or two dimensions. Here, ε |x|2 is a small modulation (ε� 1) of the zero background state which acts
as a confinement well. This problem – with zero ε – has a very long history and was studied extensively by many
authors, see for example [6, 7] and references therein. The ground state consists of multiple spikes. Their locations
satisfy a set of algebraic equations that have the form

ax = −∇xk

(∑
K(|xj − xk|)

)
(1.4)

where K(r) = e−r in 1D and K(r) = K0(r) (Bessel K0) in 2d, and where a is an O(ε) constant (see Appendix A).
The key to our computations is that the kernel K(r) decays rapidly; its decay is sufficiently fast so that the

summation can be expanded in Taylor series locally.

2. SPIKE CLUSTERS FOR ELLIPTIC PDE (1.3) IN 1D

We start with the warmup problem (1.3) in one dimension. As shown in Appendix A, in the limit ε → 0, the
steady state to (1.3) consists of N spikes whose centers xj satisfy an algebraic system

∑
j 6=k

e−|xk−xj | xk − xj
|xk − xj |

∼ axk, k = 1 . . . N, (2.5)

where a = ε/6.
In the limit of large N, we parametrize: xk = x(s),where k = s ∈ [1, N ] . We then expand in Taylor series,

xk+l = x(s+ l) = x(s) + xsl +
xss
2
l2 + . . .

xj − xk = xsl +
xss
2
l2 where l = j − k;

|xk − xj | = xs |l|+
xss
2
l |l| (since xs > 0).

Define

u :=
dx

ds
≈ xs+1 − xs (2.6)

which measures the spike inter-distance. For a general F (r), we expand F (|xk − xj |) (xj − xk) to two orders as
follows:

F (|xk − xj |) (xj − xk) ∼ F (|ul|)ul + xss

(
1

2
l2F (|ul|) +

1

2
l2 |l|uF ′(|ul|)

)
Using the fact that xss = uxu, we obtain an approximation∑

j 6=k

F (|xk − xj |) (xj − xk) ∼ uxφ(u) (2.7)

where

φ(u) :=

∞∑
l=1

ul2 (F (|ul|) + luF ′(|ul|)) (2.8)

Upon using F (r) = e−r/r, we obtain

φ(u) = −
∞∑
l=1

ul2e−ul = −ue
−u(e−u + 1)

(1− e−u)3
. (2.9)
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FIG. 2. Left: steady state solution to the one-dimensional equation (2.5). Right: inter-spike spacing, comparison between
asymptotics (2.10) and the steady state of (2.5) computed numerically. Parameters are a = 0.1 and N = 50.

We finally obtain the ODE for the inter-spike distance u(x) :

du

dx
u
e−u(e−u + 1)

(1− e−u)3
∼ ax, (2.10a)

The solution to (2.10a) blows up in finite time at some point x = R. The density is given by ρ = 1/u, so that∫ R

−R

1

u
dx = N ; where u (±l) =∞. (2.10b)

This integral constraint along with the ODE (2.10a) fully determines u(x). To actually solve for u(x), we simply
integrate (2.10a) numerically starting with an initial condition u(0) = u0, then adjust u0 until the integral constraint
is satisfied. Figure 2 shows excellent agreement between the ODE (2.10) and the inter-spike distance obtained by
solving (2.5) numerically. To compute the numerical solution to (2.5), note that it corresponds to the steady state
of the ODE system

dxk
dt

= −axk +
∑
j 6=k

e−|xk−xj | sign (xk − xj) , k = 1 . . . N. (2.11)

We used the Euler method to evolve (2.11) until its steady state is reached.
We remark that the ode (2.10a) has an implicit solution

1

eu − 1
+

ueu

(eu − 1)
2 =

a

2

(
R2 − x2

)
, (2.12)

although the integral in (2.10b) does not appear to have an explicit form. For this reason, we used simple Euler
method to integrate (2.10a) directly to generate the continuum curve in Figure 2.

Finally, consider the scaling x = βx̂. Substituting into (2.10), let â = aβ2, R̂ = R/β, N̂ = N/β. Then the system
(2.10) is invariant under this scaling after dropping the hats. In other words, if we double N, we can quarter a and
retain the same spike density but on the domain double the size.

3. SPIKE CLUSTERS FOR ELLIPTIC PDE (1.3) IN 2D

We now consider the cluster solutions of (1.3) in two dimensions. As shown in Appendix A, the spike centers
satisfy an algebraic system ∑

j 6=k

K1(|xk − xj |)
xk − xj
|xk − xj |

= axk. (3.13)

where a ≈ 0.13 ε. Figure 3 shows a typical two-dimensional solution of (3.13). As in 1D, the solution to (3.13) is
computed by evolving the associated ODE whose steady state satisfies (3.13). Numerics indicate that this steady
state has a hexagonal latttice structure. While the overall density is clearly non-uniform, the local structrue is still
nearly hexagonal. Motivated by the numerics, we make a couple of key assumptions: (a) the lattice structure is
nearly-hexagonal at every position xk; (b) the steady state is nearly radially symmetric in the limit of large N. To
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FIG. 3. LEFT: steady state for (3.13) with N = 500 and a = 0.1. Dots represent the steady state xj . Dashed line represents
the theoretical boundary of the steady state in the continuum limit N � 1. RIGHT: scatter plot of the average distance u(xj)
from a point to any of its neighbours, as a function of |xj | . Solid curve is the analytical prediction of the continuum limit as
given by equations (3.14).

this end, in analogue to the one-dimensional problem, we define u(xk) to be the lattice spacing at xk, that is, the
distance from xk to its closest neighbour:

u(xk) = min
j 6=k
|xj − xk| .

Assuming near radial symmetry, we write u(xk) ∼ u(r), r = |xk| . In Appendix C we then derive the following
approximation:

∑
j 6=k

−K1(|xk − xj |)
xk − xj
|xk − xj |

∼ urφ2(u)

where φ2 is given in (5.29). Therefore we obtain the ODE for lattice spacing:

du

dr
φ2(u) = −ar (3.14a)

As in one-dimension, we assume the lattice has radius R with u(r) → ∞ as r → R−. Since there are in total N
lattice points, the analogue of (2.10b) for a two-dimensional hexagonal lattice then becomes

N =
2√
3

∫ R

0

(
1

u(r)

)2

2πrdr. (3.14b)

We then solve (3.14a) subject to the constraint (3.14b) to obtain the lattice spacing u(r) as well as the lattice radius
R. Figure 3 illustrates a very good agreement between the continuum limit (3.14) and the full simulation of (3.13).

As in 1D, let’s examine how the density changes with a. By scaling r = βr̂ and letting â = aβ2, R̂ = R/β, N̂ =
N/β2, the equations (3.14) remain invariant after dropping the hats. In other words, if we double N, we can half a

and retain the same spike density but on a domain that has twice the area (whose radius is
√

2 larger).
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FIG. 4. LEFT: Steady state for (4.15) with N = 500, µ(x) = 1+0.025x2 and ε = 0.08. Dots represent the steady state xj ; their
size and colour are proportional to Hj . Dashed line represents the theoretical boundary of the steady state in the continuum
limit N � 1. MIDDLE: scatter plot of the average distance u(xj) from a point to any of its neighbours, as a function of |xj | .
Solid curve is the analytical prediction of the continuum limit as given by (4.17). RIGHT: Scatter plot of the Hj as a function
of |xj | and comparison to theory.

4. SPIKE CLUSTERS FOR GM MODEL IN 2D

We now consider study spike density for the GM system (1.1) in two dimensions. In Appenedix B, we derive the
following reduced system for a steady state consisting of N spikes:

Hk ∼ µkH2
k

∫
w2

2π
log ε−1 +

∑
j 6=k

µjH
2
jK0 (|xk − xj |)

∫
w2

2π
(4.15a)

0 =
∇µk
µk

1

2
+

1

Hk

∑
j 6=k

µjH
2
jK
′
0 (|xk − xj |)

xk − xj
|xk − xj |

∫
w2

2π
(4.15b)

Here, xj is the location of j-th spike and µj = µ (xj) and Hj ∼ h(xj).

Hkα =
µkH

2
k

η
+
∑
j 6=k

µjH
2
jK0 (|xk − xj |) ,

0 =
∇µk
2µk

α+
1

Hk

∑
j 6=k

µjH
2
jK
′
0 (|xk − xj |)

xk − xj
|xk − xj |

where α =
2π∫
w2

We start with estimating ∑
j 6=k

µjH
2
jK0 (|xk − xj |) ∼ µ(r)H2(r)φ1(u)

where φ1 is given in Appendix C, equation (5.28). We therefore obtain

H(x) ∼ α

(log ε−1 + φ1(u(x)))

1

µ(x)
(4.16)

Applying identity (5.27) from Appendix C we approximate∑
j 6=k

µjH
2
jK
′
0 (|xk − xj |)

xj − xk
|xj − xk|

∼ µH2urφ2(u) +
(
µH2

)
r
φ3(u)
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so that

µH2urφ2 +
(
µrH

2 + 2µHHr

)
φ3 = H

µ′(r)

2µ(r)

2π∫
w2

Upon substituting (4.16) and simplifying we finally obtain

u′(r) =
µ′(r)

µ(r)
f(u) (4.17a)

where

f(u) :=

(
φ3(u) +

(
φ1(u) + log ε−1

)
/2
) (

log ε−1 + φ1 (u)
)

((log ε−1 + φ1 (u))φ2 (u)− 2φ′1 (u)φ3 (u))
(4.17b)

As in Section 3, we seek solutions to (4.17a) which blow up at some point r = R, and we suppliment this ODE by
the density constraint given by

N =
2√
3

∫ R

0

(
1

u(r)

)2

2πrdr; u(r)→∞ as r → R−. (4.17c)

Together, equations (4.17) constitute the continuum limit of large N for the reduced system (4.15).
Figure 5 shows the plot of the function f(u) with ε = 0.15. It has a pole, and is increasing to the right of its

right-most root, which we denote by umin. As a result, it is easy to see that the solution to (4.17) exists for any N ,
with u(r) ≥ umin.
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Figure 4 illustrates an excellent agreement between the continuum limit (4.17) and direct numerical solution of
the reduced system 4.15.

5. DISCUSSION

In this paper, we derived the continuum-limit description of the cluster steady state for the Gierer-Meinhardt
model in two dimension. In our computation, we made a key assumption that the lattice structure is locally nearly
hexagonal, and we explicitly used this assuimption when summing up the relevant sums. A different lattice structure
(say square) would lead to different spike density. The hexagonality of the lattice is based purely on observing
numerical simulations. It remains an open question to rigorously show that the lattice structure is indeed locally
hexagonal.

Recently in [8, 9], the two-dimensional lattice density for vortices in BEC was derived. The analysis there relies on
integral equations, and the results do not depend on the local structure of the lattice (even it it does happen to be
hexagonal). It also borrows nonlocal techniques developed recently in the context of aggregation model of biological
swarming; see e.g. [10–13] and references therein. By contrast, our derivations expand the lattice structure locally
and make explicit use of the hexagonal lattice structure.

Even though the analysis and results here are completely different, the systems we considered in this paper are
closely related to some of the recent work in the swarming literature. For instance equation (2.11) is exactly the
same model as was considered in the paper [11] (see equation (3.1) there), but with a very different scaling: in our
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context, the constant a is very small and scales like 1/N2, while the radius of the swarm scales like N . By contrast,
the analysis [11] applies when a is O(1), and the resulting swarm has O(1) radius independent of N. To borrow the
nomenclature from the swarming/statistical physics literature [14, 15], the latter corresponds to the “confining” (or
“catastrophic”) regime while the former is “H-stable”. The steady states we analyze here fall into the “H-stable”
regime due to a very weak contributions of the far-away neighbours, and requires an alltogether different analysis.

In a recent paper [5], we analysed a one-dimensional cluster solution for the GM model. There, a one-dimesional
analogue of equations (4.17) was derived. The key difference is that a 1D steady state disappeared for sufficiently large
N. In other words, there was a maximum N = Nmax for which the continuum solution was possible. By contrast, the
continuum limit in two dimensions appears to exist for arbitrary large N. However numerical simulations of the full
PDE system (1.1) show that if N is too large, spikes disappear through what appears to be a competition instability
[16, 17]. So far we were unsuccessful in deriving the critical thresholds for stability. This is a key open problem for
future research.

Finally, we have assumed in our analysis that µ(x) is radially symmetric, which leads to (nearly) radially symmetric
spike clusters. It would be very interesting to extend our analysis to the case of non-radially symmetric µ(x), which
leads to non-radial clusters.

APPENDIX A: MULTISPIKE GROUND STATES FOR A SINGLE PDE

We start by deriving the reduced system for a PDE

0 = ∆u− u+ u2 + εf(x) (5.18)

with an arbitrary function f(x), assuming that ε is small. The computation is relatively standard, see for example
[6].

We assume that u has the form

u =
∑
j

w(x− xj) +R

where R� 1, with w(y) being the ground-state solution satisfying

∆w − w + w2 = 0, w (y)→ 0 as |y| → ∞. (5.19)

It is well-known that the solution to (5.19) is unique, and w (y) decays exponentially as |y| → ∞.
Assume that xj For x near xk, let y = x− xk. We then obtain

0 ∼ ∆R−R+ 2wkR+ f(y + xk) +
∑
j 6=k

2w(x− xk)w(x− xj).

Multiply by ∇wk(x− xk) and integrate to obtain

0 ∼
∫
ε∇yw(y)f(y + xk)dy +

∑
j 6=k

∫
2w(x− kk)∇w(x− xk)w(x− xj)dx.

Simplify ∫
f(y + x)∇w(y) = −

∫
∇f(y + x)w(y)dy

and evaluate ∫
2w(x− xk)∇xk

w(x− xk)w(x− xj)dx = −∇xk

∫
w2(x− xk)w(x− xj)dx

and furthermore, ∫
w2(x− xk)w(x− xj)dx ∼

∫
w2(y)w(y + d)dx, where d = xk − xj . (5.20)

Next we simplify (5.20), in one or two dimensions.
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One dimesion. For large |d| , we have w(y + d) ∼ 6e−|d|e−y so that∫
w2(y)w(y + d)dx ∼ 6e−|d|

∫
w2e−y = 6e−|d|

∫
(w − w′′)e−y = 6e−|d|(w′ + w)e−y|∞−∞ = 72e−|d|. (5.21)

In conclusion, we obtain, in 1D,

0 ∼ −ε
∫
f ′(y + x)w(y)dy − 72

∑
j 6=k

d

dxk

(
e−|xk−xj |

)
. (5.22)

Finally suppose that f(x) = x2. Then
∫
f ′(y + x)w(y)dy = 12εx and (5.22) becomes (2.5) with a = ε/6.

Two dimensions. To simplify (5.20) in 2D, assume |d| � 1 and expand in the far-field,

w(y + d) ∼ B0 |y + d|−1/2 e−|y+d|.

The constant B0 ≈ 10.7 is estimated by numerically evaluating B0 ≈ w(r)r1/2er for large r (say r = 10). We then
estimate ∫

w2(y)w(y + d)dx ∼ |d|−1/2 e−|d|B0

∫
w2(y)e−y1dy

The integral
∫
w2(y)e−y1 ≈ 54.45 is also evaluated numerically. We thus obtain∫

w2(y)w(y + d)dx ∼ C0K0(|d|), |d| � 1

where

C0 =
1√
π/2

B0

∫
w2(y)e−y1dy ≈ 464.84.

(we used K0(r) ∼ (π/2)
1/2

r−1/2e−r for large r). In summary, we obtain

0 ∼ −ε
∫
∇f(y + x)w(y)dy − C0∇xk

∑
j 6=k

K0(|xk − xj |). (5.23)

Finally, for f(x) = |x|2 , we evaluate
∫
∇f(y+x)w(y)dy = 2x

∫
w(y)dy. Then (5.23) yields (3.13) with a =

2
∫
w(y)
C0

ε ≈
0.13 ε.

APPENDIX B: REDUCED SYSTEM FOR MULTIPLE SPIKES IN GM MODEL

Here, we derive the reduced equations of motion the GM model (1.1). This calculation is relatively standard, see
for example [18–20], and we include it here for completeness. We consider a solution to (1.1) that consists of N
“spikes”, corresponding to delta-type concentrations of the activator. The reduced system consists of 2N ODE’s for
spike centers coupled to N algebraic equations related to spike heights.

Let xk, k = 1 . . . n be the centers of N spikes. Near the spike k, we expand

a = U(y) + εW (y) +O
(
ε2
)

h = H(y) + εP (y) +O
(
ε2
)

where

y =
x− xk(ε2t)

ε
.

At leading order we get

0 = ∆U − µkU + U2/H

0 = ∆H
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Then H is constant obtained via matching to the outer region and we obtain

H ∼ Hk, U = Hkµkw(
√
µky), (5.24)

where µk = µ(xk); Hk will be obtained via matching to outer region below, and w is the ground state satisfying

∆w − w + w2 = 0; w is radially symmetric; w(y)→ 0 as |y| → ∞. (5.25)

To determine Hk and P , we match to the outer region. We write

h(x) ∼
∑

G(x, xj)Sj

Here, G(x, xj) is the Green’s function satisfying

∆G−G+ δ(x− xj) = 0, x, xj ∈ R2

and

Sj = H2
j µj

∫
R2

w2(z)dz.

Recall that

G(x, xj) =
1

2π
K0(|x− xj |)

with the singularity behaviour

G(x, xj) = − 1

2π
log |x− xj |+

log 2− γ
2π

+ o(|x− xj |).

Expanding h to two orders and matching to Hk and P we then obtain

Hk =
∑
j

H2
j µjGkj

∫
w2

P = y ·
∑
j

H2
j µj∇Gkj

∫
w2

Here,

Gkj =

{
1
2πK0(|xk − xj |), if k 6= j
1
2π log ε−1 + log 2−γ

2π , if k = j
,

∇Gkj =

{
1
2πK

′
0(|xk − xj |) xk−xj

|xk−xj | , if k 6= j

0, if k = j

Next-order equations are

−x′k∇yU = ∆W − µkW − Uy · ∇µk + 2W
U

Hk
− U2

H2
k

P

where ∇µk = ∇µ(xk). Multipy by ∇U0 and integrate to obtain:

−x′0
∫
|∇U |2 = −

∫
y · ∇µkU∇U −

∫
U2

H2
P∇U

= ∇µk
∫
U2

2
+

1

3H2
k

∫
U3∇P

Using the identities [18]: ∫
w3∫
w2

= 3,

∫
|∇w|2∫
w2(z)dz

= 1/2,

∫
w2 = 31.04,
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we obtain

−x
′
k(ε2t)

2
=

1

2

∇µk
µk

+H−1k ∇P.

so that the steady state satisfies

0 =
1

2

∇µk
µk

+H−1k

∑
j

H2
j µj∇Gkj

∫
w2

Hk =
∑
j

H2
j µjGkj

∫
w2

APPENDIX C: ESTIMATING LATTICE SUMS

The sum
∑
j 6=k SjK0 (|xk − xj |) .

Assume that near xk, the points xj are given by

xj ∼ xk + ul,where l = l1 + eiπ/3l2, (l1, l2) ∈ Z2.

Here, u > 0 is distance from the center xk to its six neighbours. We then estimate

∑
j 6=k

SjK0 (|xk − xj |) ∼ S(xk)φ1(u),

where

φ1(u) =
∑
j 6=k

K0 (u |l|)

The sum
∑
j 6=k S (xj)F (|xj − xk|) (xj − xk) , where F (r) = K ′0(r)/r.

Assume that near xk, the points xj are given by

xj = xk + ul + εl2, where |ε| � 1 and l = l1 + eiπ/3l2, (l1, l2) ∈ Z2

That is: (a) the lattice is locally nearly hexagonal; (b) Locally, the lattice is a small conformal deformation of a
perfect hexagonal lattice. Because of radial symmetry, we may further assume without loss of generality, that xk lies
on the real axis and ε is real. Expanding to two orders we have

|xj − xk| = u |l|+ ε |l|Re(l)

F (|xj − xk|) (xj − xk) = (F (u |l|) + ε |l|Re(l)F ′ (u |l|))
(
ul + εl2

)
= ulF (u |l|) + ε

[
l2F (u |l|) + |l|Re(l)ulF ′ (u |l|)

]
and

S(|xj |) ∼ S(r) + uRe (l)S′(r)

where r = |xk| . Therefore

S(xj)F (|xj − xk|) (xj − xk) = S(r)ulF (u |l|) + εS (x)
[
l2F (u |l|) + |l|Re(l)ulF ′ (u |l|)

]
+ uRe (l)S′(r)ulF (u |l|)

and summing over all l we obtain∑
j 6=k

S (xj)F (|xj − xk|) (xj − xk) ∼ εS (r)
∑′ [

l2F (u |l|) + |l|Re(l)ulF ′ (u |l|)
]

+ S′(r)
∑′

u2 Re (l) lF (u |l|)

where
∑′

denotes the double sum (l1, l2) ∈ Z2\ {(0, 0)} .
Finally, we have:

ε =
1

2

du

dl
=

1

2

du

dr

dr

dl
=

1

2
uxu



11

We therefore conclude: ∑
j 6=k

S (xj)F (|xj − xk|) (xj − xk) = S′(r)φ3(u) + S (r)uxφ2(u)

where

φ3(u) = u2
∑

Re (l) lF (u |l|)

φ2(u) =
u

2

∑[
l2F (u |l|) + lRe(l) |l|uF ′ (u |l|)

]
Substituting F (r) = K′(r)

r and simplifying using K ′′(r) = K(r)−K ′(r)/r then yields

l2F (u |l|) + lRe(l) |l|uF ′ (u |l|) = l2
K ′(r)

r
+ lRe(l)r (K ′/r)

′

= − |l|2K ′(r)/r + lRe(l)K(r)

In summary, ∑
j 6=k

SjK0 (|xk − xj |) ∼ S(xk)φ1(u), (5.26)

∑
j 6=k

S (xj)K
′
0 (|xj − xk|)

xj − xk
|xj − xk|

= S′(r)φ3(u) + S (r)uxφ2(u) (5.27)

where

φ1(u) =
∑
j 6=k

K0 (u |l|) (5.28)

φ2(u) =
1

2

∑
[− |l|K ′0(u |l|) + ulRe(l)K0(u |l|)] (5.29)

φ3(u) = u
∑

Re (l)
l

|l|
K ′0 (u |l|) , (5.30)

φ′1(u) =
∑
j 6=k

|l|K ′0 (u |l|) . (5.31)
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