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Abstract

We investigate Keller-Segel model with logistic self-production terms that exhibits complex spatio-temporal
dynamics of spikes. These dynamics are driven by merging of spikes on one hand, and spike insertion on the
other. In this paper we analyse the basic mechanisms that initiate and sustain these events. We identify two
distinguished regimes. In the first regime, a single interior spike drifts towards a boundary. This instability
is responsible for spike merging. The same regime further exhibits spike insertion; we identify a fold-point
bifurcation which is precursor to spike insertion event. In the second regime, we show that it is possible to
stabilize a single interior spike, and we compute analytically a critical threshold which is responsible for spike
stabilization. In particular, our calculation characterizes a stable spike in the Keller-Segel model with logistic
growth; this is in contrast to the classical Keller-Segel model where the interior spike is known to be unstable.

1 Introduction

Chemotaxis is the ability of micro-organisms or cells to sense and move in response to chemical gradients. Models of
chemotaxis have a long history, starting with the seminal 1970 work by Keller and Segel [1, 2], in which they introduce
what is now called the Keller-Segel model. This model consists of two PDE’s which couple together the bacterial density
and the concentration of the chemo-attractant. Keller-Segel system and its variants have been used in a wide variety
of contexts, including modeling slime molds [1], bacterial colonies [3, 4, 5, 6], skin patterns [7, 8] and tumor formation
[9] among others [10]. Quite aside from its biological relevance, the Keller-Segel model has been studied extensively by
mathematicians because of its intrinsic mathematical beauty and its uncanny ability to generate very interesting and
intruiging patterns. It is one of the simplest systems of PDE models that has very intricate solution structure but that
is still accessible to a wide range of mathematical tecnhiques, including the study of existence/uniqueness of solutions,
blowup analysis, and pattern formation. There are literally hunderds of papers on various mathematical aspects of
chemotaxis. See reviews [11, 12] and references therein.

The purpose of this paper is to study basic pattern formation in a model of chemotaxis with self-production terms.
The model we consider is

ut = Duuxx − χ (uvx)x + ru(1 − u/K), vt = Dvvxx + αu − βv. (1)

Here, u represents cell density and v represents the density of the chemoattractant. Cell population dynamics are modeled
using the logistic production term ru(1− u/K); the cross-diffusion term χ (uvx)x model the sensing mechanism and cells
diffuse with diffusion coefficient Du. The chemo-attractant is excreted by the cells themselves at a rate αu, decays at rate
βv, and diffuses with diffusion coefficient Dv.

The “classical” Keller-Segel model corresponds to setting r = 0 in (1). A large literature exists on the classical case;
see [12] and references therein for an extensive overview. One of the main results for the classical Keller-Segel model
is the presence of a chemotactic collapse in two dimensions, whereby the solution blows up in finite time at certain
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points of the domain, provided that the initial mass is sufficiently large. The chemotactic collapse, together with either
formal asymptotic or rigorous constructions of the local blowup profile, has been studied by many authors. See for
example [13, 14, 15, 16, 17, 18, 19] and many other references in [12]. The introduction of the logistic term prevents the
chemotactic collapse and leads to very complex patterns.

Self-production terms were introduced in [20] and [7]. In particular (1) is a special case of the model considered in [7]
which has a more general saturation term αu/(µ+u) instead of au. Generally speaking, saturation in the self-production
terms acts to deter blowup and facilitates pattern formation [21, 22]. By now there is a large literature on chemotaxis
with self-production. In [23] the authors considered a cubic growth term, i.e. u(1 − u/K) replaced by u(1 − u)(u − a).
They showed that in a certain regime the solution consists of several interfaces that seperates regions (or phases) where
u is either +1 or 0. They also analysed in detail the stability and evolution of these interface solutions in one and
two dimensions. In [24, 22] the authors showed that phase-separation solution can also occur as a result of nonlinear
sensing, for instance if χ (uvx)x is replaced by χ (u(1− u)vx)x , even for a quadratic growth term. They also established
global existence of solutions. Even without cubic nonlinearities or nonlinear sensing, equations (1) still generate complex
patterns in the Turing-unstable regime [7, 25, 24, 22, 21]. However the solution in this case consists of spikes, such as
shown in figure 1, and not of phase-separated interfaces. Spikes are small localized regions of high concentration of u,
with relatively small concentrations of u elsewhere.

Even more interesting, as demonstrated numerically in [21, 24, 22], the addition of a logistic production term in
(1) results in very complex and intruiging spike dynamics, such as spike merging, spike creation, oscillations and spatio-
temporal chaos. This behaviour is not present in the classical Keller-Segel model. A typical simulation of this phenomenon
is shown in Figure 1. The spikes in this simulation they tend to move towards each other and merge; on the other hand,
new spikes are created when there is too much ”free space” inbetween. In [26, 27] the authors showed the existence of
a compact exponential attractor for (1). In [28] the authors computed numerically Lyapunov exponents and bifurcation
diagram which indicates the presence of spatio-teporal chaos in the system. In [29], the authors perform a Turing-type
analysis for the system (1). They show that the heterogeneous solutions bifurcate from a homogeneous state, and compute
the amplitude of the solutions close to the bifurcation point. Unfortunately, this analysis does not capture the localized
nature spikes, which exist in the fully nonlinear regime far from the homogeneous state. In a recent work [30], the authors
model these dynamics by encoding merging/creation events into a dynamical system, where particles can be created or
destroyed in a collision. This “high-level” system of particle dynamics reproduces the observed behaviour.

In this paper we address the following basic questions about the mechanisms underlying spike dynamics of (1):

1. What is the profile of the spike?

2. Why/when do the spikes move towards each-other?

3. What is the mechanism responsible for “spike insertion”?

We identify two distinguished parameter regimes and three distinct types of spike solutions with very different stability
properties. The three solution types are:

• Type I: A single interior spike that is always unstable regardless of domain size and moves to the boundary without
self- replication.

• Type II: Spike insertion is observed as domain size is increased.

• Type III: There exists a threshold such that a single interior spike is either stable or unstable.

We provide an analytical explanation for each of these three types of behaviour. Each solution type is constructed
asymptotically. Then its stability is studied. As a result, this provides a characterization of the expected behaviour of
the system within these regimes.

The contents of this paper are as follows. In section 2 we treat Type 1 solution. This is the simplest of the three
types. The analysis is similar to what was done in [19] for the classical Keller-Segel system. There, the metastability of a
spike was analysed; it was shown that for a classical Keller-Segel system in one dimension, an interior spike is metastable
and as a result, will move very slowly towards the boundary of the domain. Whereas in the classical KS system the
spike mass is determined by the mass of the initial conditions, for equations (1), the spike mass is independent of initial
conditions and is determined instead by a balance between the growth ru and the saturation term −ru2/K. Nonetheless,
the stability analysis of type 1 solution follows the procedure developed in [19] and the end-result is similar: an interior
spike is unstable due to exponentially small translational instabilities.
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Figure 1: Left: numerical simulation of (2) on a domain of size 10 with ε = 0.05, a = 15. Contour plot of u in time and
space is shown. Right: snapshot of the solution at t = 100.. Software FlexPDE [31] was used for numerical simulations
of the time-dependent system (2).

In section 3 we study type II solutions. We demonstrate that there is a critical threshold which leads to spike insertion
as the parameters are varied past that threshold. This thresholding is due to the disappearance of the steady state at the
fold point. In this sense, the mechanism for spike insertion is similar to self-replication such as studied in [32], [33]. This
phenomenon has no analogue in the classical KS system.

In section 4 we derive the threshold for stability of type III solutions. This threshold is not present at all in the original
KS model; in fact in the absence of the production terms, the spikes in the original KS model either merge or drift towards
the boundary. On the other hand, the stability of an interior spike for system (1) was first observed numerically in [21].
This is the first time that such stability is explained analytically. The study of stabilizing mechanism requires a very
delicate computation of an outer region.

2 Type I solutions

In this section, we consider the following regime, which is a rescaling of (1)1:

ut = (εux − uvx)x + u− u2, τvt = vxx +
a

ε
u− v (2)

ux(±L, t) = 0 = vx(±L, t) (3)

1Equations (2) are obtained from (1) via the following transformations, after dropping the ∗’s:

u = Ku∗, v =
r

χ
v∗, x =

√

Dv

β
x∗, t =

1

r
t∗

ε = Du/r, a =
αχDuK

βr2
, τ = r/β,
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with the assumptions that
0 < ε≪ 1; a, τ, L are positive and O(1). (4)

Biologically, this corresponds to small diffusion of cell density u (relative to the chemo-attractant v or to the chemotaxis-
induced motion) and high chemo-attractant production by cells (relative to chemo-attractant decay rate)

In §2.1, we will first construct a steady which consists of a single spike for u, centered at the origin, whose width is of
O(ε). In turns out that there are two possible such solutions for the regime (2), which we refer to as type I and type II.
Type I solution is such that u is exponentially small in the outer region |x| ≫ O(ε) away from the spike. Type II solution,
which is studied in §3, is more complicated and the outer region satisfies a certain third order ODE. In §2.2 we will study
the stability of type I solution. There are two eigenvalues to consider, characterised by the parity (odd or even) of the
corresponding eigenfunctions. We will show that the even eigenvalue is stable but the odd is unstable. The instability of
the odd eigenvalue induces a translational motion of the spike; as a result, the spike moves towards the closest boundary
until it merges with it.

Type II steady state is constructed in §3. We show that there exists a threshold ac such that type II solutions do not
exist for a < ac; this is unlike the type I solutions which exist for all a > 0.

2.1 Type I Steady state

We proceed to construct the steady state to (2) in the form of a symmetric spike centered at the origin. This is equivalent
to constructing a half-spike on the half-interval [0, L] with Neumann boundary conditions. A sample profile for type I
half-spike is illustrated in Figure 2(a) and corresponds to u being exponentially small in the outer region. From (2) the
steady state equations on the half-domain x ∈ [0, L] are

(εux − uvx)x + u− u2 = 0, 0 = vxx +
a

ε
u− v (5)

with Neumann boundary conditions for u, v at x = 0, L. The spike itself is located at x = 0 and has an extent of O(ε).
To capture its profile, we introduce the inner variables as

x = εy

u = U(y);

v = v0 + εW (y)

where v0 = v(0) is to be determined (see (11) below), and W (0) = 0. Note that in the inner variables, the leading order
equation for v reads v0yy = 0. Combined with the assumption that v0y = 0 at y = 0, this implies that v0 is constant
independent of y. In the inner variables we then obtain the problem

Uyy − (UWy)y + ε
(

U − U2
)

= 0; Wyy + aU − (v0 + εW ) ε = 0.

Next we expand the solution as
U = U0 + εU1 . . . ; W =W0 + εW1 + . . . .

The leading order equations are
U0yy − (U0W0y)y = 0; W0yy + aU0 = 0. (6)

Recalling Neumann boundary conditions at y = 0, we therefore obtain

W0y =
U0y

U0
;

(

U0y

U0

)

y

+ aU0 = 0. (7)

We seek solution to (7) with U0(y) → 0 as y → ∞ and with U0y = 0 =W0y at y = 0. We obtain the solution

U0 = ξ sech2

(

y

√

ξa

2

)

; W0y = −
√

2ξa tanh

(

y

√

ξa

2

)

(8)

where ξ, the height of the spike, is the free parameter that is due to the scaling invariance of the inner problem (6). To
determine the height ξ, we now consider the outer region L > x≫ ε. There are two possible solutions which we shall call
type I and type II.
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Figure 2: Two types of steady state solutions to (5). Parameter values are ε = 0.1, L = 1.5, a = 5. Solid curves
are obtained by using Maple’s numerical boundary value problem solver to solve (5). Dashed curves are asymptotic
approximations as follows. Type I: u is exponentially small in the outer region. Dashed curve is the asymptotic solution
given by (14) (for u) and by (15) (for v). Type II: u is of O(ε) in the outer region and is non-constant there. Dashed
curve for u denotes the the inner asymptotic solution (8) with ξ determined by solving (30) (31), (32) simultaneously.
Dashed curve for v shows the corresponding outer solution (30).

Type I solution satisfies u ∼ 0 in the outer region. Then v satisfies in the outer region,

v′′ − v = 0, x≫ ε, v′(L) = 0

with the solution given by
v = A cosh(x− L), x≫ ε. (9)

To determine the constant A, we match (9) to (8). We take the limit y ≫ 1 in (8) to obtain

d

dy
v ∼ −ε

√

2ξa, y ≫ 1. (10)

On the other hand for small x we have from (9), d
dyv = ε d

dxv ∼ −εA sinh(L) for x→ 0. Matching with (10) yields

A =

√
2ξa

sinh(L)
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Figure 3: Bifurcation diagram for type I and II solutions. Solid curves denote the full problem whereas dotted curves are
the asymptotics. The horizontal red line corresponds to the fold point ac. (a) ε = 0.05, L = 1.5. (b) ε = 0.15, L = 2.5.
Maple’s boundary value probelm solver and its continuation capabilities were used to compute the solid curves

so that

v0 =
√

2ξa
cosh(L)

sinh(L)
; (11)

v =
√

2ξa
cosh(x− L)

sinh(L)
, x≫ ε. (12)

Near the core of the spike, v has a corner layer in order to satisfy the condition v′(0) = 0. Indeed, from (8) we obtain

W0 = −2 ln cosh
(

y
√

ξa/2
)

so that in the inner region we obtain

v ∼ v0 − 2ε ln cosh
(

y
√

ξa/2
)

.

The composite solution for v is then obtained using Van Dyke’s matching principle [34, 35], that is, vunif = vinner +
vouter − voverlap; this yields

v ∼
√
2ξa

sinh(L)
(cosh(x− L) + sinh(L)x) − 2ε ln

[

2 cosh
(x

ε

√

ξa/2
)]

It remains to determine the height ξ. To do so, we integrate the first equation in (5) to obtain the solvability condition
∫ L

0

(

u− u2
)

dx = 0. We then substitute (8) for u; this yields, to leading order,

ξ =

∫∞
0

sech2 (z)dz
∫∞
0 sech4 (z)dz

=
3

2
(13)

where we used the identities
∫∞
0

sech2(z)dz = 1,
∫∞
0

sech4(z)dz = 2
3 . In summary, the uniform asymptotic expansion of

type I equilibrium state of (5) is given by

u ∼ 3

2
sech2

(

x

ε

√

3a

4

)

; (14)

v =

√
3a

sinh(L)
(cosh(x− L) + sinh(L)x) − 2ε ln

[

2 cosh
(x

ε

√

3a/4
)]

. (15)
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2.2 Stability analysis of Type I solution

We now proceed to study the stability of type I solutions. The analysis presented below builds on ideas from [19, 36].

Linearizing about the steady state, we write

u(x, t) = u(x) + eλtφ(x); v(x, t) = v(x) + eλtψ(x), φ, ψ ≪ 1

where we use u(x, t), v(x, t) to denote the full solution to (2) and u(x), v(x) to denote the symmetric spike equilibrium
on domain [−L,L] as constructed in §2.1. For the rest of this section, we will use u to denote the equilibrium u(x) and
similarly for v. The linearized equations are

λφ = εφ′′ − (uψ′ + φv′)
′
+ (1− 2u)φ (16)

λτψ = ψ′′ +
a

ε
φ− ψ. (17)

The solution space of (16, 17) is split into two subspaces, depending on whether the eigenfunction is odd or even. These
correspond to the following boundary conditions:

Odd eigenfunction: φ(0) = 0 = ψ(0); φ′(L) = 0 = ψ′(L) (18)

Even eigenfunction: φ′(0) = 0 = ψ′(0); φ′(L) = 0 = ψ′(L) (19)

We shall refer to the eigenvalue associated to odd (resp. even) eigenfunction as odd (resp even) eigenvalue. In the inner
region near the spike, we rescale as follows

x = εy; φ(x) = Φ(y); Ψ = Ψ0 + εP (y);

Note that Ψ0 is a constant since to leading order Ψ satisfies Ψyy = 0. We then obtain the following exact equations for
Φ and P,

ελΦ = Φyy − (UPy +ΦWy)y + ε (1− 2U)Φ

ετλP = Pyy + aΦ+ (Ψ0 + εP ) ε.

Expand in the power series in ε as

λ = λ0 + ελ1 . . . ; Φ = Φ0 + εΦ1 + . . . ; P = P0 + εP1 + . . . (20)

so that to leading order we get

U0P0y +Φ0W0y = 0; P0yy + aΦ0 = 0. (21)

There are two linearly independent solutions to (21) which correspond to even (i.e. Dirichlet) or odd (i.e. Neumann)
boundary conditions at the origin. The even solution to (21) corresponds to the scaling invariance of the inner problem
(6) and is given by

Φ0 =
∂U0

∂ξ
; P0 =

∂W0

∂ξ

where U0 and W0 are defined in (8). The odd solution to (21) corresponds to the translational invariance and is given by

Φ0 = U0y; P0 =W0y. (22)

The eigenvalue is then determined by formulating an appropriate solvability condition.

Even eigenvalue: integrate (16) on [0, L] ; because of boundary conditions (18) we then obtain.

λ

∫ L

0

φdx =

∫ L

0

(1− 2u)φdx. (23)

Assume that φ is exponentially small in the outer region; then the leading order to (23) becomes

λ0

∫ ∞

0

∂U0

∂ξ
dy =

∫ ∞

0

(1− 2U0)
∂U0

∂ξ
dy.
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Evaluating the integrals using (8) finally yields λ ∼ −2 so that the even eigenvalue is stable.

Odd eigenvalue: The odd solution to (21) is given by (22). To determine λ, multiply (16) by x and integrate. to
obtain

λ

∫ L

0

xφdx =

∫ L

0

(uψ′ + φv′) dx+

∫ L

0

(1− 2u)φxdx. (24)

To estimate
∫ L

0
(uψ′ + φv′) dx, multiply (17) by vx and integrate by parts. First note that

∫ L

0

ψ′′v′dx = −ψ(L)v′′(L) +
∫ L

0

ψv′′′dx

= −ψ(L)v′′(L) +
∫ L

0

ψv′dx+
a

ε

∫ L

0

ψ′udx

so that

τλ

∫ L

0

ψv′dx = −ψ(L)v′′(L) + a

ε

∫ L

0

(ψ′u+ v′φ) dx;

∫ L

0

(ψ′u+ v′φ) dx =
ετλ

a

∫ L

0

ψv′dx+
ε

a
ψ(L)v′′(L). (25)

We therefore obtain an exact expression

λ

∫ L

0

xφdx =
ε

a
ψ(L)v′′(L) +

ετλ

a

∫ L

0

ψv′dx−
∫ L

0

(1− 2u)φxdx. (26)

Next we estimate
∫ L

0

xφdx ∼ ε2
∫ ∞

0

yU0ydy = −ε2
∫ ∞

0

U0dy = −ε2
√

2ξ/a (27)

and
∫ L

0

(1− 2u)φxdx ∼ ε2
∫ ∞

0

(1− 2U0)U0yydy = −ε2
∫ ∞

0

(

U0 − U2
0

)

dy = 0. (28)

so that (26) becomes

ε
√

2ξaλ = −ψ(L)v′′(L)− τλ

∫ L

0

ψv′dx.

We recall from (12) that v(x) ∼
√
2aξ

sinh(L) cosh(L− x) so that

v′′(L) =

√
2aξ

sinh(L)
.

It remains to determine ψ. For concreteness, consider at first the case τ = 0. Then ψ satisfies

ψ′′ − ψ ∼ −a
ε
U0y ∼ Aδ′(x)

where

A =

∫ L

0

x
a

ε
U0ydx ∼ εa2

∫ ∞

0

yU0ydy = −2ε
√

2ξa.

It follows that

ψ(x) = −ε
√

2aξ
cosh(L− x)

coshL
so that

λ =

√
2ξa

sinhL coshL
; τ = 0.

This shows that in the case τ = 0, the odd eigenvalue is unstable. More generally for an arbitrary τ , an analogous
computation yields the following equation for λ,

λ
sinhL cosh(µL)√

2ξa
= coshL coshµL− µ sinhµL sinhL; µ =

√
1 + λτ. (29)

We claim that (29) has a solution with λ > 0. Indeed, lhs(29) → ∞ as λ → ∞ and rhs(29) → −∞ as λ → ∞. On the
other hand, when λ = 0 we have lhs(29) = 0 and rhs(29) = 1. Thus by intermediate value theorem there is a positive
(i.e. unstable) eigenvalue. We summarize our results as follows.
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u v

Figure 4: Evolution of (2) with ε = 0.05, L = 1.5 and a = 2 − 10−4t. Due to the fold point bifurcation, spike insertion
occurs as a is decreased below ac ∼ 1.08. FlexPDE [31] was used for numerical computations

Theorem 2.1 A symmetric spike of Type 1 centered at the origin on the domain [−L,L] is stable with respect to even
eigenvalue but is unstable with respect to odd (translational) eigenvalue for all τ > 0.

The stability of an even eigenfunction is sometimes referred to as structural stability: it means that even though the
spike is translationally unstable, it does not disappear but simply moves away from its central location and towards
the boundary. This dynamical behaviour is qualitatively illustrated in Figure 5(a). On the other hand, a spike at the
boundary, or a half-spike centered at 0 on the domain [0, L], does not admit translational mode (19), and only admits the
even mode (18). As a corollary of Theorem 2.1, a single boundary spike is stable. This is also seen numerically in Figure
5(a): after the spike merges with the boundary, it remains there as a stable steady state.

3 Type II solutions

Type II solutions co-exist with type I solutions constructed in the previous section, in the regime given by equations (2),
whose steady state equations are given by (5). The spike construction in the inner region |x| ≤ O(ε) is identical to the
equations (8). The difference is that in the outer region, u is no longer assumed to be zero. Then the height ξ in (8) will
longer given by 3/2 but rather will be determined along with the outer solution for u and v. Away from the spike in the
outer region |x| ≫ O(ε) we rescale

u = εû.

Then to leading order the steady state satisfies

(ûvx)x = û; vxx − v + ûa = 0.

Solving for û = v−v′′

a we then obtain a third-order ODE for v in the outer region,

(v − v′′) (v′′ − 1) + (v − v′′)
′
v′ = 0. (30)

Since v′(L) = 0, either v′′(L) = 1 or else û(L) = 0. The latter corresponds to Type I solutions so here we assume that
v′′(L) = 1. We then solve (30) subject to the boundary conditions

v(L) = A; v′(L) = 0; v′′(L) = 1 (31)
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where the constant A and ξ are to be found.

To match the outer and inner region, integrate the second equation in (5) on a small interval [0, δ] where ε ≪ δ ≪ 1.
This yields

vx(δ) +
a

ε

∫ δ

0

udx =

∫ δ

0

vdx

We further estimate
a

ε

∫ δ

0

udx = a

∫ δ/ε

0

U(y)dy ∼
∫ ∞

0

aU0dy =
√

2ξa

and
∫ δ

0

vdx = O(δ).

Therefore to leading order in the outer region we obtain

v′(0+) = −
√

2ξa.

Similarly integrating the first equation in (5) yields an additional equation

∫ ∞

0

(

U0 − U2
0

)

dy +

∫ L

0

û(x)dx ∼ 0.

Using the identities
∫∞
0 sech2(s)ds = 1,

∫∞
0 sech4(s)ds = 2

3 we obtain

∫ ∞

0

(

U0 − U2
0

)

dy = ξ

(

1− 2

3
ξ

)
√

2

ξa
.

We also evaluate
∫ L

0

û(x)dx =

∫ L

0

(ûv′)
′
dx = −û(0)v′(0)

= û(0)
√

2ξa

so that

1− 2

3
ξ = −û(0)a; v′ (0) = −

√

2ξa; û(0) =
v(0)− v′′(0)

a
.

Solving for a and ξ yields

a =
v′(0)2

3 (1 + v(0)− v′′(0))
; ξ =

3

2
(1 + v(0)− v′′(0)) . (32)

Note that v(0), v′(0) and v′′(0) are can be viewed as a function of the parameter A = v(L). Thus (32) together with
(30, 31) defines a parametric curve a(L), ξ(L) in the a, ξ plane. Figure 3 shows the graph of a as a function of A = v(L).
There are two such curves, one for type I and another for type II solutions. In the asymptotic limit ε → 0 (shown by
dashed curves) these curves intersect near A = 1. For small but positive ε, the two branches connect to each-other near
A = 1 (solid curves). Thus the branch to the left of A ∼ 1 is such that u(L) < 0; this follows from the fact that the outer

solution satisfies û = v−v′′

a with v′′(L) ∼ 1. Similarly, the branch to the right of A = 1 has u, v > 0.

As Figure 3 shows, the bifurcation curves of type I and type II intersect at A = 1 in the asymptotic limit ε → 0.
For any positive value of ε, the two curves cannot cross due to uniqueness of the solution; instead they fold over. When
L = 2.5, the fold point occurs near A ∼ 1. On the other hand, when L = 1.5, the bifurcation curve has a fold point around
A ∼ 1.7 > 1, as shown in the figure. So there is some critical value of L = L∗ for which the bifurcation structure changes.
This critical value occurs precisely when the asymptotics of the type II curve (indicated by dashed line the figure) has a
horizontal tangent at A = 1. Fortunately, the asymptotics near A ∼ 1 can be explicitly computed as we now show.

Asymptotics near A ∼ 1. We set
A = 1 + δ; δ ≪ 1.

For simplicity, we also change variables
z = L− x.

When δ = 0, the solution to (30, 31) is given by v = cosh(z). More generally, for small δ we expand

v = cosh(z) + v1(z)δ. (33)
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We then obtain the ODE
d

dz
ln (v1 − v′′1 ) =

1− cosh z

sinh z

along with the boundary conditions
v1(0) = 1; v′1(0) = 0; v′′1 (0) = 0.

We note that
∫

1− cosh z

sinh z
dz = ln

(

sech2(z/2)
)

+ C

so that
v′′1 − v1 = K sech2(z/2)

where K is some constant. Substituting in the initial conditions we obtain

v′′1 − v1 = − sech2(z/2); v1(0) = 1; v′1(0) = 0.

Next we substitute (33) into (32) to obtain

3a = sinh2 L+ δ
(

2v′1(L) sinhL− sinh2 L sech2(L/2)
)

.

The expression for v′1(L) is computed using the variation of parameters as follows

v′1(z) = sinh(z)−
∫ z

0

cosh(z − s) sech2(s/2)ds. (34)

We have da
dA

∣

∣

A=1
= 0 if and only if

2v′1(L) = sinhL sech2(L/2). (35)

It is easy to show that (35) has a root; in fact its uniqueness can also be shown using convexity arguments. Using Maple
to evaluate the integral in (34), we find that the unique root of (35) is given by

L∗ = 2.202162338. (36)

It follows that da
dA

∣

∣

A=1
is positive when L > L∗ and is negative when L < L∗.

Note that at the intersection point A = 1, we have a = 1
3 sinh

2(L). Now consider the case L > L∗. In this case,
numerical computations of the limiting problem (30, 31, 32) show that a(A) is an increasing function of A for A > 1
(dashed curve in Figure 3(b)). On the other hand, the bifurcation curves corresponding to type I and type II solutions
cannot cross each other due to uniqueness of solutions to ODE’s. Numerically, their connection is observed as shown in
Figure 3. In the case L < L∗, this connection implies the existence of the fold point near A = 1, ac ∼ 1

3 sinh
2(L). More

generally, we now show that a→ ∞ as A→ ∞, confirming the existence of the fold point.

Large A limit: in this case we rescale v = Av̂ so that (30) becomes

(v̂ − v̂′′)

(

v̂′′ − 1

A

)

+ (v̂ − v̂′′)
′
v̂′ = 0;

subject to boundary conditions
v̂(L) = 1; v′(L) = 0; v̂′′(L) = 1/A.

To leading order, we obtain:
ln (v̂ − v̂′′) + ln v̂′ = O(1/A)

so that
(v̂ − v̂′′)v̂′ ∼ 0.

Therefore
v ∼ A cosh(x − L)

from where we determine the asymptotics

a ∼ A2 sin2 L

3
; A≫ 1.

This shows that a→ ∞ as A→ ∞, in the asymptotic limit ε→ 0.

We summarize our finding as follows.
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Proposition 3.1 (Type II solutions) A type II solution to (5) is such u has a spike of O(1) at the center while in the
outer region, u(x)/ε is O(1) and is non-zero for |x| ≫ O(ε). There exists a number ac such that Type II solution exists if
and only if a > ac. If L < L∗ = 2.20216 then ac <

1
3 sin

2 L. If L ≥ L∗ then ac ∼ 1
3 sin

2 L. The solution disappears at the
fold point bifurcation as a is decreased below ac.

The number ac corresponds to the fold point, and is responsible for spike insertion. To illustrate this, consider Figure
4. We take L = 1.5 and consider initial solution in the form of a single spike of type I at the left boundary. Initially, we
take a = 2 and then slowly increase a in time according to the formula a = 2− 10−4t. As shown in the figure, a new spike
rises out of the background state at around a ≈ 1.08, which corresponds to the critical value ac at the fold point, as seen
from Figure 3(a).

4 Type III solutions

So far, we have described two regimes for both of which the interior spike is translationally unstable: we have shown this
for type I solutions in section 2. While we did not perform the stability analysis for type II solutions, the numerical
simulations we performed indicate that type II solutions discussed in section 3 are indeed unstable and move towards the
boundary. This raises the question, is there a regime for which an interior spike is stable? The goal of this section is to
answer this question in the affirmative. Namely, we consider the following rescaling of the equations (1)2,

ut = uxx − (uvx)x + u− u2, τvt = ε2vxx − aεv + u, x ∈ [−L,L] (37)

where we additionally assume that 0 < ε ≪ 1 and a, L are positive O(1) parameters. Biologically, this corresponds to
small diffusion of chemo-attractant (relative to cell diffusion or chemotaxis-induced motion), and slow chemo-attractant
decay rate (relative to chemo-attractant production by the cells).

First, consider the steady state equations

0 = uxx − (uvx)x + u− u2, 0 = ε2vxx − aεv + u. (38)

As before, we start by constructing a half-spike on domain [0, L] with Neumann boundary conditions for u, v at x = 0, L;
the interior spike is then obtain by even reflection through the origin. It turns out that the steady state for U has three
distinct layers which we will refer to as the inner, middle and outer layers, and which scale as follows:

Inner layer: x = εy u(x) = U(y)

Middle layer: x = (ε/a)
1/2

z, u(x) = U(z)
Outer layer: x = x

We now go through the construction inside each layer and their matchings.

Inner layer: To leading order, the equations in the inner layer are the same as for Type I, namely,

Vyy + U = 0; Uyy − (UVy)y ∼ 0. (39)

As before, we obtain
U = ξ sech2(

√

ξ/2y); V = ln(U) + C (40)

where the constants ξ and C will be determined through matching later.

The constant ξ is determined by integrating the first equation in (37) on [0, L]. Similarly to type I solution, it will be
shown below that the contributions of the middle and outer regions are negligible. Similarly to section 2.1 we then obtain
that ξ = 3/2.

2Equations (37) are obtained from (1) via the following transformations, after dropping the *’s:

x =

√

Du

r
x∗, v =

Du

χ
v∗, u = Ku∗, t =

1

r
t∗

ε =

√

Dv

Du

, a =
αK

β
√
DuDv

, τ = r/β.
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Middle layer: to leading order, we have

Vzz − V =
U
aε

Uzz + (UVz)z ∼ 0 (41)

Moreover, we make a self-consistent anzatz that U
α0ε

≪ O(V) in the middle region; this consistency condition will be
valided below by matching the inner and middle layer. Since V must remain bounded for z ≫ 1, we then obtain

V ∼ Ae−z. (42)

We now match the inner and the middle layer. Expanding (40) for large y we obtain

U ∼ 4ξ exp(−
√

2ξy), y ≫ 1;

V ∼ ln(4ξ) + C −
√

2ξy, y ≫ 1. (43)

On the other hand, expanding (42) for small z = ε1/2a1/2y we obtain

V ∼ A(1− ε1/2a1/2y) (44)

Matching (43) and (44) inbetween inner and middle layer 1 ≪ y ≪ O(ε−1/2) yields

A =

√

2ξ

aε
; C = A− ln(4ξ).

Since the equation for U in (41), is the same as (39), we obtain that (40) also holds with U, V replaced by U ,V . Thus we
obtain

V = lnU − ln 4ξ +A

so that

U ∼ 4ξ exp
(

Ae−z −A
)

∼ 4ξ exp(−A), z ≫ 1. (45)

Outer layer: Since U and V are both small for z ≫ 1, the dominant terms in (38) in the outer region become

uxx + u = 0, x≫ O((ε/a)
1/2

).

Imposing the boundary condition ux(L) = 0 we then obtain

u ∼ B cos(x − L), x≫ O(ε1/2).

Matching to the middle layer (45) we then obtain

B =
4ξ

cosL
exp(−A) = 4ξ

cosL
exp

(

−
√

2ξ

aε

)

. (46)

The equation for v then becomes
ε2v′′ − aεv +B cos(x − L) ∼ 0.

Recalling that v′(L) = 0, its solution is given by

v ∼ B

aε
cos(x− L) +D

{

exp

(

(x− L)

√

a

ε

)

+ exp

(

(L− x)

√

a

ε

)}

Matching to the inner layer, we get

D = A exp

(

−L
√

a

ε

)

=

√

2ξ

aε
exp

(

−L
√

a

ε

)

.

We summarize this construction as follows.
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Figure 5: Numerical simulation of (37) with ε = 0.05, τ = 1. Left: a = 1, the interior spike is unstable and moves to the
boundary. Right: a = 2, the interior spike is stable. FlexPDE [31] was used for numerical computations.

Proposition 4.1 (type III steady state) Suppose that 0 < L < π/2. Then the steady state to (38) on domain [−L,L] with
Neumann boundary conditions which has even symmetry with respect to the origin is given by

u(x) ∼















3
2 sech

2(
√
3x/(2ε)), |x| ≤ O(ε)

6 exp
(
√

3
aε [exp(− |x| /√ε)− 1]

)

, O(ε) ≪ |x| ≤ O(
√
ε)

6 exp
(

−
√

3

aε

)

cosL cos(|x| − L), O(
√
ε) ≪ |x| ≤ L

v(x) ∼











ln (u)− ln 6 +
√

6
aε , |x| ≤ O(

√
ε)

6 exp
(

−
√

3

aε

)

aε cosL cos(|x| − L) +
√

6
aε exp

(

−L
√

a
ε

)

2 cosh
(

(|x| − L)
√

a
ε

)

, O(
√
ε) ≪ |x| ≤ L

Note that in the outer region |x| ≫ O(
√
ε), the solution for u is exponentially small in ε; however unlike the type I

solution, it does not decay exponentially, and is actually increasing in that region. Also, the outer solution for v consists
of two competing terms; in particular we have

v(L) ∼ 6

εa cosL
exp

(

−
√

3

aε

)

+

√

6

aε
2 exp

(

−L
√

a

ε

)

. (47)

The stability of the small eigenvalue is precisely determined by which of the two terms in (47) is dominant. We now state
the main result of this section.

Theorem 4.2 Consider the steady state as constructed in Proposition 4.1 to the system (37) on [−L,L] with Neumann
boundary conditions. Suppose that τ = 0. In the limit ε → 0, this steady state is stable if L >

√
3/a and is unstable if

L <
√
3/a. The instability is due to the odd eigenfunction.
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The eigenvalue problem associated with (37) corresponding to the odd eigenfunction with τ = 0 is

λφ = φ′′ − (uψ′ + φv′)
′
+ φ− 2uφ; (48)

0 = ψ′′ − a

ε
ψ +

1

ε2
φ; (49)

φ(0) = 0 = ψ (0) ; φx(L) = 0 = ψx(L). (50)

where u, v is the steady state to (37). Retracing the derivation of (24) leads to the following identity:

λ

∫ L

0

xφdx = −φ(L) + aεψ(L)v(L) +

∫ L

0

x(1 − 2u)φdx. (51)

In the inner and middle region, we estimate that (φ, ψ) = (u′, v′) . This solution satisfies equations (48, 49) as well as
the Dirichlet boundary conditions at 0. However it does not satisfy the Neumann boundary condition at L, so the outer
region must be considered separately. Assuming that λ≪ 1, the solution in the outer region satisfies to leading order

φ′′ + φ ∼ 0, x≫ O(
√
ε)

so that
φ ∼ B̂ cos(x− L), x≫ O(

√
ε).

To determine the constant B̂, we match with the intermediate region φ ∼ u′. In the regime O(
√
ε) ≪ x≪ 1 we have

u ∼ B cos(x− L)

∼ B cos(L) +Bx sin(L) +O(x2)

where B is given by (46). Then ux ∼ B sin(L) ∼ B̂ cos(L) so that

B̂ = B tan(L) = φ(L).

The equation for ψ then becomes
ψ′′ − a/εψ + B̂ cos(x− L) ∼ 0

so that

ψ ∼ 1

aε
B̂ cos(x − L) + Â

{

exp

(

(x− L)

√

a

ε

)

+ exp

(

(L− x)

√

a

ε

)}

The constant Â is determined by matching the outer region to the inner region where

vx ∼ −
√
2ξa

ε
exp

(

−x
√

a

ε

)

, O
(√
ε
)

≤ x≪ O(1)

so that

Â = −
√
2ξa

ε
exp

(

−L
√

a

ε

)

.

This yields

ψ(L) ∼ 1

aε

4ξ tanL

cosL
exp

(

−
√

2ξ

aε

)

−
√
8ξa

ε
exp

(

−L
√

a

ε

)

.

Next we compute the integral term on the right hand side of (51). Let δ be any number with
√
ε≪ δ ≪ 1 and split

∫ L

0

xφ (1− 2u)dx =

∫ δ

0

+

∫ L

δ

= I1 + I2.

We compute

I1 ∼
∫ δ

0

xux(1− 2u)dx ∼ −
∫ δ

0

(

U − U2
)

dx.

We then use the fact that

0 =

∫ L

0

(

u− u2
)

dx =

∫ δ

0

(

U − U2
)

dx+

∫ L

δ

B cos(x − L)dx
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Figure 6: Oscillatory dynamics in the system (2). (a) τ = 50, ε = 0.02, a = 0.075. (b) τ = 200, ε = 0.3, a = 0.075. (c) The
snapshot of the solution at the final time t = 1018 with parameters as in (b).

so that

I1 ∼
∫ L

0

B cos(x − L)dx ∼ B sinL.

For I2 we estimate

I2 ∼
∫ L

0

xB̂ cos(x− L)dx = B̂(1− cosL) = φ(L)−B sinL

Thus we get
∫ L

0 xφ (1− 2u)dx = φ(L) so that (51) becomes

λ

∫ L

0

xφdx = aεψ(L)v(L).

Finally we estimate
∫ L

0

xφdx ∼ −
∫ ∞

0

Udy < 0.

Since v(L) > 0, it follows that λ < 0 provided that ψ(L) > 0; otherwise λ ≥ 0 is unstable. To leading order the threshold
ψ(L) = 0 is achieved when L ∼ Lc where

Lc =

√

2ξ

a
(52)

with λ ≶ 0 when Lc ≶ L.

To conclude the proof of theorem 4.2, it suffices to show that the even eigenvalue is stable. The argument here
is identical to the analysis of stability of the even eigenvalue for type I solutions as given in section 2.2. The key to

that argument is the observation that u is exponentially small in the outer region, so that the integral
∫ L

0
updx is well-

approximated by assuming that u is negligible in the outer region. �

5 Discussion

The chemotaxis model (1) introduced in [21] exhibits a surprising variety of spike dynamics. In this paper, we studied
some of the mechanisms that drive these dynamics. We have identified three types of solutions. For type I solution, a
single interior spike is unstable and moves towards the boundary of the domain. For type II solution, spike-insertion can
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be observed. Stability thresholds are established for the type III solution. These mechanisms provide for basic building
blocks from which more complex dynamics can be constructed.

The instability of type I solution is qualitatively similar to the behaviour of a spike for the classical KS model in one
dimension. However there are no analogues for behaviours of type II and III solutions in the classical KS model. The
production terms in (1) are essential for spike insertion and stabilization behaviours observed in type II and III solutions.
To our knowledge, this is the first result showing analytically that an interior spike can be stable for Keller-Segel type
models.

Spike solutions are commonplace in many other reaction-diffusion models. The stability theory for localized spikes was
first developed for Gierer- Meinhardt model [37] and Gray-Scott model [38]. For both of these models, the basic question
about the stability of a single spike with respect to the even eigenvalue reduces to the study of the so-called nonlocal
eigenvalue problem (NLEP), which has terms that involve the integral of the eigenfunction itself [39]. For the KS model,
the stabilization mechanism is completely different: due to a scaling invariance in the inner region, the even eigenvalue
can be computed explicitly and no NLEP problem arises.

For simplicity, we only considered a single spike in this paper. The analysis of stability can be extended to multiple
spikes using Floquet-type theory such as was done for example in [40, 41, 37]. Another open problem is to derive the
equations of spike motion, such as was done for example in [37] for the Gierer-Meinhardt model.

Finally, there are other regimes of interest in this model. Numerical simulations from [28] show that the spikes can
exhibit oscillations. Examples of these are shown in figure 6. It remains an open question to explain and quantify how
these oscillations occur.
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