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Abstract. We propose a simple PDE model which exhibits self-replication of spot solutions in any
dimension. This model is analysed in one and higher dimensions. In one dimension, we rigorously
demonstrate that the conditions proposed by Nishiura and Ueyama for self-replication are satisfied.
In dimension three, two different types of replication mechanisms are analysed. The first type is
due to radially symmetric instability, whereby a spot bifurcates into a ring. The second type is
non-radial instability, which causes a spot to deform into a peanut-like shape, and eventually split
into two spots. Both types of replication are observed in our model, depending on parameter choice.
Numerical simulations are shown confirming our analytical results.

1. Introduction

In this paper we present a simple non-autonomous PDE which exhibits the self-replication of a
spot solution in R

N , N ≥ 1. The PDE is

(1) ut = ∆u − u +
(1 + a|x|q)up

∫

RN (1 + a|x|q)up+1
, x ∈ R

N ; ∇u(0, t) = 0

Examples of this phenomenon are shown in Figure 1. Self-replication was first observed by Pearson
in the Gray-Scott model [23]. Since then, many theoretical and numerical studies have looked
at self-replication in both one and two spatial dimensions for the Gray-Scott model in different
parameter regimes ([25], [24], [21], [22], [19], [3], [2], [14], [4]). Many other reaction-diffusion
systems have been found to exhibit self-replication behaviour. These include the ferrocyanide-
iodide-sulfite system ([11]), the Belousov-Zhabotinsky reaction ([12], [18] ), the Gierer-Meinhardt
model ([16], [9], [15]), the Bonhoffer van-der-Pol-type system ([6], [7]) and the Brusselator [13].

In an effort to classify reaction-diffusion systems that can exhibit pulse self-replication, Nishiura
and Ueyema, motivated by the numerical study of the Gray-Scott model, proposed a set of necessary
conditions for this phenomenon to occur in [21]. Roughly stated, these conditions are the following:

The disappearance of the ground-state solution due to a fold point (saddle-node bifurca-
tion) that occurs when a control parameter is increased above a certain threshold value.

(S1)

The existence of a dimple eigenfunction at the fold point, which is believed to be responsi-
ble for the initiation of the self-replication process. By definition, a dimple eigenfunction
is a radially symmetric eigenfunction Φ(|x|) associated with a zero eigenvalue at the fold
point, that decays as |x| → ∞ and that has a positive zero (See figure 3).

(S2)

Stability of the steady-state solution on one side of the fold point.(S3)

The alignment of the fold points, so that the disappearance of K ground states, with
K = 1, 2, 3, . . ., occurs at asymptotically the same value of the control parameter.(S4)
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Figure 1. (a): Numerical simulation of (1) in one dimension with p = 2, q = 2, a = 0.08. Self-
replication is observed. (b): Numerical simulation of (1) in three dimensions, showing two different
types of self-replication. The snapshots show the cross-section of the solution in the first quadrant
x, y, z > 0. The surface corresponds to the contour u = 0.6 max(u); cross-sections x = 0 and y = 0
are shown in using colormap (online) with red corresponding to max(u) and blue to 0.6 max(u).
First row: Spot-to-spot bifurcation due to instability non-radial eigenfunction. The parameters are
p = 2, q = 1.3 and a = 0.5. Second row: spot-to-ring bifurcation due to radial instability. The
parameters are: p = 2, q = 3, a = 0.035. The spot-to-ring bifurcation is followed by ring-to-spots

bifurcation.

Conditions (S1) (S2) and (S3) are sufficient for self-replication to occur; condition S4 is needed
for a cascade of self-replication to take place but is not necessary for a single self-replication event.
These conditions were first verified numerically for a certain regime of the Gray-Scott model in
[21], [5]. In a different regime, the Gray-Scott model reduces to the so-called core problem [19], [4],
[14]. After a scaling, the core problem is

(2)







Urr + N−1
r

Ur − U + U2V = 0; Vrr + N−1
r

Vr − aU2V = 0;
V (0) = 1; V ′(0) = 0 = U ′(0)
V, U > 0; U → 0 as r → ∞

The existence of a fold point of (2) in one dimension was shown numerically in [19]. This was
proven analytically in [4]. On the other hand, conditions S2 and S3 were verified only numerically
for (2); up to this day it is an open question to verify them analytically. There are few analytical
results for (2) in two or three dimensions (but see [19] for some partial results).

In this paper we show analytically that the simple model (1) can exhibit self-replication in any
dimension, for some parameter values of p, q as a is sufficiently increased from zero. We analytically
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verify conditions S1 to S3. In particular, we show that these conditions hold provided that

(3)
p > 1 and q >

(p − 1)N

2
if N = 1 or 2

1 < p <
N + 2

N − 2
and q >

(p − 1) (N − 1)

2
if N ≥ 3.

Under these conditions, self-replication in (1) will occur as the parameter a is increased past some
critical value ac. In one dimension, the bifurcation structure and the self-replication mechanism is
analogous to what has been observed for the reduced Gray-Scott model (2); but unlike the studies
[19], [4], we are able to verify not only condition S1 but also conditions S2 and S3 analytically.

In dimensions two and three, the self-replication conditions (S1-S3) leads to a radially symmetric
bifurcation, whereby a spot bifurcates into a ring that concentrates on the surface of N -dimensional
ball. However there is another self-replication mechanism that can occur. Namely, a spot can
become unstable with respect to non-radial perturbations of mode 2. Numerically, this leads to
what we shall call peanut splitting, whereby a radially symmetric spot starts to aquire a peanut-like
shape, which eventually pinches off and becomes two spots. We study both types of self-replication
of (1) in three dimensions; we demonstrate that both are possible depending on choice of parameters
(see Figure 1(b)). Analytically, we show that when N = 3, p = 2 and q = 1, the spot will undergo
peanut splitting if a is sufficiently large; whereas no spot-to-ring bifurcation is expected for any
value of a. On the other hand, if p = 2, q > 1, both radial and nonradial splitting is possible. For
q sufficiently large, the radial splitting dominates as illustrated in Figure 1(b) row 1. To the best
of our knowledge, this is the first rigorous demonstration of self-replication in three dimensions.

The summary of the paper is as follows. In §2 we study the steady state problem associated with
(1). The main result is Theorem 1, which proves the boundedness of the bifurcation diagram under
assumptions (3), thus showing the existence of the fold point and verifying condition (S1). In §3.1
we study radial stability, and analytically verify conditions (S2) and (S3). This fully characterizes
self-replication in one dimension, and also characterizes radial replication in dimensions >1. In §3.2
we address non-radial instability to complete the classification of self-replication phenomena in three
dimensions. In §4 we discuss some generalizations, compare to other models with self-replication,
provide some open problems and conlcuding remarks.

2. Analysis of the ground state.

We start our analysis by considering the radially symmetric ground state solution of (1). After
a scaling, the ground state solution satisfies satisfies

(4) urr +
N − 1

r
ur − u + up (1 + arq) = 0, u′(0) = 0, u → 0 as r → ∞, u > 0.

It is well known that the steady state problem (4) with a = 0 admits a unique solution when
p ∈ (1, p∗) where

(5) p∗ =

{

(N + 2) /(N − 2), N ≥ 3
∞, N ≤ 2



4 CHIUN-CHUAN CHEN AND THEODORE KOLOKOLNIKOV

2.9 2.8
2

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.02 0.04 0.06 0.08 0.1 0.12 0.14
a

s

(a)

N = 1

0.75
1

1.251.5

2

3

0

1

2

3

4

0.2 0.4 0.6 0.8 1
a

N = 3

s

(b)

Figure 2. Bifurcation diagram for (4) of a vs. s = u(0) with p = 2 and for several different
values of q as indicated. (a) N = 1. There is a fold point for all values of q. The bifurcation graph
changes its topology at around q = 2.8, but is bounded for all q. (b) N = 3. Fold point is indicated
by an empty circle. Nonradial instability threshold is indicated with filled circle. If q > 2.1 then
fold-point instability dominates. If q < 2.1 then non-radial instability dominates. The fold point
exists if q > 1; the bifurcation graph is unbounded if q < 1.

is the critical exponent [1], [17]. However in general the solution is not unique when a 6= 0. As
an example, consider (4) with N = 3, p = 2. The bifurcation diagram s = u(0) vs. a is computed
numerically on Figure 2(b) for several different values of q. When q > 1, the bifurcation curve is
bounded and there is a fold point at some a = ac beyond which there are no solutions. This fold
point is precisely Condition S1 which we wish to prove. On the other hand, if q ≤ 1 then a solution
exists for all a > 0 with s → 0 as a → ∞. The main goal of this section is to classify under which
conditions on p, q, N the bifurcation graph is bounded in the (a, s) plane – and therefore exhibits
a fold point. The following theorem provides these bounds.

Theorem 1. Given a ≥ 0, let u(r) be a solution to (4) and let

(6) s := u(0).

Define

q? :=
N(p − 1) − 2(p + 1)

2
; q? :=

(p − 1)N

2
;(7a)

qc :=
(p − 1) (N − 1)

2
.(7b)

The following holds.

(i) Suppose that p ∈ (1, p?) where p? is the critical exponent given by (5) and q ≥ 0. Given any
constant a0 > 0, there exists a constant s0 = s0(a0, p, q) such that s < s0 whenever a ≤ a0.

(ii) Suppose that either N ≥ 3 and q > qc or else N ≤ 2 and q > q?. There exists a constant a0

such that a < a0.
(iii) If N ≥ 3 and q? < q < qc and q ≥ 0 then the solution to (4) exists for all a ≥ 0, provided

that 1 < p < p?.



SIMPLE PDE MODEL OF SPOT REPLICATION IN ANY DIMENSION 5

When (i) and (ii) simultaneously hold, the bifurcation graph in the positive (a, s) plane is
bounded. Note that that q? < 0 iff p < p? and moreover q? < qc < q?. In particular, state-
ments (i), (ii) hold simultaneously in dimension N ≥ 3 provided that q > qc and p ∈ (1, p?); they
hold in dimension N = 1 or 2 provided that q > q? and p > 1. In conclusion, the bifurcation
curve is guaranteed to have a fold point whenever (3) is satisfied, which proves the key
condition (S1) for self-replication. This is in agreement with numerics as shown on Figure 2(a),
where N = 3, p = 2 < p? = 5 : indeed the bifurcation curve is bounded and the fold point is
observed whenever q > 1 = qc. On the other hand the bifurcation curve is unbounded when q ≤ 1;
this is in agreement with statement (iv) of Theorem 1.

Remark 1. We think that q? in (ii) can be replaced by qc and the condition N ≥ 3 can be
eliminated in (ii). However we were unable to prove that.

Remark 2. We also conjecture that the condition p < p? is not necessary in (iii); it is sufficient
that q? < q < qc for (iii) to hold.

The proof of (ii) and (iii) of Theorem 1 is an immediate consequence of the following lemma.

Lemma 2. Consider the problem

(8) u′′ +
N − 1

r
u′ − u + (ε + rq)up = 0; u′(0) = 0, u > 0; u → 0 as r → ∞.

Suppose that 1 < p < p?, and let q?, q
?, qc be as given by (7). We have the follows results.

(i) Suppose that q satisfies

(9) q > qc if N ≥ 3 or q > q? if N ≤ 2.

Then there exists ε0 = ε0(p, q, N) such that (8) has no solution for all 0 ≤ ε < ε0.
(ii) Supopse that N ≥ 3 and q = qc and ε = 0. Then (8) has no solution.
(iii) Suppose that N ≥ 3 and q? < q < qc. Then the solution to (8) exists for all ε > 0. Such

solution is unique if ε = 0.

We now give proofs of Theorem 1 and Lemma 2.
Proof of Theorem 1. We first show (i). Consider the initial value problem

(10) vrr +
N − 1

r
vr − v + (1 + arq)vp = 0, v′(0) = 0, v(0) = s.

Rescale
v = sV ; r = τy.

where τ is to be specified. Then the equation for V is

(11) Vyy +
N − 1

y
Vy − τ 2V + (τ 2sp−1 + aτ q+2sp−1yq)V p = 0; V ′(0) = 0, V (0) = 1.

Choosing τ = s−(p−1)/2, we then obtain

(12) Vyy +
N − 1

y
Vy + V p − ε1V + ε2y

qV p = 0; V ′(0) = 0, V (0) = 1.

where

(13) ε1 = s−1/(p−1); ε2 = as−q/(2p−2).
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Now consider the limiting problem

(14) V0yy +
N − 1

y
V0y + V p

0 = 0; V0(0) = 1, V ′
0(0) = 0.

In Lemma 8 (see Appendix C) we show that for p ∈ (1, p?) , V0 becomes negative at some y = y0.
In particular, there exists y1 > y0 and C1 > 0 such that v0(y1) < −C1 < 0. By continuity of
solutions to initial value problem with respect to parameters, V can be made arbitrary close to V0

by choosing any sufficiently small ε1,ε2. In particular, there exists a ε = ε(p, q) > 0 such that for
all ε1, ε2 < ε, we have |V (y1) − V0(y1)| < C1/2 =⇒ V (y1) < 0 . Now given a0 > 0 and for any

0 < a < a0, note that ε1, ε2 < ε whenever s > s0, where s0 := max
(

ε−(p−1), (ε/a0)
−2(p−1)/q

)

. In

this case, v has a root and hence no solution to (4) exists when a < 1 and s > c1. This proves (i).
To prove (ii) we apply Lemma 2 after a change of variables u → a1/(1−p)u. Then (4) becomes (8)

with ε = 1/a. Statement (i) of Lemma 2 immediately yields the desired result. The proof of (iii)
follows from statement (iii) of Lemma 2. �

Proof. of Lemma 2. We start with the nonexistence results (i) and (ii) which are proven in
Steps 1 to 4. Result (iii) is proven in Step 5.

Step 1. We first derive the following key identity:

(15)

∫ ∞

0

rN−1up+1 [ε − c1r
q] > 0

where

c1 =

{ 2
p+1

(q − qc), N ≥ 3
2

(p+1)N
(q − q?), N ≤ 2.

In one and two dimensions, this is a consequence of Pohozhaev-type inequalities as we now show.
First, multiply (8) by rN−1u and integrate by parts to obtain

(16) −
∫ ∞

0

rN−1u′2 −
∫ ∞

0

rN−1u2 +

∫ ∞

0

rN−1 (ε + rq) up+1 = 0

Next, multiply (8) by rNu′ and integrating by parts to get:

(17)
(

−1 +
N

2

)
∫ ∞

0

rN−1u′2 +
N

2

∫ ∞

0

rN−1u2 − N + q

p + 1

∫ ∞

0

rN−1+qup+1 − ε
N

p + 1

∫ ∞

0

rN−1up+1 = 0.

Combining (16) and (17) we obtain
∫ ∞

0

rN−1up+1

[

ε − 2q − (p − 1)N

N (p − 1)
rq

]

=
2 (p + 1)

N (p − 1)

∫ ∞

0

rN−1u′2

This proves (15) in the case N = 1, 2. To obtain a sharper inequality for dimensions N ≥ 3, we
derive another identity as follows. Differentiating (8) with respect to r we obtain

(18)
1

rN−1

(

rN−1u′′
)′ − N − 1

r2
u′ − u′ + (ε + rq) pup−1u′ + qrq−1up = 0.
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Multiplying (18) by rN−1u integrating on [0,∞], and using integration by parts we get
∫ ∞

0

(

u′rN−1
)′

u′ + (N − 1) rN−3uu′ − rN−1uu′ + (rq + ε) rN−1pupu′ + qrq−1up+1rN−1 = 0.

Using (8) and rearranging we obtain

(19)

∫ ∞

0

rN−1 (p − 1) (rq + ε) upu′ + q

∫ ∞

0

rN−2+qup+1 = −(N − 1)

2

∫ ∞

0

rN−3
(

u2
)′

Note that
∫ ∞

0

rN−1+qupu′ = −N − 1 + q

p + 1

∫ ∞

0

rN−2+qup+1

and moreover,

(20) −
∫ ∞

0

rN−3
(

u2
)′

=

{

(N − 3)
∫ ∞

0
rN−4u2, N > 4

u(0)2, N = 3
> 0.

Thus we obtain

(21)

∫ ∞

0

rN−1up+1

[

ε −
(

2q − (p − 1)(N − 1)

p + 1

)

rq

]

= −
∫ ∞

0

rN−3
(

u2
)′

> 0, N ≥ 3.

This proves (15) for dimension N ≥ 3.
Step 2. Given q that satisfies (9), note that (15) holds with c1 > 0. We now show that there

exists a constant C such that u(0) > Cε−1/(p−1) for all sufficiently small ε. Let r0 = (1/c1)
1/qε1/q

be the root of ε − c1r
q = 0. Then

∫ ∞

0

rN−1up+1 [ε − c1r
q] =

∫ r0

0

rN−1up+1 [ε − c1r
q] −

∫ ∞

r0

rN−1up+1 [c1r
q − ε] > 0

so that
∫ r0

0

rN−1up+1 [ε − c1r
q] >

∫ ∞

r0

rN−1up+1 [c1r
q − ε] >

∫ r1+r0

r1

rN−1up+1 [c1r
q − ε] .

for any r1 ≥ r0. In particular, choose r1 to satisfy ε − c1r
q = −ε, i.e. r1 = (2/c1)

1/qε1/q. Then
ε ≥ ε − c1r

q on [0, r0] and c1r
q − ε ≥ ε on [r1, r1 + r0] so that

∫ r0

0

rN−1up+1 >

∫ r1+r0

r1

rN−1up+1.

It follows that rN−1up+1 cannot be increasing on [0, r0 + r1]. In particular, u cannot be increasing
on [0, C1ε

1/q] where C1 = (2/c1)
1/q + (1/c1)

1/q. Now consider the initial value problem

(22) 0 = ûrr +
N − 1

r
ûr − û + ûp(ε + rq); û(0) = ξ, û′(0) = 0.

We claim that there exists a constant C2 such that û is non-decreasing on the interval [0, C1ε
1/q]

whenever ξ < C2ε
−1/(p−1). In fact, note that by comparison principle, û < ξv where v solves

vrr + N−1
r

vr − v = 0, v′(0) = 0, v(0) = 1. It follows that û < ξC0 on [0, 1] where C0 = v(1) is some
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constant independent of ε, p, q, ξ. Now suppose that u is increasing on [0, rm] and has a maximum
at rm < C1ε

1/q. At such a point,

ε + rq
m =

1

ûp−1
− u′′(rm)

ûp
≥ C1−p

0

ξp−1

where C1 = C1−p
0 . It follows that

rm ≥
(

C1−p
0

ξp−1
− ε

)1/q

> C1ε
1/q

whenever

ξ <
C−1

0

(Cq
1 + 1)

1
p−1 ε1/(p−1)

.

Therefore û is increasing on [0, C1ε
1/q] whenever ξ < C2ε

−1/(p−1) where C2 =
C−1

0

(Cq
1+1)

1
p−1

. It follows

that u(0) > C2ε
−1/(p−1).

Step 3. We claim that there exists a number ξ0 such that for all ε < 1 and all ξ > ξ0, the
solution û to (22) crosses the x-axis. To see this, let

û = ξv; r = ξ
1−p

q+2 s.

Then (22) becomes

(23) vss +
(N − 1)

s
vs + sqvp = δ (v − εvp) ; v(0) = 1, v′(0) = 0

where

δ = ξ−(p−1
q+2

q).

Now by Lemma 8, the solution to (23) with δ = 0 crosses zero, provided that q satisfies (9). By

continuity, it follows that v also crosses zero for all δ < δ0, for some δ0 > 0; hence ξ > δ
−( q+2

q(p−1))
0 .

This proves the claim.

Step 4. Let ε0 = min

{

1,
(

C2

ξ0

)p−1
}

. Suppose that there exists solution to (8) with ε < ε0. Then

from Step 2, we have that u(0) > ξ0. But then by Step 3, u(x) will cross the x-axis, a contradiction
to the assumption that u > 0 for all x. This concludes the proof of statement (i). To prove (ii), note
that in the case ε = 0, q = qc, the identity (21) reduces to 0 = −

∫ ∞

0
rN−3 (u2)

′
, which contradicts

(20).
Step 5. We now discuss the existence results with ε = 0 and N ≥ 3. If p ∈ (1, p?) where p? = N+2

N−2

is the critical exponent, then the existence is an immediate consequence of a more general result
proven in [1], whose statement we reproduce here for reader’s convenience. Namely, consider the
more general problem

(24) 0 = urr +
N − 1

r
ur − u + uph(r)
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Then Corrollary 4.8 of [1] implies that solution to (24) exists provided that p ∈ (1, p?) and
|h (r)| < C + rq for some constant C > 0, 0 < q < qc, for all r ≥ 0. In fact, their proof carries
through in the more general case where p > 1, q? < q < qc and q ≥ 0 (note that q? < 0 iff p < p?).
For completeness, this proof is included in Appendix B. We remark that the necessary condition
q < qc follows immediately from (15) with ε = 0; the condition q? < q is the result of combining
Pohozhaev identities (16), (17) with ε = 0,

∫

rN−1u2 +

(

−1 +
N

2
− N + q

p + 1

)
∫ ∞

0

rN−1+qup+1 = 0

so that −1 + N
2
− N+q

p+1
> 0 ⇐⇒ q? < q.

Next we show uniqueness when q ∈ (q?, qc) and ε = 0. We follow the method outlined in [17],
which works for more general equations of the form (24). Make a change of variables

u(r) = v(s)g(r)

where s = s(r) is to be specified shortly. We have

ur = vs
ds

dr
g + vg′

urr = vss

(

ds

dr

)2

g + 2vsg
′ds

dr
+ vs

d2s

dr2
g + vg′′

so that (24) becomes

vss

(

ds

dr

)2

g + vs

(

2g′ds

dr
+

d2s

dr2
g +

N − 1

r

ds

dr
g

)

+ v

(

g′′ +
N − 1

r
g′ − g

)

+ vpgph = 0

Next choose s so that
d2s

dr2
= −ds

dr

(

2
g′

g
+

N − 1

r

)

so that
ds

dr
= g−2r−(N−1).

Also choose g so that

gph =

(

ds

dr

)2

g = g−3r−2(N−1)

g = h
1

−3−p r
2(N−1)
−3−p

We then get

(25) vss + F (r)v + vp = 0

where

(26) F (r) =

(

g′′ +
N − 1

r
g′ − g

)

g3r2(N−1); g = h
1

−3−p r
2(N−1)
−3−p .
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For the equation (25), Theorem 1 of [17] guarantees uniqueness, provided that F (r) satisfies the so
called Λ-property on (0,∞); that is F (r) has at most one maximum and no interior minimum. It
remains to verify this property.

Note that

qc − q? =
p + 3

2
This suggests a change of variables,

δ := (qc − q)
2

p + 3
.

Then

(27) q ∈ (q?, qc) ⇐⇒ δ ∈ (0, 1)

and using h = rq, F (r) becomes

F (r) = −c1r
2(−1+δ) − r2δ, where c1 := (N − 1 − δ)(N − 3 + δ)/4 > 0.

Provided that (27) holds, it is clear that F ′′(r) < 0, so that F (r) indeed has the Λ-property. Therefore
Theorem 1 of [17] proves the uniqueness of solution to (8) with ε = 0 provided q ∈ (q?, qc) . �

Theorem 1 provides conditions for when the bifurcation curve is bounded and thus shows an
existence of the fold point under the conditions (3). To obtain a more refined information, we
examine what happens to the bifurcation curve when u(0) is small. In this case, there may exist
solutions to (4) which attain maximum far away from the origin. These are studied using formal
asymptotics in the Appendix A. In dimensions N ≥ 2, this analysis also leads to the threshold
q = qc.

3. Stability analysis

We now study the stability of the time-dependent problem (1). It is convenient to consider a
more general problem,

(28)

{

ut = ∆u − u + uph(x; a)
c0

∫

up+1h(x; a)
; x ∈ R

N

∇u(0, t) = 0; u → 0 as |x| → ∞
where h(x) = h(r; a) is radially symmetric function depending on the parameter, a; the model (1)
corresponds to h = 1 + arq. The constant c0 is chosen so that the time-independent solution is the
ground state satisfiying

(29) u0rr +
N − 1

r
u0r − u0 + up

0h(r; a) = 0, u′
0(0) = 0, u0 → 0 as r → ∞, u0 > 0;

that is,

c0 =

∫

up+1
0 h.

Since the constant c0 can be scaled out by scaling u, its inclusion does not change the stability
properties.
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The condition ∇u(0, t) = 0 will be necessary to avoid translational instabilities. Equivalently,
we may simply restrict (28) to the positive quadrant Ω = {(x1, x2, · · ·xN ) : xi > 0, i = 1 . . . N}
and impose Neumann boundary conditions on ∂Ω. In this setting, the spike solution at the center
becomes a boundary spike at the corner of Ω.

When h = 1, the problem (28) and its generalizations are sometimes referred to as the shadow
system [28]. It naturally occurs in the high diffusivity ratio limit of some reaction-diffusion systems,
for example Gierer-Meinhardt model [27], and Gray-Scott model [20], [3]. The main feature of (28)
with h = 1 is that the integral term in the denominator stabilizes the large eigenvalues [28].

We begin our investigation by linearizing around the steady state. Set

u(x, t) = u(r) + eλtZ(x).

where u(r) satisfies (29) (here and below we drop the subscript 0 for convenience) and Z � 1.
Define

(30) LZ := ∆Z − Z + up−1hpZ.

Then we have

(31)

{

λZ = LZ − uph (p+1)
c0

∫

Zuph.

∇Z(0) = 0; Z → 0 as |x| → ∞
In one dimension the condition Z ′(0) = 0 assures that Z is even (i.e. radially symmetric) eigen-
function. In dimensions N ≥ 2, the problem (31) has radially symmetric eigenfunction; but may
also have non-radially symmetric modes. We start by studying radially symmetric perturbations.

3.1. Radially symmetric perturbations. In this section we examine the radial stability of (28).
That is, we consider solutions (Z, λ) to (31), where Z is restricted to the space of radially symmetric
functions. As before, let

(32) s = u(0; a)

where u(x; a) is the ground state solution to (29). We also assume that

(33) h(x; 0) = 1; p ∈ (1, p?) if N ≥ 3 or p > 1 if N = 1 or 2.

Then there is a unique value s0 with a = 0 which corresponds to the unique ground state solution
to (29) with h = 1 [17]. Now consider the bifurcation curve (s, a(s)) going through s = s0, a = 0.
Suppose that such curve has a fold point (Conditions (3) are sufficient when h = 1 + arq; see some
examples in Figure 2). Our main result here to show Condition (S3) in one dimension. In addition,
we will show that the even eigenfunction at the fold point of (31) corresponding to a zero eigenvalue
has a root; this will prove Condition (S2). In order to show this, we need to assume the following.

Condition 3 (Non-degeneracy Condition). Let us = ∂u/∂s where s is given by (32) The
following conditions are equivalent.

(i) The equation LZ = 0 admits a nonzero radially symmetric solution.
(ii) ∂a

∂s
= 0.

(iii) Lus = 0.
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Figure 3. (a) The “dimple” eigenfunction at the fold point, corresponding to the zero eigenvalue
of (1) with N = 1, p = 2, q = 2, a = 0.079. The shape of the eigenfunction is responsible for pulse
replication. (b) The “dimple” eigenfunction for the reduced Gray-Scott model (2), N = 1, taken
from [14].

Note that us satisfies

(34) Lus = −upha
∂a

∂s
.

It immediately follows that (ii) =⇒ (iii) =⇒ (i). It is unclear under what assumptions on h one
can show that (i) =⇒ (ii); generally, we have resorted to numerics to verify this numerically for
specific choices of h(r). We were unable to find any example of h(x; a) which would contradict the
Condition 3.

We now state the main result.

Theorem 4. Suppose that h(r; 0) = 1 and let s = u(0; a) where u(x; a) is the ground state solution
to (29). Supopse the bifurcation curve a = a(s) has the following properties:

(i) a(s0) = 0 for some s0;
(ii) a′(sc) = 0 for some sc and a′(s) 6= 0 for all s ∈ (sc, s0].
If s = sc then (31) admits a zero eigenvalue whose eigenfunction is given by Z = ∂u

∂s
|s=sc

.
Moreover Z(r) has at least one root r > 0. Thus Condition (S2) is proven.

Let s ∈ (sc, s0], and suppose Condition 3 is satisfied. Then the corresponding nonlocal eigenvalue
problem (31) is stable with respect to radially symmetric perturbations.

An example of the eigenfunction ∂u
∂s
|s=sc

with N = 1, p = 2, q = 2 is shown in Figure 3. The
pulse-splitting as observed in Figure 1(a) is due to its “upside-down Mexican-hat” shape.

Note that Theorem 4 provides a partial generalization of [28], where the case h = 1 was proven1.
Theorem 4 relies on the following lemma.

1In [28], the stabilify of the problem

ut = ∆u − u + up 1
∫

um

was considered; the case h = 1 in (28) corresponds to m = p + 1).
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Lemma 5. Suppose that the non-degeneracy condition 3 is satisfied. Consider the local radially
symmetric eigenvalue problem

(35) LΦ = λΦ; Φ is radially symmetric

and the corresponding nonlocal problem,

(36) λZ = LZ − uph
(p + 1)

c0

∫

Zuph; Z is radially symmetric

Suppose (35) admits a unique positive eigenvalue. Then the nonlocal problem (36) is stable, i.e.
it has no positive eignevalues. Suppose (35) admits at least two positive eigenvalues. Then the
nonlocal eigenvalue problem (31) is unstable, i.e. it admits at least one positive eigenvalue.

Proof. We will rely on the following identity:

(37) Lu = uph (p − 1) .

Note that the eigenvalue problem (36) is self-adjoint so that the eigenvalues are all purely real.
There are two cases to consider. First, suppose that

(38)

∫

Zuph 6= 0.

Then we may scale Z so that (36) becomes

(39) (L − λ)Z = uph;

∫

Zuph =
c0

p + 1
.

Define

f(λ) :=

∫

(L − λ)−1 [uph] uph.

Then (39) becomes

(40) f(λ) =
c0

p + 1
.

We compute

f ′(λ) =

∫

(L − λ)−2 [uph] uph

=

∫

{

(L − λ)−1 [uph]
}2

so that f is always increasing. Also note that f(λ) has a singularity at every positive eigenvalue of
the local problem (35). Suppose that (35) admits K positive eigenvalues, K ≥ 1. Then f(λ) has
K vertical asymptotes for positive λ. Now from (37) we note that

f(0) =

∫

u

p − 1
uph =

c0

p − 1

so that f(0) > c0
p+1

. Moreover, f(λ) → 0 as λ → 0. Thus there are precisely K−1 positive solutions

to (40).
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We have shown that if K ≥ 2 then (36) is unstable. It remains to show that (36) is stable when
K = 1. Then there are no positive eigenvalues of (36) that satisfy (38). It remains to consider
the case

∫

Zuph = 0; K = 1. But then Z satisfies LZ = λZ. Thus λ = λ1, where λ1 is the
unique positive eigenvalue of (35). Now multiplying (37) by Z and integrating, we then obtain
λ1

∫

uZ = 0. Since we assumed λk 6= 0, and u > 0, this means that Z must change sign. But this
contradicts the fact that Z is is the eigenfunction of the principal eigenvalue of the local problem
(35). �

Proof of 4. First, note that when a = 0, s = s0, we have h(x) = 1. In this case, the problem
LZ = 0 admits N independent solutions given by Zk = êku

′(r), k = 1 . . . N where êk is the k−th
unit vector and u(r) is the radially symmetric ground state solution to (29) with h = 1. Thus the
local eigenvalue problem LZ = λZ admits N eigenfunctions corresponding to a zero eigenvalue.
Moreover it is well known that u(r) is unique and is a decreasing function [17]. It follows that the
nodal set {x : Zk = 0} is precisely {x : xk = 0} , which divides R

N into exactly two connected sets.
By oscillation theorem there must be a positive eigenvalue whose eigenfunction has no root; such an
eigenvalue is unique and the corresponding eigenfunction is radially symmetric; all other radially
symmetric eigenfunctions correspond to strictly negative eigenvalues. This proves that (35) admits
precisely one positive eigenvalue when s = s0. Next, note that the eigenvalues are all real since 36
is self-adjoint. By Condition 3, the eigenvalues cannot be zero for s ∈ (sc, s0). By continuity it
follows that (35) admits exactly one positive eigenvalue for all s ∈ (sc, s0]. By Lemma 5, it then
follows that (36) is stable.

We now prove that us = ∂u/∂s is an eigenfunction of (36) corresponding to λ = 0 whenever
s = sc. Certainly Lus = 0 (see Condition 3). We now show that

(41)

∫

usu
ph = 0.

so that us is indeed an eigenfunction of (36) corresponding to λ = 0. This follows by multiplying
the identity (37) by us and then integrating by parts and using Lus = 0. Equation (41) also shows
that us has a strictly positive root since h, u > 0. �

3.2. Nonradial perturbations in three dimensions. Theorem 4 shows that the top branch of
the bifurcation curve is stable with respect to radially symmetric perturbations. This implies full
stability in one dimension. However in higher dimensions, non-radial instabilities can and do occur.
In this study such instabilities in three dimensions. As before, the starting point is the eigenvalue
problem (31). We then use spherical coordinates

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

∆Z = Zrr +
2

r
Zr +

1

r2

(

1

sin2 θ
Zφφ +

1

sin θ
(sin θZθ)θ

)

We decompose the eigenfunction as

Z(x, y, z) = Φ(r)Y m
l (θ, φ); l = 0, 1, . . . ; m = 0,±1 . . . ± l

where Y m
l are the spherical harmonics (See for example Chapter 10 of [26]). Now note that Y 0

0 = 1 so
that by orthogonality property of spherical harmonics, we have

∫

Y m
l = 0, l ≥ 1 and

∫

hZup−1 = 0.
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In particular the nonlocal term in (31) disappears so that Φ satisfies

λlΦ = Φrr +
2

r
Φr −

γ

r2
Φ + phup−1Φ; γ = l(l + 1), l ≥ 1.

Note that the case l = 0 corresponds to the radially symmetric eignefunctions whose stability was
already characterized by Theorem 4. The case l = 1 corresponds to translational modes; in such
a case Y m

1 = x/r, y/r or z/r. In particular, if l = 1, h = 1 then the solution is λ1 = 0, Φ = ur.
In general, λ1 is typically unstable. It is for this reason that we have imposed the condition
∇u(0, t) = 0, in (28); so the translational modes l = 1 are inadmissable (they do not satisfy
∇Z(0) = 0). So we need to only consider the stability of non-radial nodes l ≥ 2. To geth some
insight, let us consider the case h = 1 + arq with q ≥ qc. where qc is given in (7b). In Appendix
A.2 (for q > qc) and Appendix A.3 (for q = qc) we have constructed a ring-like solution with
s = u(0) → 0, either for q = qc or q > qc. Such solutions have the form

u(r) ∼ Cw(y) where y = r − r0, r0 � 1

where C = (arq
0)

1/(1−p) and w(y) is the one-dimensional ground state that satisfies (44). Since w
decays exponentially away from r0, to leading order we have 2

r
φr − γ

r2 φ ∼ O( 1
r0

) so that

(42) λlφ ∼ φyy − φ + pwp−1φ.

It is well-known that (42) admits a positive eigenvalue (in fact, it is a special case of 35 with N = 1
and h = 1). This proves that λl > 0 for l ≥ 2 if u(0) is sufficiently small. In particular, as the
bifurcation curve is traversed in the direction of decreasing s, the mode l = 2 eventually becomes
unstable. This is illustrated in Figure 2(b).

Due to ordering principle for the local eigenvalue problem LZ = λZ, the eigenvalues are ordered
λ2 ≥ λ3 ≥ λ4 ≥ · · · . However no such ordering exists between the radial eigenvalue λr and λ2,
since λr satisfies the non-local problem (31). This leads to the following question: As the bifurcation
curve is traversed starting with a = 0, u(0) = O(1), can the nonradial mode λ2 become unstable
before the radial mode λr? Since λr becomes unstable at the fold point, the answer is yes provided
that the bifurcation curve has no fold point. In particular, if the solution to (4) is unique for all
a > 0, then the fold point does not exist. We now show that this is the case when p = 2 and
q = qc = 1. Using Theorem 1 of [17], the solution is unique if the function F (r) given by (26) with
h(r) = 1 + ar satisfies the Λ property (as described below the equation (26)). After some algebra
we simplify to obtain

F (r) = −r−6/5 (1 + ar)−14/5

(

r4a2 + 2r3a + r2 +
2

5
ar +

4

25

)

F ′(r) =
−2

125
r−6/5 (1 + ar)−14/5 (

25r4a2 + 50r3a −
(

75a2 − 50
)

r2 − 45ar − 12
)

Now clearly, F → −∞ as r → 0+. So to show the Λ property, it suffices to show that F ′ = 0
has a unique solution. But this follows from Descartes rule of signs, since the coefficients in the
polynomial inside F ′(r) change sign precisely once.

To summarize, in the case p = 2, q = qc = 1, the radial mode λr is stable for all a > 0; however
the nonradial mode λ2 becomes unstable for sufficiently large a.
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When p = 2, q > 1, the bifurcation curve has a fold point, where λr = 0. In general it is unknown
whether λ2 becomes unstable before λr or vice-versa, as a is increased. However if p = 2 and q is
close to 1 then because of continuous dependence on parameters, λ2 is destabilized before λr as a is
increased. Numerically, we observe that the opposite is true if q is sufficiently large as the following
two tables illustrate.

p = 2, q = 1.3
a s λr λ2

0.0000 4.1895 -0.79 -1.03
0.1104 3.1895 -0.62 -1.02
0.2311 2.2895 -0.44 -0.67
0.4410 1.1395 -0.18 -0.02
0.4523 1.0895 -0.17 0.00
0.6044 0.3895 -0.005 0.59
0.6046 0.3395 0.005 0.65
0.5981 0.2895 0.014 0.71
0.4370 0.0895 0.026 0.98
0.1647 0.001 0.0067 1.19

p = 2, q = 3
a s λr λ2

0.0000 4.1895 -0.79 -1.037
0.0183 3.6395 -0.54 -0.99
0.0343 2.5895 -0.024 -0.3
0.0344 2.5395 0.0015 -0.27
0.0343 2.4895 0.027 -0.23
0.0326 2.1895 0.18 0.00
0.0314 2.0895 0.23 0.066
0.0229 1.6395 0.42 0.39
0.0128 1.1395 0.46 0.66
0.0003 0.001 0.033 1.19

For p = 2 and a given q, these two tables list the values of λr and λ2 as well as a = a(s),
computed numerically. Starting with a = 0 =⇒ s = 4.1895, we followed the bifurcation curve in
the direction of decreasing s. When q = 1.3, the fold point occurs at a ∼ 0.6046; numerics confirm
that the radial node λr crosses zero at that point (see also Theorem 4). However the non-radial
mode λ2 becomes unstable at around a ∼ 0.4523 on the top branch of the bifurcation curve. Hence
in this case, the mode λ2 becomes unstable before λr as a is increased from a = 0. When q = 3, the
opposite behaviour is observed: the fold point occurs at a ∼ 0.0344 whereas the non-radial mode λ2

is destabilized only on the bottom branch of the bifurcation curve. In particular the top branch of
the bifurcation curve is stable with respect to λ2 (and hence, stable with respect to all non-radial
perturbations due to the ordering property). This is also illustrated in Figure 2(b), where the
bifurcation curve is plotted along the threshold values of a when λr = 0 or when λ2 = 0, for several
different values of q with p = 2.

4. Discussion

In this paper, we have shown that even a single PDE with heterogenuity has the same self-
replication behaviour as more complicated reaction-diffusion systems, such as Gray-Scott. For our
simpler model, we are able to prove analytically Nishiura-Uyema Conditions (S1) and (S2). For
condition (S3), we required an additional non-degeneracy condition (3). While we were unable
to prove this condition, it is easy to verify it numerically; furthermore it reduces the nonlocal
eigenvalue problem (31) to a computation which does not involve nonlocal term. Theoretically, it
is an open question as to what assumptions on h(r; a) are necessary to prove the non-degeneracy
condition 3

In Gray-Scott model, peanut-splitting is the dominant self-replication mechanism in two dimen-
sions as observed by [23], [19], [20]. On the other hand, it was observed numerically in [15] that
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either the radial or peanut-type instability can be dominant in the Gierer-Meinhardt model in two
dimensions, depending on pararameter values. Our simplifed model has a similar structure: either
instability is possible, depending on how the parameters p, q are chosen.

In this paper we prove the first rigorous result about replication in three dimensions. As of now,
there are no analytical results about replication in three dimensions (but see [19], [20] for some
numerical results on (2) in three dimensions).

We conclude with the following conjecture, which is a generalization of Corrollary 4.8 in [1].

Conjecture 6. Consider the system

(43) 0 = ∆u − u + uph(r); u > 0, u → 0 as r → ∞.

Suppose p > 1 and h(r) satisfies

|h(r)| ≤ C (1 + rq) where q ≥ 0 and q ∈ (q?, qc)

where C is some constant and q?, qc are given by (7). Then (43) has a radially symmetric solution.

In [1], Corrollary 4.8, this result was shown under a more restrictive assumption p ∈ (1, p?), in
which case q? < 0. Here, we dont assume that p < p?; this assumption is replaced with the more
general assumption q > q?.

Appendix A. Asymptotic analysis of (4) with small u(0)

We now examine the behaviour of the solution with small u(0). The analysis is different for
N = 1 or N ≥ 2.

One dimension. We consider (4) with N = 1, in the limit a � 1 :

uxx − u + up(1 + axq) = 0; a � 1; u′(0) = 0; u > 0; u → 0 as x → ∞.

We seek solutions of the form

u(x) ∼ w (y) + R(x); y = x − x0; x0 � 0, R � 1.

where w(y) is the (unique) one-dimensional ground state of the homogeneous problem,

(44) wyy − w + wp = 0; w′(0) = 0, w > 0, w → 0 as |y| → ∞.

and R is the small remainder term. Then R satisfies

(45) Ryy − R + pwp−1R + axqUp = 0.

Note also that

(46) (wy)yy − wy + pwp−1wy = 0.

Multiplying (45) by wy, integrating from −x0 to ∞ and using (46) we get,

(Rywy − Rwyy) |∞−x0
+ a

∫ ∞

−x0

(y + x0)
qwyw

p = 0.
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Since w decays exponentially as |y| → ∞, we can replace
∫ ∞

−x0
by

∫ ∞

−∞
. Using integration by parts

we estimate
∫ ∞

−x0

(y + x0)
qwyw

pdy ∼ −
∫ ∞

−∞

1

p + 1
wp+1q (y + x0)

q−1 dy

∼ − q

p + 1
xq−1

0

∫ ∞

−∞

wp+1.

Now for small x, we have we have that Rxx − R ∼ 0 and w ∼ C0e
−|x−x0|. The constant C0 is

obtained by expanding w in the far-field |y| → ∞. Thus we have

w ∼ C0e
−x0ex; R ∼ C1e

x + C2e
−x; x ∼ 0.

Since R must remain small as x is increased, it follows that C1 = 0. Moreover, (Rx + Ux)x=0 = 0
which implies C2 = C0e

−x0. We therefore obtain

(Rywy − Rwyy)y=−x0
= 2C2

0e
−2x0 .

This yields the following formula for x0,

(47) 2C2
0e

−2x0 ∼ a
q

p + 1
xq−1

0

∫ ∞

−∞

wp+1; a � 1, x0 � 1.

In case p = 2, we have w(y) = 3
2
sech 2(y/2); and C0 = 6;

∫

w3 = 36/5 so that

(48)
e−2x0

xq−1
0

∼ a
q

30
; p = 2

In case p = 3 we have U(y) =
√

2 sech(y) and C0 = 2
√

2;
∫

w3 = π
√

2; so that

(49)
e−2x0

xq−1
0

∼ aq
π
√

2

64
; p = 3

Ring solutions in higher dimension, generic case. We consider (4) with N ≥ 2, in the
limit a � 1. It is convenient to set

ε := a1/q

so that (4) becomes

(50) 0 = urr +
N − 1

r
ur − u + up(1 + (εr)q).

The expansion we use is

r =
1

ε
r0 + y; u = U0(y) + εU1(y) + · · ·

Expanding to two orders we obtain

arq = (r0 + εy)q = rq
0 + εqrq−1

0 y + · · ·
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0 = U0yy − U0 + (1 + rq
0)U

p
0(51)

0 = U1yy − U1 +
(N − 1)

r0
U0y + rq

0pU
p−1
0 + Up

0 qrq−1
0 y(52)

Multiply (52) by U0y, and integrate by parts; using (51) we obtain

(53)
qrq

0

(p + 1)

∫ ∞

−∞

Up+1
0 = (N − 1)

∫ ∞

−∞

U2
0y.

The integrals can be further eliminated using Pohazhaev-type identities. Namely, multiply (51) by
U0 and integrate to get:

(54) −
∫

U2
0y −

∫

U2
0 + (1 + rq

0)

∫

Up+1
0 .

Multiply (51) by yU0y and integrate to obtain

(55) −1

2

∫

U2
0y +

1

2

∫

U2
0 − (1 + rq

0)

∫

Up+1
0

p + 1
= 0

Combining (54) and (55) we obtain

(56) −2

∫

U2
0y + (1 + rq

0)

∫

Up+1
0

(

1 − 2

p + 1

)

= 0.

Substituting (56) into (53) and we finally obtain

(57) rq
0 =

(N − 1) (p − 1)

2q − (N − 1) (p − 1)

In particular to solution to (57), ring solution exists if

(58) q > qc =
(N − 1) (p − 1)

2
.

This is consistent with thresholds derived in Theorem 1 for the case N ≥ 3; in particular, it is in
agreement with the bifurcation diagram shown on Figure 2(b): for q > qc, the curve approaches
a → 0 as s → 0.

Ring solutions in dimension N = 3, threshold case p = q + 1. The analysis of this case is
very delicate and the asymptotics are very tricky. For simplicity, we consider only the case p = 2.
However the result generalizes without difficulty for any p > 1. We summarize the result as follows.

Theorem 7. Suppose N = 3, p = 2 and q = 1. In the limit a � 1, Let r0 � 1 be the large solution
to the equation

a =
1

30
r−2
0 exp (2r0) ; a, r0 � 1.

Then there exists solutions of (4) of the form

u(r) ∼ 1

r0a
w(r − r0)
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Proof of Theorem 7. We rescale

u(r) =
1

r0a
U(r)

and define

ε =
1

ar0

so that

(59) 0 = Urr +
2

r
Ur − U + U2

(

ε +
r

r0

)

.

The main idea is to separately solve the equation on [0, r0], then on [r0,∞). Then ε will be
determined by requiring that U

(

r−0
)

= U(r+
0 ). So we treat (59) as two separate equations to solve:

the first on [0, r0] with boundary conditions U ′(0) = 0 = U ′(r0) and the second on [r0,∞) with
boundary condtions U ′(r0) = 0 = U ′(∞).

It will be shown below that ε = O(r0e
−2r0). Therefore we will need to expand in both ε and 1

r0
.

First, we treat r0 as constant with respect to ε and expand

U = U0 + εU1 + . . .

We get

0 = U0rr +
2

r
U0r − U0 + U2

0

r

r0

0 = U1rr +
2

r
U1r − U1 + 2U0U1 + U2

0

Next we let
y = r − r0

and expand

U0(r) = U00(y) +
1

r0

U01(y) +
1

r2
0

U02(y) + . . .

We have
(U00)yy − U0 + U2

0 = 0; U ′
00 (0) = 0

so that
U00(y) = w(y).

At the next order we get

(60) LU01 + 2wy + yw2 = 0

where
Lφ := φyy − φ + 2wφ.

Note that L(yw) = yw2 + 2wy so that solution to (60) is given by

U01 = −yw + Cwy.

To determine the constant C we impose the condition U ′
00(0) = 0 which yields C = −2,

U01 = −yw2 − 2wy.



SIMPLE PDE MODEL OF SPOT REPLICATION IN ANY DIMENSION 21

Therefore U01 is odd and at the next order we get

(61) LU02 = f(y)

where f(y) is a purely even function. Again, we treat this as two equations, one to the left and
another to the right of r0. To the left of r0, multiply (61) by wy and integrate y = −r0 . . . 0. We
then get

(62) (wyU02y − wyyU02)
y=0−

y=−r0
∼

∫ 0

−∞

f(y)wydy = −
∫ ∞

0

f(y)wydy.

To the right of r0 we get

(63) (wyU02y − wyyU02)
y=∞
y=0+ ∼

∫ ∞

0

f(y)wydy.

Adding the equations (62) and (63) together we get

wyy (0)
[

U02(0
+) − U02(0

−)
]

= (wyU02y − wyyU02)y=−r0
.

Therefore we need to determine the behaviour near r = 0. Recalling that y = r + r0 we write

w ∼ C0e
r, r ∼ 0; C0 = 6e−r0.

Since the solution decays near zero, we have u2 � u so that for small r

urr +
2

r
ur − u ∼ 0, u′(0) = 0.

Such solution is given by

(64) u = A
er − e−r

r

where the constant A is to be determined. To do so, we rewrite U00 + 1
r0

U01 as

U00 +
1

r0
U01 ∼ w +

1

r0
(−2wy − yw)

∼ w +
1

r
(−2 − yw)

∼ C0e
r

(

1 +
1

r
(−2 − (r − r0)

)

∼ C0
er

r
(r0 − 2).

We now match this with the growing mode of (64) to obtain

(65) A = C0 (r0 − 2)

Therefore the uniform expansion of u is given by

(66) u ∼ w +
1

r
(−2w − yw) − C0 (r0 − 2)

e−r

r
.



22 CHIUN-CHUAN CHEN AND THEODORE KOLOKOLNIKOV

We now match decaying mode of (64) to the remainder of U0 in the outer region:

−A
e−r

r
∼ U02

r2
0

∼ 1

r

U02

r0

.

This gives the following behaviour of U02 in the outer region:

(67) U02 ∼ r0C0 (2 − r0) e−r, r → 0.

Using this we evaluate

(68) (wyU02y − wyyU02)y=−r0
∼ 2C2

0r0 (r0 − 2)

Recalling that wyy(0) = −3
4

we get

(69) U02(0
+) − U02(0

−) = −8

3
C2

0r
2
0

(

1 − 2

r0

)

This yields

(70) U0(0
+) − U0(0

−) ∼ −8

3
36e−2r0

(

1 − 1

r0

)

.

Next we compute the jump in U1. We expand

(71) U1 = U10(y) +
1

r0
U11(y) + . . .

The leading order is

LU10 + w2 = 0.

Imposing U ′
10(0) = 0 and recalling that Lw = w2, we get

U10(y) = −w.

The next order then becomes

LU11 = 2wy + 2yw2.

Multiplying by wy and integrating to the left of r0 we therefore get

(72) (wyU11y − wyyU11)
0−

y=−r0
=

∫ 0

−∞

(

2wy + 2yw2
)

wy = −6

5

and similarly to the right of r0,

(73) (wyU11y − wyyU11)
∞
0+ =

∫ ∞

0

(

2wy + 2yw2
)

wy = −6

5

Adding (72, 73) together and ignoring the exponentially small boundary terms we obtain

U11(0
+) − U11(0

−) =
16

5

so that

(74) U1(r
+
0 ) − U1(r

−
0 ) =

16

5r0
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Putting together (70) and (74) we have

u(r+
0 ) − u

(

r−0
)

∼
(

U1(r
+
0 ) − U1(r

−
0 )

)

+ ε
(

U1(r
+
0 ) − U1(r

−
0 )

)

∼ −8

3
36e−2r0

(

1 − 1

r0

)

+
ε

r0

16

5

The solvability condition is that this quantity is zero, that is

ε ∼ 30r0e
−2r0

(

1 − 1

r0

)

.

This completes the proof. �

Appendix C. Phase plane analysis of u′′ + N−1
r

u′ + uprq = 0; u(0) = 1, u′(0) = 0.

The ODE in the title can be written as

(75)
(

rN−1u′
)′

+ rq+N−1up = 0; u(0) = 1, u′(0) = 0.

In fact this equation is a special case of the ODE studied in the classical paper [10], where the
scaling symmetry of (75) is utilized to enable a complete qualitative analysis of (75) and related
equations. For completeness, we provide a short derivation of this analysis as applied to (75) in
this appendix. The main result that we need is the following.

Lemma 8. Suppose that p > 1, q > q?, where q? is given in (7a). Then the solution to (75) crosses
the horizontal axis.

Proof. Make a change of variables

(76) r = es; u(r) = e−bsv(s).

where

(77) b =
q + 2

p − 1
.

Then (75) becomes

(78) v′′ + (2α + n − 2) v′ + αv + vp = 0.

Letting w = v′, (75) is reduced to an autonomous system

(79)

{

v′ = w
w′ = aw + bv − vp

where

a :=
2 + 2q + 2p − n(p − 1)

p − 1
; b :=

q + 2

p − 1
.
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Figure 4. Phase portrait of (79) with p = 2, a = 0.5, b = 0.5. The thick curve
indicates the unstable manifold out of A; it eventually intersects the v-axis.

Now the system (79) has two equilibria points, A : v, w = 0 and B : v = b1/(p−1), w = 0. Their
eigenvalues are:

A : λ =
a ±

√
a2 − 4b

2

B : λ =
a ±

√

a2 + 4b (p − 1)

2

Note that q = q? ⇐⇒ a = 0 and hence a > 0; b > 0. From linearization it then follows that A is a
saddle point and B is an unstable equilibrium. Moreover the initial conditon u′(0) = 0 corresponds
to

w/v ∼ b as s → −∞;

the condition u (0) = 1 implies that v → 0 as s → −∞. Thus the solution to (75) lies on the
unstable manifold coming out of the saddle point at the origin. From phase plane analysis, such
solution will cross the v axis for some s (see Figure 4). Hence u will cross the horizontal axis for
some r > 0.
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