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Abstract. In the limit of small activator diffusivity ε, and in a bounded do-
main in RN with N = 1 or N = 2 under homogeneous Neumann boundary
conditions, the bifurcation behavior of an equilibrium one-spike solution to the
Gierer-Meinhardt activator-inhibitor system is analyzed for different ranges of
the inhibitor diffusivity D. When D = ∞, it is well-known that a one-spike
solution for the resulting shadow Gierer-Meinhardt system is unstable, and the
locations of unstable equilibria coincide with the points in the domain that are
furthest away from the boundary. For a unit disk domain it is shown that as
D is decreased below a critical bifurcation value Dc, with Dc = O(ε2e2/ε), the
spike at the origin becomes stable, and unstable spike solutions bifurcate from
the origin. The locations of these bifurcating spikes tend to the boundary of
the domain as D is decreased further. Similar bifurcation behavior is studied
in a one-parameter family of dumbbell-shaped domains. This motivates a fur-
ther analysis of the existence of certain near-boundary spikes. Their location
and stability is given in terms of the modified Green’s function. Finally, for
the dumbbell-shaped domain, an intricate bifurcation structure is observed
numerically as D is decreased below some O(1) critical value.

1. Introduction. In the limit of small activator diffusivity, the bifurcation behav-
ior of an equilibrium one-spike solution to the Gierer-Meinhardt activator-inhibitor
system is analyzed, for different ranges of the inhibitor diffusivity D, in a bounded
domain Ω ∈ RN , with N = 1 or N = 2. The Gierer-Meinhardt model introduced in
[8], and used to model various localization processes including biological morpho-
genesis and sea-shell patterns (cf. [11], [17], [18]), can be written in dimensionless
form as (cf. [12])

at = ε24a− a +
ap

hq
, x ∈ Ω , t > 0 , (1.1a)

τht = D4h− h + ε−N am

hs
, x ∈ Ω , t > 0 , (1.1b)

∂na = ∂nh = 0 , x ∈ ∂Ω . (1.1c)

Here a and h represent the activator and the inhibitor concentrations, ε2 ¿ 1
and D À O(ε2) represent the diffusivity of the activator and inhibitor, τ is the in-
hibitor time constant, ∂n denotes the outward normal derivative, and the exponents
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(p, q, m, s) satisfy

p > 1, q > 0, m > 0, s ≥ 0,
p− 1

q
<

m

s + 1
. (1.2)

In the limit ε → 0, (1.1) admits spike solutions whereby the activator concentration
a becomes localized near certain points on the boundary or in the interior of the
domain Ω. Such solutions have been postulated to be responsible for a variety of
localization processes in biological pattern formation, including the development
of some sea shell patterns (cf. [17]). We will study the existence and stability of
one-spike solutions to (1.1) when τ = 0 in (1.1b).

When τ = 0 and D is infinite, (1.1) reduces to the well-known nonlocal shadow
system for the activator concentration a given by (cf. [12])

at = ε24a− a +
ap

hq
, x ∈ ∂Ω , t > 0 ; h =

(
ε−N

|Ω|
∫

Ω

am dx

) 1
s+1

,

(1.3a)

∂na = 0 , x ∈ ∂Ω . (1.3b)

Here |Ω| denotes the area of Ω. The steady-state and dynamical behavior of spike
solutions to this shadow problem is now well-understood (see [3], [5], [9], [12], [16],
[19], [22], [24], [25], [26], [27]). This problem admits both boundary spike solutions,
which concentrate at critical points of the curvature of the boundary, and interior
spike solutions, where the spikes are located strictly inside the domain. In this paper
we only consider interior spike solutions. For ε → 0, the equilibrium location of an
interior one-spike solution to (1.1) is determined by critical points of the distance
function (cf. [26]). Therefore, for a strictly convex domain in R2, an equilibrium
one-spike solution for this shadow problem is located asymptotically for ε → 0 at
the center of the largest circle that can be inscribed in the domain (cf. [22], [26]).
For a dumbbell-shaped domain that is symmetric with respect to the x and y axes,
such as that shown below in Fig. 4, an equilibrium one-spike solution is either
located at the origin or in one of the two lobes of the dumbbell. These shadow
spike solutions are stable with respect to the O(1) eigenvalues in the spectrum of
the linearization when the exponents satisfy (1.2) together with (cf. [24])

m = 2 , 1 < p ≤ 1 + 4/N ; or m = p + 1 . (1.4)

In this paper we assume that (1.4) holds. However, even under the condition (1.4),
any interior one-spike solution to the shadow problem (1.1) is ultimately unstable,
due to a positive but asymptotically exponentially small principal eigenvalue in
the spectrum of the linearization (cf. [12], [24]). This eigenvalue is responsible for
metastable behavior for the time-dependent problem.

In contrast, for (1.1) with − log ε ¿ D ¿ O(ε2e2d/ε), where d is the distance of
the spike to the boundary, it was derived asymptotically in [15] that the equilibrium
location x0 of a one-spike solution to (1.1) is such that the gradient of the regular
part Rm of the modified Green’s function Gm for the Laplacian must vanish at x0.
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This Green’s function and its regular part satisfy

4Gm =
1
|Ω| − δ(x− x0) , x ∈ Ω , (1.5a)

∂nGm = 0 , x ∈ ∂Ω ;
∫

Ω

Gm dx = 0 , (1.5b)

Rm(x, x0) = Gm(x, x0) +
1
2π

log |x− x0| . (1.5c)

The condition for a spike equilibrium is that ∇Rm = 0 at x = x0. By calculating
an explicit formula for this gradient using complex analysis, and through many ad-
ditional boundary integral numerical computations, it was conjectured in [15] that
the location of an equilibrium one-spike solution to (1.1) in an arbitrary, possibly
non-convex, simply-connected bounded domain is unique. If this conjecture holds,
this solution must be stable since it necessarily corresponds to a minimum of Rm.
This follows from [15] and [28], where it was shown that Rm tends to positive in-
finity near the boundary of a general domain Ω. The implication of this conjecture
is that, for a dumbbell-shaped domain that is symmetric with respect to the x and
y axes, there is a unique and stable one-spike solution located at the origin when-
ever D satisfies − log ε ¿ D ¿ O(ε2e2d/ε), where d is the distance of the spike
to the boundary. However, as discussed in the previous paragraph, there can be
three unstable equilibrium one-spike solutions for a dumbbell-shaped domain when
D = ∞.

The main goal of this paper is to study this apparent paradox. Our analysis sug-
gests that there is a bifurcation for one-spike solutions to (1.1) that occurs when D
is exponentially large as ε → 0. We give an explicit analysis of this bifurcation in the
limit ε → 0 for a one-dimensional slab domain, a circular cylindrical domain, and a
one-parameter family of dumbbell-shaped domains. For a one-dimensional domain
that contains an unstable one-spike equilibrium solution at the origin when D = ∞,
it is shown that there is a critical bifurcation value Dc, with Dc = O(ε2e2d/ε) where
d is the distance of the spike to the boundary, such that as D decreases below Dc

the spike at the midpoint of the domain becomes stable and unstable spike solutions
bifurcate from this midpoint value. The locations of these bifurcating spikes tend
to the boundary of the domain as D is decreased. A similar bifurcation scenario is
found to occur for a circular cylindrical domain. Explicit asymptotic formulae for
the bifurcation values Dc are calculated. A more intricate bifurcation behavior is
analyzed for a one-parameter family of dumbbell-shaped domains. When D = ∞,
an unstable spike for these domains can be located either in the neck or in one of
the two lobes of the dumbbell. For ε → 0, it is shown that the bifurcation behavior
is such that when D is exponentially large, an equilibrium spike location in either
lobe of the dumbbell will tend to the boundary of the domain. Moreover, as D
decreases below some asymptotically exponentially large critical value, the spike in
the neck of the dumbbell regains its stability as a result of a pitchfork bifurcation in
the vertical direction. This critical value is calculated explicitly. These bifurcations
are schematically illustrated in Fig. 1(a,b,c).

An additional bifurcation of equilibrium one-spike solutions for (1.1) in a dumbbell-
shaped domain was found in [15] to occur when the inhibitor diffusivity D is on the
range O(ε2) ¿ D ¿ O(− log ε). On this range, the location of a one-spike solution
to (1.1) is determined by the vanishing of the gradient of the regular part R of the
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(a) D = ∞ (b) D = O(ε2e2d/ε)

(c) − log ε ¿ D ¿ O(ε2e2d/ε) (d) D = O(1)

(e) D = O(1) (f) O(ε2) ¿ D ¿ O(1)

Figure 1. Schematic representations of vector fields and the bi-
furcations that occur for interior spike solutions in a dumbbell-
shaped domain as D is decreased from ∞ to O(ε2). Stable equilib-
ria, saddle points, and unstable equilibria correspond to black dots,
hatched dots, and white dots, respectively. (a) For the shadow sys-
tem all equilibria are unstable and correspond to critical points of
the distance function from the center of the spike to the boundary.
(b) In the intermediate regime, a competition between ∇Rm and
the distance function determines the locations of an equilibrium
interior spike. (c) For D large, but not exponentially large, there
is a unique (stable) spike equilibrium inside the domain located
where ∇Rm = 0. (d) For D = O(1) and O(ε2) ¿ D ¿ O(1), an
interior spike is located where ∇R = 0. (e) An intricate bifurcation
structure may be present in the intermediate regime between (c)
and (f). (f) On the range O(ε2) ¿ D ¿ O(1), R can be approxi-
mated by the distance function. Thus, in (f) the equilibria are the
same as in (a), except that the spikes in the lobe of the dumbbell
are stable and the direction field is reversed from (a).
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reduced wave Green’s function G, satisfying

4G− λ2G = −δ(x− x0) , x ∈ Ω , (1.6a)

∂nG = 0 , x ∈ ∂Ω , (1.6b)

R(x, x0) = G(x, x0) +
1
2π

log |x− x0| . (1.6c)

Here λ2 = 1/D. For D ¿ 1, it was shown in [15] that R is determined by the
distance function. Therefore, for a dumbbell-shaped domain, there exists one-spike
solutions to (1.1) in either the neck or the lobes of the dumbbell (see Fig. 1(f)).
When D ¿ 1, the spike solutions in the lobes of the dumbbell are stable since they
correspond to local minima of R (cf. [15]). Similarly, for D ¿ 1, the spike in the
neck region is unstable since it corresponds to a saddle point of R. To reconcile
this behavior for D ¿ 1 with the conjectured uniqueness of a one-spike solution
to (1.1) on the range − log ε ¿ D ¿ O(ε2e2d/ε), it was shown numerically for a
certain dumbbell-shaped domain in [15] that there is a pitchfork bifurcation as D
decreases below some O(1) critical value. The effect of this bifurcation is that the
spike in the neck of the dumbbell loses its stability to spike solutions that tend to
the lobes of the dumbbell as D is decreased.

The second goal of this paper is to study numerically this additional pitchfork
bifurcation behavior that occurs on the range O(ε2) ¿ D ¿ O(− log ε) for a one-
parameter family of dumbbell-shaped domains. Our numerical computations reveal
the new result that this bifurcation can be either locally subcritical or supercriti-
cal. These bifurcation diagrams are obtained through boundary integral numerical
computations of the zeroes of the gradient of the regular part R in (1.6c) evaluated
at x = x0. The relationship of the local behavior near the bifurcation point to the
geometry of the neck region of the dumbbell-shaped domain is discussed.

In Fig. 1 we give a visual illustration of the various bifurcations that can occur
for a one-spike solution to (1.1) in a dumbbell-shaped domain as D is decreased
from infinity. The value of D decreases from Fig. 1(a) to Fig. 1(f). Pitchfork
bifurcations at x0 = 0 occur when D is exponentially large and again when D =
O(1). These bifurcations change the stability of the equilibrium spike at the origin.
The bifurcation that occurs when D = O(1) can be either subcritical or supercritical
in D. In the lobes of the dumbbell, there are unstable spikes when D = ∞, and
stable spikes when O(ε2) ¿ D ¿ O(1). In Fig. 1 we have only depicted the
locations of interior spikes, defined as those for which the distance σ of the spike
to the boundary ∂Ω is not asymptotically small.

Finally, we show that it is possible for spike equilibria to be located at certain
points near the boundary of the domain, where the distance σ from the spike to
the boundary satisfies ε ¿ σ ¿ 1. We show that such equilibria exist when
D = O(εqe2σ/ε), and that they are always unstable with respect to the direction
perpendicular to the boundary. For a circle, these equilibria may occur near any
boundary point because of the radial symmetry. The situation is more complicated
for an arbitrary shaped domain. Using the explicit formula for the regular part of
the Green’s function for the class of dumbbell-shaped domains as shown in Fig. 1,
we show that the near-boundary equilibria may occur only on the x or y-axis.
Moreover, such equilibria along the x-axis are found to be unstable with respect
to the tangential direction to the boundary, whereas those equilibria along the y-
axis are stable in the tangential direction. Further work is needed to explore the
relationship between these near-boundary spikes and spikes that are located on the
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boundary. The behavior of boundary spikes should be determined by the curvature
of the boundary and the local behavior of the gradient of the regular part of the
modified Green’s function on the boundary. This local behavior of the modified
Green’s function is computed explicitly for a dumbbell-shaped domain.

In our analysis we only consider bifurcations of equilibrium spike solutions. Other
equilibrium solutions, such as ring solutions in a two-dimensional domain that con-
centrate as ε → 0 on some circle of radius rb are possible for reaction-diffusion
systems when the inhibitor diffusivity D is either D = O(1) or D ¿ O(1). These
solutions have been found numerically for the Gray-Scott model (cf. [20], [21]) and
can readily be constructed for the Gierer-Meinhardt model (1.1). However, ring
solutions with ring radius rb = O(1) do not exist for (1.1) in the near-shadow limit
where D is exponentially large. This is easily seen from the fact that the equi-
librium ring radius must involve an asymptotic balance between the curvature of
the ring and the diffusive flux of h in the core of the ring. Such a balance with
rb = O(1) is not possible when D is exponentially large.

This paper is organized as follows. In §2 we outline the derivation of the equa-
tion of motion for a one-spike solution to (1.1) when D is exponentially large. This
analysis, which relies heavily on the previous analyses in [15] and [12], is sketched
for both a one and a two-dimensional domain. In §2, the bifurcation behavior of
equilibrium spike solutions is studied in a one-dimensional domain. In §3 and §4
we analyze the pitchfork bifurcation behavior of an equilibrium one-spike solution
in a circular cylindrical domain and in a one-parameter family of dumbbell-shaped
domains, respectively. In §5 we study near-boundary spikes. In §6, we show numer-
ically for the class of dumbbell-shaped domains of §4 that there is another pitchfork
bifurcation point as D is decreased below some O(1) critical value. The results of
§4 and §6 can be depicted qualitatively as in Fig. 1. In §7 we formulate explicit
conjectures, based on our asymptotic and numerical analyses, that await a rigorous
proof.

2. The Dynamics of a Spike for Exponentially Large D. For τ = 0 in (1.1b),
we outline the derivation of the equation of motion for a spike solution to (1.1) in
Ω ∈ RN , when N = 1 and N = 2. For the shadow problem where D = ∞, the spike
is metastable and the motion is determined by the exponentially weak interaction
between the far-field behavior of the spike and the boundary ∂Ω (cf. [12]). For
D À 1, but with D not exponentially large as ε → 0, the exponentially weak
interaction of the spike with the boundary is insignificant in comparison to the
local behavior of the inhibitor field near x = x0, which is determined by the Green’s
function Gm of (1.5) (cf. [15]). When D is exponentially large, the dynamics of x0

is determined by a competition between the exponentially weak interaction of the
spike with the boundary and the gradient of the regular part of the Green’s function
of (1.5). Since this competition is essentially a superposition of the previous results
in ([12]) and ([15]), we only outline the key steps in the derivation of the dynamics
for x0.

2.1. The One-Dimensional Case. Let Ω = [−1, 1], and suppose that the spike
is located at x = x0 ∈ (−1, 1). For D À 1, we get from (1.1) that h ∼ H on
x ∈ [−1, 1], and

a ∼ Hγw
[
ε−1(x− x0)

]
, γ ≡ q

p− 1
. (2.1)
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Here H is a constant to be found, and w(y) satisfies

w
′′ − w + wp = 0, −∞ < y < ∞ , (2.2a)

w(0) > 0 , w
′
(0) = 0 ; w(y) ∼ αe−|y| , as y → ±∞ , (2.2b)

for some α > 0. Substituting (2.1) and the expansion h = H + h1/D + · · · into
(1.1b), we find that h1 satisfies

h1xx = H− bmHγm−sδ(x− x0) , −1 < x < 1 ; h1x(±1) = 0 , (2.3)

where bm ≡ ∫∞
−∞ wm dy. This problem has a solution only when H satisfies

Hγm−(s+1) = 2/bm. The solution for h1 is

h1 = 2HGm(x, x0) , (2.4)

where Gm is the solution to (1.5a) and (1.5b) for Ω = [−1, 1]. We calculate explicitly
that

Gm(x, x0) =
1
4

(
x2 + x2

0

)− 1
2
|x− x0|+ 1

6
. (2.5)

To determine an equation of motion for x0, we substitute a = Hγw(y) + v and
h = H + h1/D + · · · into (1.1a), where y = ε−1 [x− x0(t)]. Assuming that v ¿ 1,
we then obtain the following quasi steady-state problem for v:

Lεv ≡ ε2vxx − v + pwp−1v =
2qHγ

D
wpGm − ε−1x

′
0Hγw

′
, −1 < x < 1 ,

(2.6a)

vx = −Hγwx , x = ±1 . (2.6b)

As shown in [12], the eigenvalue problem Lεφ = λ0φ with φx(±1) = 0 has an
exponentially small eigenvalue λ0, and the corresponding eigenfunction has the
boundary layer form

φ0 ∼ w
′ [

ε−1(x− x0)
]
+ αe−ε−1(1+x0)e−ε−1(1+x) − αe−ε−1(1−x0)e−ε−1(1−x) . (2.7)

Multiplying (2.6a) by φ0, and integrating over −1 < x < 1, we let ε → 0 to get the
limiting solvability condition

ε−1x
′
0

∫ 1

−1

(
w
′)2

dx =
2q

D

∫ 1

−1

w
′
wpGm dx + ε2φ0wx|1x=−1 . (2.8)

Since w is localized near x = x0, we let y = ε−1(x− x0) in (2.8) to get

2x
′
0β =

2εq

D(p + 1)

∫ ∞

−∞

[
wp+1(y)

]′
Gm(x0 + εy, x0) dy + ε2φ0wx|1x=−1 , (2.9)

where β ≡ ∫∞
0

[
w
′
(y)

]2

dy. The second term on the right hand side in (2.9) can
be calculated using (2.7) and the far-field behavior of (2.2b). The integral term on
the right-hand side of (2.9) can be calculated by expanding Gm in one-sided limits
near x = x0, and integrating the resulting expression by parts. This yields,

x
′
0 ∼

εα2

β

(
e−2ε−1(1−x0) − e−2ε−1(1+x0)

)

− 2ε2q

D(p + 1)

[
Gmx(x+

0 , x0) + Gmx(x−0 , x0)
2

] (∫∞
0

[w(y)]p+1
dy∫∞

0
[w′(y)]2 dy

)
.

(2.10)
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Using (2.2) we can calculate the ratio of the two integrals on the right-hand side of
(2.10). In addition, we can use (2.5) to calculate Gm in (2.10). This yields,

∫∞
0

[w(y)]p+1
dy∫∞

0
[w′(y)]2 dy

= 2
(

p + 1
p− 1

)
, Gmx(x+

0 , x0) + Gmx(x−0 , x0) = x0 . (2.11)

Substituting (2.11) into (2.10), we obtain the following result:
Proposition 2.1: Let ε ¿ 1, Ω = [−1, 1], and assume that x0 ∈ (−1, 1) with
1− x0 À O(ε) and 1 + x0 À O(ε). Then, for D exponentially large as ε → 0, the
spike location x0 satisfies the differential equation

dx0

dt
∼ H(x0) ≡ εα2

β

(
e−2ε−1(1−x0) − e−2ε−1(1+x0)

)
− 2ε2q

D(p− 1)
x0 ,

β ≡
∫ ∞

0

[
w
′
(y)

]2

dy .

(2.12)

Here α is defined in (2.2b).
For any D, (2.12) has an equilibrium at x0 = 0. This solution is stable if

H
′
(0) < 0, and is unstable when H

′
(0) > 0. Setting H

′
(0) = 0, we obtain the

bifurcation value D ∼ Dc, where

Dc =
ε2qβ

2α2(p− 1)
e2/ε . (2.13)

This critical value, which is exponentially large as ε → 0, was calculated in [14].
The next result is obtained by writing (2.12) in terms of Dc.
Proposition 2.2: Under the conditions of proposition 2.1, x0(t) satisfies

dx0

dt
∼ 4εα2

β

(
ε sinh (2x0/ε)

2x0
− Dc

D

)
e−2/εx0 . (2.14)

Here Dc is defined in (2.13). The spike location at x0 = 0 is stable when D < Dc

and is unstable when D > Dc. When D < Dc, (2.14) has two unstable equilibria,
which are the roots of

2y

sinh (2y)
=

D

Dc
, y ≡ x0/ε . (2.15)

This critical value Dc depends on α and β defined by (2.2b) and (2.12), respec-
tively. By calculating the solution w to (2.2), we can obtain numerical values for
these quantities as

α = [2(p + 1)]1/(p−1)
p > 1 ; (2.16a)

β = 3/5 , p = 2 ; β = 2/3 , p = 3 ; β = 0.681 , p = 4 . (2.16b)

As a remark, we can determine β without pointwise values of w(y). A simple
calculation shows that

β =
∫ wm

0

[(
w2 − w2

m

)− 2
p + 1

(
wp+1 − wp+1

m

)]1/2

dw , wm =
(

p + 1
2

)1/(p−1)

.

(2.16c)

In Fig. 2 we plot the bifurcation diagram y ≥ 0 as a function of D/Dc from (2.15).
Qualitatively, (2.15) shows that the ratio D/Dc decreases as x0 > 0 increases.
Therefore, the unstable spikes, which bifurcate symmetrically from x0 = 0 at the
value D = Dc, move towards the endpoints of the domain as D decreases below Dc.
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Figure 2. Plot of the local bifurcation diagram (2.15) where y = 2x0/ε.

Since our analysis has only considered interior spike solutions, we cannot describe
the process by which an unstable interior spike merges onto the boundary of Ω at
some further critical value of D.

2.2. The Two-Dimensional Case. Next, we assume that Ω ∈ R2, and that ∂Ω
is smooth. Let x0 ∈ Ω, with dist(x0; ∂Ω) À O(ε). For D À 1, we get from (1.1)
that h ∼ H on Ω, and that

a ∼ Hγw
(
ε−1|x− x0|

)
, γ ≡ q

p− 1
. (2.17)

Here the radially symmetric solution w(ρ), with ρ ≡ |y|, satisfies

w
′′

+
1
ρ
w
′ − w + wp = 0, ρ ≥ 0 , (2.18a)

w(0) > 0 , w
′
(0) = 0 ; w(ρ) ∼ αρ−1/2e−ρ , as ρ →∞ , (2.18b)

for some α > 0. Substituting (2.17) and the expansion h = H + h1/D + · · · into
(1.1b), we find that h1 satisfies

4h1 = H− bmHγm−sδ(x− x0) , x ∈ Ω ; ∂nh = 0 , x ∈ ∂Ω , (2.19)

where bm ≡ ∫
R2 wm dy. This problem has a solution only whenH satisfiesHγm−(s+1) =

|Ω|/bm, where |Ω| is the area of Ω. The solution for h1 is h1 = H|Ω|Gm, where Gm

satisfies (1.5).
To determine an equation of motion for x0, we substitute a = Hγw(y) + v and

h = H + h1/D + · · · into (1.1a), where y = ε−1 [x− x0(t)]. Assuming that v ¿ 1,
we then obtain, in place of (2.6), the following quasi steady-state problem for v:

Lεv ≡ ε24v − v + pwp−1v =
q|Ω|Hγ

D
wpGm − ε−1 (x− x0)

|x− x0| · x
′
0Hγw

′
, x ∈ Ω ,

(2.20a)

∂nv = −Hγ∂nw , x ∈ ∂Ω . (2.20b)
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As shown in [12], the eigenvalue problem Lεφ = λ0φ in Ω, together with ∂nφ = 0 on
∂Ω, has two exponentially small eigenvalues λi, with i = 1, 2. The corresponding
eigenfunctions have the boundary layer form

φi ∼ ∂xiw + φ̂i . (2.21)

Here x = (x1, x2), and φ̂i is a boundary layer function localized near ∂Ω that allows
the no-flux condition for φi on ∂Ω to be satisfied. Multiplying (2.20a) by φi, and
integrating over Ω, we let ε → 0 to get the limiting solvability condition

ε−1x
′
0 ·

∫

Ω

(x− x0)
|x− x0| w

′
∂xi

w dx =
q|Ω|
D

∫

Ω

Gm wp∂xi
w dx +

∫

∂Ω

ε2φi∂nw dS , (2.22)

for i = 1, 2. Since w is localized near x = x0, we let y = ε−1(x− x0) in (2.22), and
use the following local behavior for Gm obtained from (1.5c):

Gm(x0 + εy, x0) = − 1
2π

log (ε|y|) + Rm(x0, x0) + εy · ∇Rm0 + O(|y|2) . (2.23)

Here ∇Rm0 ≡ ∇Rm|x=x0 . In this way, we obtain from (2.22) that

x
′
0·

∫

R2

yyi

|y|2
[
w
′
(|y|)

]2

dy =
ε2q|Ω|

D(p + 1)
∇Rm0·

∫

R2

yyi

|y|
[
wp+1(y)

]′
dy+

∫

∂Ω

ε2φi∂nw dS ,

(2.24)
for i = 1, 2, where y = (y1, y2). The integrals over R2 in (2.24) were calculated in
[15] (see equations (2.43) and (2.45) of [15]). The integral in (2.24) over ∂Ω was
calculated in [12] (see §3.3 of [12]). In this way, we obtain the following main result:
Proposition 2.3: Let ε ¿ 1, and assume that x0 ∈ Ω with dist(x0; ∂Ω) À O(ε).
Then, for D exponentially large as ε → 0, the spike location x0 satisfies the differ-
ential equation

dx0

dt
∼ 2εq

p− 1

[
α2

2πβ

(
p− 1

q

)
J − ε|Ω|

D
∇Rm0

]
, (2.25a)

where the vector boundary integral J is defined by

J =
∫

∂Ω

r̂

r
e−2r/ε (1 + r̂ · n̂) r̂ · n̂ dS . (2.25b)

Here r = |x− x0|, and r̂ = (x− x0)/r. The constant β in (2.25a) is defined by

β ≡
∫ ∞

0

ρ
[
w
′
(ρ)

]2

dρ . (2.26)

The dynamics (2.25) for x0 expresses a competition between ∇Rm0, inherited
from the local inhibitor field, and the boundary integral J , representing the expo-
nentially weak interaction between the tail of the spike and the boundary ∂Ω. The
dynamics depends on the constants α and β, defined in (2.18b) and (2.26). For
several values of p, these constants were computed numerically in [22], with the
result

α = 10.80, β = 2.47, p = 2;
α = 3.50, β = 1.86, p = 3;
α = 2.12, β = 1.50, p = 4.

(2.27)

In §3 and §4 we examine some special cases of (2.25).
When D À 1, but with D not exponentially large as ε → 0, (2.25) reduces to

the gradient flow
dx0

dt
∼ − 2ε2q|Ω|

D(p− 1)
∇Rm0 . (2.28)
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This limiting result was derived independently in [23] and [6]. The conjecture of
[15] is that ∇Rm0 = 0 has exactly one root in the interior of an arbitrary, possibly
non-convex, bounded and simply-connected domain Ω.

3. A Radially Symmetric Domain: D Exponentially Large. In this section
we analyze the dynamics and equilibria of a spike solution to (1.1) in a circular
cylindrical domain Ω of radius one when D is exponentially large. The bifurcation
behavior of the spike equilibria is found to be qualitatively similar to the analysis
in §2.1 for the one-dimensional slab geometry.

We look for a solution to (1.1) that has an interior spike centered at x0 ∈ Ω.
Since |Ω| = π, we obtain from (2.25) that the dynamics of the spike satisfies

dx0

dt
∼ 2εq

p− 1

[
α2

2πβ

(
p− 1

q

)
J − επ

D
∇Rm0

]
, (3.1)

where J was defined in (2.25b), and the constants α and β were defined in (2.18b)
and (2.26), respectively. For such a ball domain, the gradient of Rm0 was calculated
previously in [23] as

∇Rm0 =
1
2π

(
2− |x0|2
1− |x0|2

)
x0 . (3.2)

By symmetry, we need only look for an equilibrium solution to (3.1) on the
segment x0 ∈ [0, 1) of the positive real axis. To do so, we need Laplace’s formula
(cf. [29]) valid for ε ¿ 1,

∫

∂Ω

r−1F (r)e−2r/ε dS ∼
∑ (

πε

rm

)1/2

F (rm) (1− κmrm)−1/2
e−2rm/ε . (3.3a)

Comparing (2.25b) with (3.3a), we take

F (r) ≡ r̂ (1 + r̂ · n̂) r̂ · n̂ . (3.3b)

In (3.3a), rm = dist (x0; ∂Ω), κm is the curvature of ∂Ω at xm, and the sum is taken
over all xm ∈ ∂Ω that are closest to x0. The sign convention is such that κm > 0
if Ω is convex at xm.

We first suppose that x0 À O(ε) and that 1 − x0 À O(ε). In this case, the
point (1, 0) on ∂Ω is the unique point closest to x0. Using (3.3) with r̂ = (1, 0),
n̂ = (1, 0), and κm = 1, we get for ε ¿ 1 that

J ∼ 2
(

πε

x0(1− x0)

)1/2

e−2ε−1(1−x0)î , (3.4)

where î = (1, 0).
Next, suppose that x0 > 0 with x0 = O(ε). In this case, Laplace’s formula (3.3)

fails since the asymptotic contribution to J arises from the entire integral over the
boundary rather than from a discrete set of points. Parameterizing ∂Ω by x = cos t
and y = sin t, we calculate for x0 ¿ 1 that

r = 1− x0 cos t + O
(
x2

0

)
;

r̂ = (cos t, sin t) + x0

(− sin2 t, sin t cos t
)

+ O
(
x2

0

)
;

r̂ · n̂ = 1 + O
(
x2

0

)
.

(3.5)

Substituting (3.5) into (2.25b), we obtain to leading order that

J ∼ 2 î e−2/ε

∫ 2π

0

(cos t) e2ε−1x0 cos t dt . (3.6)
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Since the modified Bessel function I1 of the first kind of order one has the integral
representation (cf. [1]),

I1(x) =
1
2π

∫ 2π

0

(cos θ) ex cos θ dθ , (3.7)

we obtain that
J ∼ 4πî e−2/εI1 (2x0/ε) . (3.8)

This expression is valid for x0 = O(ε). When x0 ¿ O(ε), the asymptotic evaluation
of J is obtained by using the local behavior I1(z) ∼ z/2 as z → 0 in (3.8). This
yields,

J ∼ 4πε−1 î x0e
−2/ε . (3.9)

Using I1(z) ∼ (2πz)−1/2ez in (3.8), we obtain that the far-field form of (3.8) for
x0 À O(ε) agrees with the leading order behavior of (3.4) as x0 → 0. Combining
(3.4) and (3.8), we can write a uniformly valid leading order approximation to J as

J ∼ 4πîe−2/ε

√
1− x0

I1 (2x0/ε) . (3.10)

This formula is valid for x0 ≥ 0, with 1− x0 À O(ε).
The origin x0 = 0 is an equilibrium point for (3.1) for any D > 0. Using (3.9)

and (3.2) we can write the local behavior for (3.1) when x0 ¿ 1 as

dx0

dt
∼ 2ε2q

(p− 1)D

(
D

Dc
− 1

)
x0 , (3.11a)

where Dc is defined by

Dc =
ε2qβ

2α2(p− 1)
e2/ε . (3.11b)

This critical value has the same form as was calculated for the one-dimensional slab
geometry in (2.13), except that the constants α and β depend on the dimension.
Hence, the equilibrium x0 = 0 is unstable when D > Dc, and is stable when D < Dc.
The constants α and β in (3.11b) are given for various p in (2.27). Substituting
(3.2) and (3.10) into (3.1), we obtain the following main result:
Proposition 3.1: Let ε ¿ 1 and assume that the spike location x0 within the unit
ball is along the segment of the real axis satisfying x0 ≥ 0 with 1 − x0 À O(ε).
Then, the trajectory x0(t) of an interior spike solution satisfies

dx0

dt
∼ 2ε2q

(p− 1)D

[
D

Dc
− 1

H(x0)

]
εI1(2x0/ε)√

1− x0
, (3.12a)

where Dc is defined in (3.11b), and H(x0) is defined by

H(x0) ≡ ε
√

1− x0(1 + x0)I1 (2x0/ε)
x0 (1− x2

0/2)
. (3.12b)

Since H(0) = 1, the equilibrium location x0 = 0 is stable when D < Dc and is
unstable when D > Dc. On the range x0 > 0 with 1−x0 À O(ε), for each D < Dc

there is a unique unstable equilibrium solution to (3.12a) satisfying
Dc

D
= H(x0) . (3.13)

The local behavior of the bifurcating branch, obtained by setting y = x0/ε in (3.13),
is given by

D

Dc
=

y

I1(2y)
. (3.14)
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Figure 3. Plot of the local bifurcation diagram (3.14) where y = x0/ε.

In Fig. 3 we plot the local bifurcation behavior (3.14). Notice that, although
the bifurcation point Dc for the one-dimensional slab geometry and the unit ball
are the same, the local bifurcation behaviors (3.14) and (2.15) for the ball and
slab domains, respectively, are different when x0 = O(ε). However, for y ¿ 1
(i.e. x0 ¿ ε), we can use I1(2y) ∼ 2y and sinh(2y) ∼ 2y in (3.14) and (2.15),
respectively, to conclude that (3.14) and (2.15) are the same to leading order when
x0 ¿ ε.

Qualitatively, we see that, except within an O(ε) neighborhood of x0 = 1 where
(3.13) is not valid, (3.13) shows that the ratio Dc/D increases as x0 increases.
Therefore, the unstable spike, which bifurcated from x0 = 0 at the value D = Dc,
moves towards the boundary of the circle as D decreases below Dc. From (3.11b),
the critical value Dc is exponentially large as ε → 0 and depends on the parameters
α and β given numerically in (2.27).

Since our analysis has only considered interior spike solutions that interact ex-
ponentially weakly with the boundary, we again cannot describe the process by
which the unstable interior spike merges onto the boundary of the unit ball at some
further critical value of D. However, using (3.13) we can give an estimate of the
value of D for which a spike approaches to within an O(σ) neighborhood of the
boundary, where ε ¿ σ ¿ 1. Let x0 = 1− σ in (3.13). A simple calculation using
(3.11b), (3.12b), and the large argument expansion of I1(z), yields

D ∼ β
√

π

4α2

(
q

p− 1

) ( ε

σ

)1/2

e2σ/ε . (3.15)

Since we have specified x0 ∈ (0, 1] at the outset of the analysis, our bifurcation
analysis cannot determine the direction in which the equilibrium spike moves to-
wards the boundary as D is decreased. This degeneracy in the fundamental problem
can be broken by a slight perturbation in the shape of the domain. A resulting im-
perfection senstitivity analysis would presumably be able to resolve the degeneracy
and determine a unique direction for the bifurcating spike.

4. A Dumbbell-Shaped Domain: D Exponentially Large. When D is expo-
nentially large, we now analyze the dynamics and equilibria of a one-spike solution
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to (1.1) with τ = 0 in a one-parameter family of dumbbell-shaped domains. Let
z ∈ B, where B is the unit circle, and define the complex mapping w = f(z), with
z = u + iv, by

w = f(z) =
(1− b2)z
z2 − b2

. (4.1)

Here b is real and b > 1. The resulting domain Ω = f(B) is shown in Fig. 4 for
several values of b. Notice that Ω → B as b →∞. Moreover, as δ ≡ b− 1 → 0+, Ω
approaches the union of two circles centered at (±1/2, 0), with radius 1/2, that are
connected by a thin neck region of width 2δ+O(δ2). This class of dumbbell-shaped
domains is symmetric with respect to both the x and y axes. Therefore, when
D = ∞, and for a certain range of b, we expect that there will be three equilibrium
one-spike solutions, one centered at the origin and the other two centered on the x-
axis in the lobes of the dumbbell. As a remark, this class of domains was considered
previously in [10], where it was shown that the regular part of the Green’s function
under Dirichlet boundary conditions has more than one minima when b <

√
3. It

is easy to show that Ω is non-convex only when 1 < b < bc ≡ 1 +
√

2.

1

1

50

3

2

1.5

1.05

Figure 4. The boundary of Ω = f(B), with f(z) as given in (4.1),
for the values of b as shown.

Let x0 be the location of a one-spike solution to (1.1) in Ω, with pre-image point
z0 ∈ B satisfying x0 = f(z0). Let ∇Rm0 denote the gradient of the regular part
of the modified Green’s function (1.5) at x = x0. To give an explicit analysis of
the equilibrium spike bifurcation behavior in Ω as D is decreased from infinity,
we require an explicit formula for this gradient. In [15] (see Theorem 4.1 of [15]),
a complex variable method was used to derive this formula for a general class of
mappings of the unit disk. Applying this result to (4.1), we obtain

∇Rm0 =
∇s(z0)

f ′(z0)
, (4.2a)
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where

∇s(z0) =
1
2π

(
z0

1− |z0|2 −
2b2z0

z4
0 − b4

+
b2z0

z2
0b

2 − 1

− (b4 − 1)2(|z0|2 − 1)(z0 + b2z0)(z2
0 + b2)

(b4 + 1)(z2
0b

2 − 1)(z2
0 − b2)(z2

0 − b2)2

)
,

(4.2b)

and

f
′
(z0) = (b2 − 1)

(z2
0 + b2)

(z2
0 − b2)2

, x0 = f(z0) . (4.2c)

In (4.2), we interpret vectors as complex numbers so that ∇Rm0 = ∂xRm0+i∂yRm0.
The area |Ω| of Ω, which is needed below, was derived in [15] to be

|Ω| = π
(b4 + 1)
(b2 + 1)2

. (4.3)

Note that |Ω| → π as b → ∞, and |Ω| → π/2 as b → 1+, when Ω reduces to two
circles each of radius 1/2.

The dynamics and equilibria of a one-spike solution to (1.1) in Ω is obtained
by substituting (4.2) and (4.3) into (2.25). We show below that the bifurcation
behavior of equilibria to (2.25) is as sketched in Fig. 1(b). In §4.1 we analyze this
behavior for the equilibrium spike located at the origin (0, 0) in the neck region of
the dumbbell. In §4.2 we analyze equilibrium spikes in the lobes of the dumbbell.

4.1. The Neck Region of the Dumbbell. When D = ∞, the equilibrium spike
solution at the origin is unstable. However, as we show below, as D decreases
below some critical value Dc this equilibrium solution regains its stability, and new
unstable equilibria appear at the points (0,±y0) in Ω for some y0 > 0. These
equilibria move along the vertical axis towards the boundary ∂Ω as D is decreased
below Dc (see Fig. 1(b)).

To analyze the spike behavior, we must calculate the integral J in (2.25) asymp-
totically. To do so, we parameterize ∂Ω by letting z = eit, for −π ≤ t < π, and
w(t) = f

(
eit

)
= ξ(t) + iη(t). Using (4.1), we calculate

ξ(t) =
(b2 − 1)2 cos t

b4 + 1− 2b2 cos 2t
, η(t) =

(b4 − 1) sin t

b4 + 1− 2b2 cos 2t
. (4.4)

For a spike located at (0, y0) in Ω, with y0 > 0 but small, the dominant contribution
to J arises from the points corresponding to t = ±π/2, labelled by (0,±ym), where

ym =
(

b2 − 1
b2 + 1

)
. (4.5)

A simple calculation using (4.4) shows that the curvature κm of ∂Ω at (0,±ym) is

κm =
ξ
′
η
′′ − η

′
ξ
′′

[η′2 + ξ′2]3/2

∣∣∣
t=±π/2

=
(

b2 + 1
b2 − 1

)3
[
1− 8b2

(b2 + 1)2

]
. (4.6)

By symmetry, the vector integral J in (2.25) has the form J = (0, J2). When
y0 ¿ ym − ε, we evaluate the integral J asymptotically in (2.25) for ε → 0, to
obtain

J2 ∼ 2
√

πεe−2ym/ε

[
e2y0/ε

√
rm1(1− κmrm1)

− e−2y0/ε

√
rm2(1− κmrm2)

]
, (4.7a)
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where
rm1 = ym − y0 , rm2 = ym + y0 . (4.7b)

When |y0| = O(ε), we calculate

J2 ∼ 4
(

πε

ym (1− κmym)

)1/2

e−2ym/ε sinh (2y0/ε) . (4.8)

Next, we calculate ∇Rm0 near the origin. Let z0 = iv0 ∈ B, and w0 = iy0 ∈ Ω.
Since w = f(z), we calculate that

v0 =
(b2 − 1)

2y0
−

[(
b2 − 1
2y0

)2

− b2

]1/2

, (4.9a)

and

y0 ∼ f
′
(0)v0 , where f

′
(0) =

(b2 − 1)
b2

, as v0 → 0 . (4.9b)

Using (4.3) and (4.9b), we can calculate |Ω|∂yRm0 in (4.2) in terms of y0 for |y0| ¿ 1.
A simple, but lengthy, calculation yields that

|Ω|∂yRm0 = yG(b) , G(b) =
(b2 − 1)

2(b4 − 1)2
[
2b6 + 3b4 + 2b2 − 1

]
. (4.10)

Substituting (4.8) and (4.10) into (2.25a), we obtain the following main result:
Proposition 4.1: Let ε ¿ 1 and assume that the spike location (0, y0) on the
y-axis satisfies y0 = O(ε). Then, the local trajectory y0(t) satisfies

dy0

dt
∼ ε1/2 µ0 e−2ym/ε

[
sinh (2y0/ε)

(2y0/ε)
− Dc

D

]
y0 , (4.11a)

where Dc and µ0 satisfy

Dc =
ε2β

4α2

(
q

p− 1

) (π

ε

)1/2

[ym (1− κmym)]1/2 G(b)e2ym/ε , (4.11b)

µ0 =
8α2

√
πβ

[ym (1− κmym)]−1/2
. (4.11c)

When D > Dc, y0 = 0 is the unique, and unstable, equilibrium solution for (4.11a).
For D < Dc, y0 = 0 is stable, and there are two unstable equilibria with |y0| = O(ε),
satisfying

2ζ

sinh (2ζ)
=

D

Dc
, ζ = y0/ε . (4.12)

Therefore, the local bifurcation is subcritical in D/Dc and has the qualitative form
as shown in Fig. 2.

The bifurcation value Dc depends on the dumbbell shape-parameter b, and on α
and β defined in (2.18b) and (2.26), respectively. The values α and β were computed
numerically in (2.27) for a few exponents p. In the limiting case b − 1 = δ → 0+,
we calculate from (4.5), (4.6), and (4.10), that

ym → δ , κm → −δ−3 , G → 3δ−1/8 , as δ → 0+ . (4.13)

Substituting (4.13) into (4.11b), we obtain

Dc ∼ 3β
√

π

32α2

(
q

p− 1

) (ε

δ

)3/2

e2δ/ε , as δ → 0+ . (4.14)

This limiting formula for the bifurcation point is valid for 0 < ε ¿ δ ¿ 1.
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Next, we determine the global bifurcation branch for y0 > 0 with O(ε) ¿ y0 ¿
ym − O(ε). We set z0 = iv0 in (4.2b) with 0 < v0 < 1. From (4.2b) and (4.3), we
then obtain

|Ω|∂yRm0 = v0χI(b; v0) , (4.15)

where χI(b; v0) is defined by

χI(b; v0) ≡ (b4 + 1)(b2 − 1)
2(b4 − 1)2

(b2 + v2
0)2

(b2 − v2
0)

×
[

(1 + b2)
(1− v2

0)(1 + b2v2
0)

+
2b2

v4
0 − b4

− (b4 − 1)2(b2 − 1)(1− v2
0)(b2 − v2

0)
(b4 + 1)(1 + b2v2

0)(b2 + v2
0)3

]
.

(4.16)
Here v0 = v0(y0) is given by (4.9a). Comparing (4.15) with the local behavior
(4.10), and using y0 ∼ f

′
(0)v0 for v0 ¿ 1, it follows that

χI(b; 0) = G(b)f
′
(0) , (4.17)

where G(b) is defined in (4.10). As v0 → 1−, or equivalently y0 → y−m, ∂yRm0 →
+∞. From (4.16), we calculate

χI(b; v0) ∼ (b4 + 1)
4(b2 − 1)2

(1− v0)−1 , as v0 → 1− . (4.18)

On the range y0 > 0 with O(ε) ¿ y0 ¿ ym−O(ε), the term in (4.7a) proportional
to e−2y0/ε can be neglected. To determine the dynamics of y0 on this range, we
substitute (4.7a), and (4.16), into (2.25). After some algebra, we get

dy0

dt
∼ ε1/2µ0e

−2ym/ε

[(
C(ym)
C(rm)

)
e2y0/ε

(4v0/ε)
− Dc

D

(
χI(b; v0)
G(b)

)]
v0 , (4.19a)

where rm = ym − y0. Here Dc and µ0 are defined in (4.11), and the function C(s)
is defined by

C(s) = [s(1− κms)]1/2
. (4.19b)

The equilibria of (4.19a) satisfy

D

Dc
= 4v0ε

−1

(
C(rm)
C(ym)

) (
χI(b; v0)
G(b)

)
e−2y0/ε . (4.20)

Using the formula (4.9a) for v0 = v0(y0), we can write D/Dc as a function of y0.
For ε ¿ 1, the right-hand side of (4.20) is a decreasing function of y0. Thus, D is
a decreasing function of y0.

4.2. The Lobe Region of the Dumbbell. Next, we analyze the behavior of
an equilibrium spike in the right lobe L of the dumbbell as D is decreased from
infinity. Let R denote the largest inscribed circle within L. Let xin and rin denote
the center and radius of R, respectively. For b = 1.8, in Fig. 5 we show the right
lobe L and the largest inscribed circle R, with center on the x-axis.

When D = ∞, the location x0 of an equilibrium spike satisfies J = 0, where
J is defined in (2.25). To leading order as ε → 0, x0 ∼ xin satisfies J = 0. The
correction term is of O(ε) and may also be computed as in [22]. Therefore, to
leading order, it suffices to determine xin.

The largest inscribed circleRmakes two-point contact with ∂Ω at xc = (ξc,±ηc),
with ηc > 0. These points are such that the normal to ∂Ω at xc is parallel to the
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Figure 5. The domain Ω with b = 1.8 and the largest inscribed
circle R inside its right lobe L.

y-axis. From (4.4), this implies that η
′
= 0. We write (4.4) as

ξ(t) =
(b2 − 1)2

χ
cos t , η(t) =

(b4 − 1)
χ

sin t , (4.21a)

where
χ ≡ b4 + 1− 2b2 cos(2t) = (b2 + 1)2 − 4b2 cos2 t . (4.21b)

Setting η
′
= 0, we get

sin2 t =
χ

8b2
, or cos t = 0 . (4.22)

Two roots are t = ±π/2. Combining (4.22) and (4.21b), we get χ = 2(b2−1)2, and
that the other root satisfies

cos2 t =

[
6b2 − (b4 + 1)

]

4b2
. (4.23)

Substituting (4.23) into (4.21), we obtain that the contact points satisfy

(ξc,±ηc) =
(

1
4b

[
6b2 − (b4 + 1)

]1/2
,± (b2 + 1)

4b

)
. (4.24)

Hence, xin = (ξc, 0), and rin = ηc.
The formula (4.24) is valid only when 6b2 − (b4 + 1) > 0. Therefore, we require

that 1 < b < bc ≡ 1 +
√

2. In order to show, that rin is the radius of the largest
inscribed circle for this range of b, we must verify that a circle centered at xin will
lie strictly inside the domain, and will only touch the boundary at (ξc,±ηc). This
global verification has been done numerically.

As b → b−c , we have xin → (0, 0) and rin → 1/
√

2. Alternatively as b → 1+, we
have xin →

(
1
2 , 0

)
and rin → 1/4. From (4.6) we conclude that the curvature κm of

∂Ω at the point x = 0 tends to zero as b → b−c , Moreover, more algebra shows that
the domain is convex when b > bc. The convexity of the domain for b > bc explains
the nonexistence of a largest inscribed circle in the right lobe of the dumbbell for
this range of b.

Next, we determine the equilibrium point x0 of (2.25a) in the right lobe of the
dumbbell when D is exponentially large. In Fig. 6, we use (4.2) to plot ∂xRm0 along
the positive x-axis. Note that ∂xRm0 > 0 for x > 0. This inequality was proved in
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Figure 6. Plot of ∂xRm0(x, 0) versus x for b = 1.05, 1.1, 1.2, 1.5,
2, 2.5, ∞. The top (bottom) curve corresponds to b = 1.05 (∞),
respectively. Note that ∂xRm0(x, 0) is positive on the positive x-
axis.

[15]. Therefore, as D decreases, the equilibrium location (x0, 0) tends to the point
(1, 0) ∈ ∂Ω. When D is sufficiently small, the point (1, 0) will be the closest point
on the boundary to (x0, 0). In this range of D, we conclude from (2.25) that the
location of the spike is determined by a balance between ∂xRm0 and the dominant
contribution to the x-component J1 of the integral J obtained from the closet point
(1, 0) ∈ ∂Ω. From (2.25), this unstable equilibrium satisfies

α2

2πβ

(
q

p− 1

)
J1 =

ε

D
|Ω|∂xRm0 . (4.25)

Calculating J1 asymptotically as in (3.3), we get

J1 ∼ 2
(

πε

1− x0

)1/2
e−2(1−x0)/ε

[1− κ1(1− x0)]
1/2

, (4.26)

where κ1 is the curvature at the point (1, 0) given by

κ1 = 1 + 4b2/(b2 + 1)2 . (4.27)

5. Spike Equilibria Near the Boundary. In this section we will compute the
leading-order behavior of∇Rm0 near the boundary of the dumbbell-shaped domains
of §4. We then use this formula to analyze equilibrium spike locations near the
boundary. We begin with the following result, which describes the behavior of the
Green’s function near the boundary.
Proposition 5.1:Let Ω = f(B), where B is the unit ball and f is given by (4.1).
Let z be a point on the boundary ∂B and let x = f(z) be the corresponding point
on the image boundary ∂Ω. Let N̂ be the outward pointing normal at x. Let

x0 = x− σN̂ , 0 < σ ¿ 1 , (5.1)
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and z0 satisfy x0 = f(z0). Then

∇Rm0(x0) =
N̂

4πσ
+

N̂

2π|f ′(z)|

[
z2b2

z2b2 − 1
−

(
z4 + 5b2z2

)

z4 − b4
− 1

4

]
+ O(σ) . (5.2)

Here and below, ab denotes complex multiplication and 〈a, b〉 = Re(ab) will denote
a vector dot product.

Proof.
We calculate N̂ as

N̂ =
−i d

dtf(eit)∣∣ d
dtf(eit)

∣∣ =
zf ′(z)
|f ′(z)| =

z|f ′(z)|
f ′(z)

. (5.3)

From (5.1) and (5.3) we have:

f(z0) = x0 = f(z)− σzf ′(z)
|f ′(z)| ∼ f

(
z − σz

|f ′(z)|
)

. (5.4)

Thus, for 0 < σ ¿ 1, we obtain

z0 ∼ z − σz

|f ′(z)| = z

(
1− σ

|f ′(z)|
)

. (5.5)

For σ ¿ 1, we calculate from (4.2b) that

∇s(z0) ∼ 1
2π

(
z0

1− |z0|2
)

+
z0b

2

2π

(
1

z2
0b

2 − 1
− 2

z4
0 − b4

)
+ O(σ) . (5.6)

Substituting (5.5) into (5.6), and using |z| = 1, we obtain

1
2π

(
z0

1− |z0|2
)

=
|f ′(z)|z

4πσ

(
1− σ

2|f ′(z)|
)

+ O(σ) . (5.7)

Next, we note that

1
f ′(z0)

=
1

f ′(z)

[
1 +

σz

|f ′(z)|f ′(z)
f ′′(z) + O(σ2)

]
. (5.8)

Therefore, using (4.1) for f(z), we get

1
f ′(z0)

1
2π

(
z0

1− |z0|2
)

=
|f ′(z)|z
4πσf ′(z)

(
1− σ

2|f ′(z)|
) (

1 +
σzf ′′(z)

|f ′(z)|f ′(z)

)
+ O(σ) ,

(5.9a)

= N̂

(
1

4πσ
− 1

8π|f ′(z)| +
1
4π

zf ′′(z)
|f ′(z)|f ′(z)

)
+ O(σ) , (5.9b)

= N̂

(
1

4πσ
− 1

8π|f ′(z)| +
1

4π|f ′(z)|

[
−2

(
z2 + 3b2

)
z2

z4 − b4

])
+ O(σ) .

(5.9c)



SPIKES IN NEAR-SHADOW GM MODEL 1053

Finally, substituting (5.9c) and the second term of (5.6) into (4.2a), we obtain

∇R =
∇s(z0)
f ′(z0)

(5.10a)

=
N̂

2π

(
1
2σ

− 1/4
|f ′(z)| −

1
|f ′(z)|

[(
z2 + 3b2

)
z2

z4 − b4

]

+
1

|f ′(z)|
[

z2b2

z2b2 − 1
− 2z2b2

z4 − b4

])
+ O(σ),

(5.10b)

=
N̂

2π

(
1
2σ

− 1
4|f ′(z)| +

1
|f ′(z)|

[
z2b2

z2b2 − 1
−

(
z4 + 5b2z2

)

z4 − b4

])
+ O(σ) .

(5.10c)

This completes the proof.
We now use this proposition to describe the spike dynamics and equilibria near

the boundary. Let x0 = x0(t) be O(σ) close to the boundary, as defined in (5.1),
and assume that ε ¿ σ ¿ 1. We then use Laplace’s method to calculate the
integral J in (2.25a) as

J ∼ 2
√

πε

σ
e−2σ/εN̂ , (5.11)

where J is defined in (2.25b). In deriving (5.11) we have assumed that κσ ¿ 1,
where κ is the curvature of ∂Ω. Substituting (5.11) and (5.10c) into (2.25a), we
obtain

dx0

dt
∼ 2εq

p− 1

[
α2

πβ

(
p− 1

q

) √
πε

σ
e−2σ/εN̂

−ε|Ω|
D

{
N̂

4πσ
− N̂

8π|f ′(z)| +
N̂

2π |f ′(z)|
(

z2b2

z2b2 − 1
− z4 + 5b2z2

z4 − b4

)}]
.

(5.12)

Note that the first three terms on the right hand side of (5.12) point in the
direction of N̂ . Therefore, a necessary condition for x0 to be in equilibrium is that
the last term on the right hand-side of (5.12) also points in the normal direction,
i.e.

Im
(

z2b2

z2b2 − 1
− z4 + 5b2z2

z4 − b4

)
= 0 . (5.13)

This condition is clearly satisfied when z = ±1 and when z = ±i. Next we show
that there are no other solutions to (5.13). Setting w = z2 and using 2 Im(x) = x−x,
(5.13) becomes

− (
w2 + 5b2w

)

w2 − b4
+

wb2

wb2 − 1
+

w2 + 5b2w

w2 − b4
− wb2

wb2 − 1
= 0 . (5.14)

Using the relation ww = 1, (5.14) simplifies to

4(1 + b4)b2 w (w − 1) (w + 1)
(b4w2 − 1) (b4 − w2)

= 0 . (5.15)

It follows z = ±1,±i. are the only possible equilibria.
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When the condition (5.13) is satisfied, we obtain to leading order from (5.12)
that the equilibrium location for σ is related to D by

D ∼ β

4α2

(
q

p− 1

) ( ε

πσ

)1/2

|Ω| e2σ/ε . (5.16)

Notice that this relation is the same for any equilibrium location. Moreover, (5.16)
involves only the leading order behavior of ∇R ∼ N̂

4πσ near the boundary, which
is independent of the shape of the boundary. Therefore, the result (5.16) is also
independent of the domain shape. Notice also that (5.16) with |Ω| = π agrees with
the result (3.15) derived earlier for an equilibrium spike near the boundary of a
circular cylindrical domain of radius one.

Next, we analyze the stability of these equilibria with respect to the direction
normal to the boundary. Notice that D = D(σ) has a minimum at σm = ε

4 . At
this point, D(σm) ≡ Dm =

√
2e

1
2

|Ω|qβ
4α2

√
π(p−1)

. However, since we have assumed that
σ À ε, we have D À Dm. Furthermore, for any given D with D À Dm, (5.16) has
two solutions for σ: σ1 ¿ ε and σ2 À ε. By examining the sign of the right hand
side of (5.12), we conclude that the equilibrium at σ2 is unstable with respect to the
normal direction. Alternatively, σ1 is stable with respect to the normal direction.
However, our analysis is invalid for the root σ1, since σ1 ¿ ε. Nevertheless, this
formal analysis may suggest the existence of boundary spike equilibria located on
the boundary of ∂Ω at f(z), where z = ±1 or z = ±i. See Conjecture 7.1 below.

Next, we analyze the stability of these equilibria with respect to the tangen-
tial direction. The unit tangent vector to ∂Ω, measured in the counterclockwise
direction, is

T̂ (t) = i
zf ′(z)
|f ′(z)| where z = eit . (5.17)

The stability in the tangential direction is controlled by the last term on the right
hand side of (5.12). The direction of this term, up to a positive constant scalar
multiple, is given by

~v(t) = − 1
|f ′(z)|N̂

(
z2b2

z2b2 − 1
−

(
z4 + 5b2z2

)

z4 − b4

)
, (5.18a)

= − f ′(z)
|f ′(z)|2

(
zb2

z2b2 − 1
−

(
z3 + 5b2z

)

z4 − b4

)
, (5.18b)

where z = eit.
The differential equation (5.12) can be written in the form

dx0

dt
∼ a1N̂ + ω~v , (5.19)

where a1 and ω > 0 are real. Multiplying (5.19) by T̂ and taking real parts of the
resulting expression we get

Re
(
x
′
0T̂

)
= ω Re

(
~vT̂

)
. (5.20)

We decompose the velocity field as x
′
0 = sN N̂ + sT T̂ , and we let θ denote the angle

between the tangential direction and ~v. Using the identity < a, b >= Re(ab) for
the dot product, we then reduce (5.20) to

sT = ω|~v| cos θ , (5.21)
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where

cos θ =
1
|~v| < T̂ ,~v > , (5.22a)

=
1
|~v| Re

[
i

zf ′(z)f ′(z)
|f ′(z)||f ′(z)|2

(
z3 + 5b2z

z4 − b4
− zb2

z2b2 − 1

)]
, (5.22b)

= −C(t) Im
(

z4 + 5b2z2

z4 − b4
− z2b2

z2b2 − 1

)
. (5.22c)

Here C(t) is some irrelevant positive scalar.
At the equilibrium points z = ±1 and z = ±i we have that ~v points in the

normal direction. Therefore, at these points, we have < T̂ ,~v >= 0 and cos θ = 0.
From (5.21) we observe that if d cos θ

dt < 0 at the equilibrium position, then we have
stability in the tangential direction. At the equilibrium positions, where sin θ = 1,
we calculate from (5.22) that

dθ

dt
= C(t) Im

[
d

dt
F(eit)

]
, where F(z) ≡ z4 + 5b2z2

z4 − b4
− z2b2

z2b2 − 1
. (5.23)

At t = 0 and t = π/2 where z = 1 and z = i, respectively, we obtain from (5.23)
that

dθ

dt

∣∣∣
t=0

= C(0)Re
[
F ′

(0)
]

,
dθ

dt

∣∣∣
t= π

2

= −C
(π

2

)
Im [F ′(i)] . (5.24)

From (5.23) and (5.24), we calculate

dθ

dt

∣∣∣
t=0

= −C(0)
(

8b2(1 + b4)
(b2 + 1)2(b2 − 1)2

)
< 0 , (5.25a)

dθ

dt

∣∣∣
t= π

2

= C
(π

2

) (
8b2(1 + b4)

(b2 + 1)2(b2 − 1)2

)
> 0 . (5.25b)

Since d cos θ
dt = −dθ

dt at the equilibrium positions, we conclude from (5.21) and
(5.25) that the equilibrium position near f(±i) (near f(±1)) is stable (unstable)
in the tangential direction, respectively. We summarize our results in the following
proposition.
Proposition 5.2: For the dumbbell-shaped domain Ω = f(B), where f is given
by (4.1), let σ be such that ε ¿ σ ¿ 1. For the value of D given by (5.16), there
are precisely four equilibrium spike locations, all at a distance σ away from the
boundary. They are given by x±s = f(±i)− N̂σ and x±u = f(±1)− N̂σ, where N̂ is
the normal to the boundary ∂Ω at f(±i) and f(±1), respectively. All four equilibria
are unstable in the direction N̂ normal to the boundary. Moreover, x±s (x±u ) are
stable (unstable) in the tangential direction, respectively.

In Fig. 7 we illustrate the local vector field and stability properties of near-
boundary spikes. Our results suggest that the unstable manifold of the equilibrium
near-boundary spike along the x-axis connects with the stable manifold of the near-
boundary spike along the y-axis in the neck region of the dumbbell.

Our analysis has been restricted to the case where the distance σ between the
spike and the boundary satisfies σ À ε. We expect that the equilibrium locations
of spikes that are located on the boundary of the domain should result from a
competition between the zeroes of the derivative of the curvature (as for the shadow
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Figure 7. Plot of local vector field associated with near-boundary
spikes for the dumbbell-shaped domain of §4.

problem where D = ∞) and the local behavior of the gradient of the regular part
Rm of the Green’s function on the boundary. To this end, we define Rb by

Rb(x) = lim
y→x

[
Rm(x, y) +

1
4π

ln |x− y|
]

. (5.26)

We now show that for the dumbbell-shaped domain of §4 that the minimum of Rb

occurs at that point of the boundary where the curvature is at its minimum.
For the dumbbell-shaped domains of §4 we obtain the following result:

Proposition 5.3: Let Ω = f(B) where f is given by (4.1) and B is the unit ball.
Then Rb defined in (5.26) is given by:

Rb(x) =
1
4π

ln
(

b4 + 2b2 cos 2t + 1
b4 − 2b2 cos 2t + 1

)
+ C , where x = f(eit) . (5.27)

Here C is some constant independent of x.
The proof of this result is given in Appendix A. Notice that the expression inside

the log term of (5.27) has its maximum at t = 0, π and its minimum at t = π
2 , 3π

2 .
Therefore, Rb has a minimum on the y axis in the neck of the dumbbell, where the
curvature of ∂Ω is at its minimum.

6. Bifurcations in a Dumbbell-Shaped Domain when D = O(1). In this
section, for D = O(1), we compute numerically the location of a one-spike equi-
librium solution to (1.1) for the one-parameter family of dumbbell-shaped domains
generated by the mapping (4.1) of the unit disk. The following result, derived in
[15], characterizes the motion of a one-spike solution to (1.1) when τ = 0 in (1.1b):
Proposition 6.1 (From [15]): Let ε ¿ 1, x0 ∈ Ω, with dist(x0; ∂Ω) À O(ε), and
suppose that ε2 ¿ D ¿ − log ε. Then, the location x = x0(t) of a one-spike solution
to (1.1) with τ = 0 satisfies the differential equation

dx0

dt
∼ −

(
4πq

p− 1

)
ε2

− log ε + 2πR0
∇R0 , (6.1a)

where R0 and its gradient are defined by

R0 ≡ R(x0, x0), ∇R0 ≡ ∇xR(x, x0)|x=x0 . (6.1b)
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Here R is the regular part of the reduced wave Green’s function defined by (1.6).
From (6.1), the spike equilibria satisfy

∇R0 = 0 . (6.2)

For the one-parameter family of dumbbell-shaped domains of §4, there should be
three roots to (6.2) when D is sufficiently small since, in this limit, R0 is determined
by the distance function. When D ¿ 1, local minima of R0, which correspond to
local maxima of the distance function (cf. [15]), are stable equilibria under (6.1).
Hence, when D ¿ 1 and for the one-parameter family of dumbbell-shaped domains
of §4, there should be a stable spike equilibrium in each lobe of the dumbbell. There
is an unstable spike equilibrium at the origin, which corresponds to a saddle point
of R0 (see Fig. 1(f) above). However, as discussed in §4, when D À 1 but with D
not exponentially large as ε → 0, there should only be a stable spike equilibrium
at the origin.

The goal here is to numerically study a bifurcation that occurs for D = O(1)
where the spike at the origin loses its stability to stable spike solutions that mi-
grate towards the lobes of the dumbbell as D is decreased below the bifurcation
point. Such a bifurcation was first observed numerically in [15] for a particular
dumbbell-shaped domain not of the type (4.1). Here, we consider the dumbbell-
shaped domains generated by (4.1) as a function of both the shape-parameter b > 1
of (4.1) and of λ = D−1/2. The bifurcation diagrams that we compute for these
domains are significantly more complicated than in [15], in that we find that for
some ranges of b the bifurcation can be either subcritical or supercritical in the
parameter λ ≡ D−1/2 (see Fig. 1(d) and Fig. 1(e) above).

Since we cannot calculate R0 using complex variable methods, we determine the
roots of (6.2) numerically using a boundary element method to compute the regular
part R of (1.6). Before describing our numerical results, we outline this boundary
element method.

6.1. Boundary Element method. We now describe the Boundary Element method
(BEM) used to compute the regular part R(x, x0) for (1.6). In (1.6), we set

G(x, x0) = V (x, x0) + R̃(x, x0) , V (x, x0) ≡ 1
2π

K0 (λ|x− x0|) . (6.3)

Here K0(z) is the modified Bessel function of order zero. By comparing (1.6c) with
(6.3), we get

R̃(x, x0) = R(x, x0) +
1
2π

[log |x− x0|+ K0 (λ|x− x0|)] . (6.4a)

Then, using the local behavior of K0(z), we obtain

R̃(x, x0) = R(x, x0)− 1
2π

(log 2− e− log λ) + o(1) , as x → x0 , (6.4b)

where e is Euler’s constant. Therefore, since ∇R̃(x;x0)|x=x0 = ∇R(x; x0)|x=x0 , it
suffices to compute R̃(x, x0).

Substituting (6.3) into (1.6a) and (1.6b), we obtain that R̃(x, ξ) satisfies

4R̃(x, ξ)− λ2R̃(x, ξ) = 0 , x ∈ Ω , (6.5a)

∂nR̃(x, ξ) = −∂nV (x, ξ) , x ∈ ∂Ω . (6.5b)
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The integral representation for R̃ is

R̃(x, ξ) = −
∫

∂Ω

G(x, η)∂nV (η, ξ) dS(η) . (6.6a)

Using (6.3), this can be written as

R̃(x, ξ) = −
∫

∂Ω

R̃(x, η)∂nV (η, ξ) dS(η)−
∫

∂Ω

V (x, η)∂nV (η, ξ) dS(η) . (6.6b)

Next, we discretize the boundary ∂Ω into n pieces ∂Ω1, · · · , ∂Ωn, and approx-
imate R̃(x, ξ) = R̃(x, ξi) for ξi ∈ ∂Ωi, where ξi is the midpoint of the arc ∂Ωi.
Letting R̃j = R̃(x, ξj), we can then approximate (6.6b) by the dense linear system

R̃j =
n∑

i=1

(
aijR̃i + bij

)
, (6.7a)

where

aij = −
∫

∂Ωi

∂nV (η, ξj)dS(η) , bij = −
∫

∂Ωi

V (x, η)∂nV (η, ξj) dS(η) . (6.7b)

After calculating the solution to (6.7a), we can determine R̃(x, x0) by discretizing
(6.6b). This leads to

R̃(x, x0) = −
n∑

i=1

(
V (x, ηi) + R̃i

)
∂nV (ηi, x0)li . (6.8)

Here li is the length of ∂Ωi.
It remains to compute the coefficients aij and bij in (6.7b). When i 6= j we have

aij = −li∂nV (ηi, ξj) , bij = −liV (x, ηi)∂nV (ηi, ξj) . (6.9)

The case i = j requires a special treatment because of the logarithmic singularity
of the free-space Green’s function V . Let r be the radius of curvature of ∂Ωi at
ξi, and set κi = 1/r. Let l = li be the length of ∂Ωi. Since ∂Ωi is small, we may
assume that ∂Ωi is parametrized for t ¿ 1 as

η(t) = r(cos t, sin t), − l

2r
≤ t ≤ l

2r
, (6.10a)

with
ξ = ξi = (r, 0) . (6.10b)

The asymptotic behavior V (η, ξ) ∼ − 1
2π log |η − ξ|+ O(1) as |η − ξ| → 0 yields

∂nV (η, ξ) ∼ − 1
2π

η − ξ

|η − ξ|2 · n̂ . (6.11)

Since n̂ = (cos t, sin t) we calculate (η − ξ) · n̂ = r(1 − cos t), and |η − ξ|2 =
r2(2− 2 cos t). Hence, from (6.11),

∂nV (η, ξ) ∼ − 1
4πr

, as r → 0 , (6.12)

Therefore, the coefficients aii and bii in (6.7b) are

aii =
κi

4π
li, bii = aiiV (x, ηi) . (6.13)
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6.2. Numerical Results For Spike Equilibria. We now discuss our numerical
results. In the computations below we took roughly 200 boundary elements. Since
Ω is symmetric we look for spike equilibria that are along the x-axis.

When the dumbbell shape-parameter is b = 1.2, and for the values of λ as shown,
in Fig. 8a we plot Rx along the segment of the positive x-axis that lies within the
dumbbell. Notice that there are either one, two, or three spike equilibria on x ≥ 0
depending on the range of λ. The resulting subcritical pitchfork bifurcation diagram
for the spike equilibria is shown in Fig. 8b. Our computations show that there is
a pitchfork bifurcation at λ ≈ 3.74. Furthermore, there is a fold-point bifurcation
of spike equilibria when λ ≈ 2.59. The spike at the origin is stable when λ < 3.74,
and is unstable for λ > 3.74. In Fig. 8b, the upper branch of spike equilibria is
stable, while the middle branch is unstable. A subcritical bifurcation diagram of
this type has not computed previously. Notice that as λ →∞ (D → 0), the upper
branch corresponds to stable spike equilibria that tend to the lobes of the dumbbell
as D → 0.
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(a) Rx versus x for x > 0
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(b) x versus λ = D−1/2

Figure 8. (a) Plot of Rx when x is along the positive real axis,
for the values of λ as indicated. The dumbbell shape-parameter
is b = 1.2. (b) The subcritical bifurcation diagram of the roots of
Rx = 0 versus λ = D−1/2 when b = 1.2.

Next, we investigate numerically the effect of changing the dumbbell shape-
parameter b. In Fig. 9 we plot the numerically computed bifurcation diagram of
spike equilibria for nine different values of b. The leftmost curve in this figure
correspond to b = 1.15. Successive curves, from left to right in Fig. 9, correspond
to an increment in b of 0.05. Qualitatively, we observe from this figure that the
equilibrium spike at the origin has a subcritical bifurcation in λ only when 1 < b <
bc. For b > bc, the origin has a more conventional supercritical pitchfork bifurcation.
We estimate numerically that bc ≈ 1.4. Since for b → 1+ the domain Ω reduces
to the union of two disconnected circles each of radius 1/2, Fig. 9 suggests that
the bifurcation of spike equilibria at the origin is subcritical when the neck of the
dumbbell is sufficiently narrow, and is supercritical when the domain is close to a
unit circle (b large). It would be interesting to investigate more generally whether
certain broad classes of dumbbell-shaped domains with thin necks will always yield
subcritical pitchfork bifurcations for a one-spike equilibrium of (1.1) when D =
O(1). We remark that the stability properties of the branches of equilibria in Fig. 9
are precisely the same as described previously for Fig. 9. For each b > 1, there
is still a stable spike equilibrium that tends to a lobe of the dumbbell as λ → ∞
(D → 0).
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Figure 9. Plot of the bifurcation diagram for the spike equilib-
ria versus λ = D−1/2 for various values of the dumbbell shape-
parameter b. The curves from left to right correspond to b = 1.15,
b = 1.2, b = 1.25, b = 1.3, b = 1.35, b = 1.4, b = 1.45, b = 1.5, and
b = 1.55.

In Fig. 10a we plot the bifurcation diagram in the λ versus b parameter plane.
From this figure we observe that when b > 1.4, there is only one bifurcation value of
λ, and it corresponds to the pitchfork bifurcation point for the equilibrium x0 = 0.
For 1.15 < b < 1.4, there are two bifurcation values for λ. The larger value
of λ corresponds to the pitchfork bifurcation value, and the smaller value of λ
corresponds to the fold-point value where the middle and upper branches of spike
equilibria associated with the subcritical bifurcation coincide. Finally, in Fig. 10b,
we plot the fold-point value for the spike equilibria as a function of b for 1.15 < b <
1.4. The non-smoothness of this curve reflects the fact that, due to computational
resource limitations, we only had nine data points to fit with a spline interpolation.
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Figure 10. (a) Curves of λ versus b where the spike equilibria
have either a pitchfork bifurcation or a fold-point bifurcation. (b)
Locations xf of the fold-point bifurcation versus b.

7. Discussion. For different ranges of the inhibitor diffusivity D, we have de-
scribed the bifurcation behavior of an equilibrium one-spike solution to the GM
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model (1.1) in a one-dimensional domain, in a radially symmetric domain, and in
a class of dumbbell-shaped domains. On a one-dimensional interval and in a radi-
ally symmetric domain, we have calculated the bifurcation value Dc = O(ε2e2d/ε),
where d is the distance of the spike to the boundary, for which an equilibrium spike
at the midpoint of the domain becomes stable as D decreases below Dc. For a
dumbbell-shaped domain, we have shown that the qualitative bifurcation diagram
of Fig. 1 for interior spike solutions holds. In §4 we found that an unstable spike in
the neck of the dumbbell becomes stable through a pitchfork bifurcation when D
decreases below some asymptotically exponentially large value. Since this bifurca-
tion occurs when D is exponentially large as ε → 0, a main conclusion of our study
is that spike behavior for the shadow system corresponding to D = ∞, has very
different properties from that of spike solutions to (1.1) when D is large, but inde-
pendent of ε. Moreover, in §6, we showed that when D decreases below some O(1)
value, the spike in the neck of the dumbbell loses its stability through a pitchfork
bifurcation to two stable spike locations that tend to the lobes of the dumbbell as
D → 0.

There are several open problems that await a rigorous proof. A main conjec-
ture, formulated in [15] and explored further here, is that the gradient ∇Rm of the
regular part of the modified Green’s function with Neumann boundary conditions
has a unique root in an arbitrary, possibly non-convex, simply-connected bounded
domain. In contrast, as was shown in [10], this is not true if Dirichlet boundary
conditions are used instead. Many properties of the gradient of the regular part of
the Green’s function for the Laplacian with Dirichlet boundary condition have been
given in the survey [2]. The uniqueness of a root to this gradient with Dirichlet
boundary conditions in a convex domain is established in [10] and [4]. Our conjec-
ture shows that further work is needed to understand the properties of the regular
part of the Green’s function associated with a Neumann boundary condition.

A second conjecture, based on §6, is that the zeroes of the gradient ∇R of the
reduced wave Green’s function will have a subcritical bifurcation with respect to
λ = D−1/2 in a dumbbell-shaped domain, whenever the neck of the dumbbell is
sufficiently thin. Alternatively, we conjecture that the zeroes of ∇R will have a
supercritical bifurcation in λ when a dumbbell-shaped domain is sufficiently close
to a circular domain.

Although there have been many studies of the existence and stability of bound-
ary spikes for the shadow GM system with D = ∞, the problem of constructing
equilibrium boundary spike solutions for different ranges of D is largely open. The
analysis in this paper has been restricted to the situation where the spike is away
from the boundary, i.e. the distance σ of a spike to the boundary is such that
σ À O(ε). Therefore, we have not described boundary spikes or spikes that are
O(ε) close to the boundary. Some work on equilibrium boundary spikes for the case
where D is algebraically large as ε → 0 is given in [7].

For the case where D = ∞, the dynamical behavior of a boundary spike was
derived in [13]. The equilibrium case was studied in [25] and [27] (see also the
references therein). From these studies, it is well-known that the dynamics and
equilibrium locations depend only on the curvature of the boundary of the domain.
For the domain in Fig. 1, the boundary spike located on the y-axis is stable when
D = ∞. For asymptotically large values of D, we expect that the dynamics of a
boundary spike depends on both the derivative of the curvature of the boundary
and on the behavior of the gradient of the regular part of the Green’s function Rm
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on the boundary. For the dumbbell-shaped domain of §4, we showed in §5 that this
gradient vanishes at the same points where the curvature of the boundary has a
local maxima or minima. This suggests the following conjecture:
Conjecture 7.1: Suppose that O(1) ¿ D ¿ O(εqec/ε) for some q and c to be
found. Then, a boundary spike for the domain Ω = f(B) shown in Fig. 1 is at
equilibrium if and only if its center is located on either the x or the y-axes. Fur-
thermore, the equilibrium locations on the y and the x-axes are stable and unstable,
respectively.

Finally, it is well-known (cf. [3], [16], [9]) that the shadow system admits unstable
multi-spike equilibrium solutions where the locations of the spikes satisfy a ball-
packing problem. These solutions are unstable with respect to both the large O(1)
and the exponentially small eigenvalues of the linearization. Since when D ¿ 1, the
distance function plays a central role, the locations of the spikes should also satisfy
a ball packing problem. However, in a strictly convex domain these solutions should
be stable. It would be interesting to extend the analysis given here to determine
the bifurcation properties, and the exchange of stability, of multi-spike solutions as
D is decreased.
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Appendix A. The Proof of Proposition 5.3. Here we prove Proposition 5.3.
Let x = x(t) = f(eit), N̂ be the normal at x, and label y(t) = x(t) − σN̂(t). We
define h(t) by

h(t) = Rm(y(t), y(t)) , (A.1)

and calculate
h′(t) = ∇Rm(y(t), y(t)) · y′(t) . (A.2)

Note that x′(t) = T̂ |f ′(z)|, where z = eit and T̂ = iN̂ is the tangential direction at
x = f(z). Therefore, we have

y′(t) = |f ′(z)|T̂ − σcT̂ , (A.3)

where c(t) = d
dt |N̂ | is some irrelevant function. From Proposition 5.1 and using

a · b = Re(ab), we obtain

h′(t) =

(
N̂

4πσ
+

N̂

2π|f ′(z)|

[
z2b2

z2b2 − 1
−

(
z4 + 5b2z2

)

z4 − b4
− 1

4

]
+ O(σ)

)

·
(
T̂ |f ′(z)| − σcT̂

)

= − 1
2π

Im

[
z2b2

z2b2 − 1
−

(
z4 + 5b2z2

)

z4 − b4

]
+ O(σ) =

1
2π

ImF(z) ,

(A.4)

where F is given by (5.23). Note that the singular part N̂
4πσ does not enter into

h′(t) since it is perpendicular to the tangent direction.
Integrating (A.4), we obtain

h(t) =
∫

h′(t)dt =
1
2π

∫
ImF(z)

dz

iz
. (A.5)
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Therefore,

ImF(z) =
F(z)−F( 1

z )
2i

(A.6a)

=
1
i
2(1 + b4)b2 w(w2 − 1)

(b4w2 − 1)(w2 − b4)
, (A.6b)

=
−1
i

w

(
b2

wb2 + 1
− b2

wb2 − 1
+

1
w + b2

− 1
w − b2

)
. (A.6c)

Here w = z2. In addition, dz
z = 1

2
dw
w so that

h(t) =
1
4π

∫ (
b2

wb2 + 1
− b2

wb2 − 1
+

1
w + b2

− 1
w − b2

)
dw , (A.7a)

=
1
4π

ln
∣∣∣∣
(wb2 + 1)(w + b2)
(wb2 − 1)(w − b2)

∣∣∣∣ + C . (A.7b)

This result can be simplified as

h(t) =
1
4π

ln
∣∣∣∣
(wb2 + 1)(w + b2)
(wb2 − 1)(w − b2)

∣∣∣∣ + C , (A.8a)

=
1
8π

ln
(wb2 + 1)(wb2 + 1)(w + b2)(w + b2)
(wb2 − 1)(wb2 − 1)(w − b2)(w − b2)

+ C , (A.8b)

=
1
8π

ln

(
1 + b4 + 2b2 cos 2t

)2

(1 + b4 − 2b2 cos 2t)2
+ C , (A.8c)

=
1
4π

ln
(

1 + b4 + 2b2 cos 2t

1 + b4 − 2b2 cos 2t

)
+ C . (A.8d)

The constant C = C(σ) depends on the distance from the boundary but not on x.
Finally, for x ∈ ∂Ω and y ∈ Ω, we define the regular part of the boundary Green’s
function by

S(x, y) = Rm(x, y) +
1
4π

ln |x− y|. (A.9)

Note that S is smooth and bounded for all y ∈ Ω. Therefore, we have

Rb(x) = lim
y→x

S(x, y) = lim
y→x

[S(y, y) + O(x− y)] = lim
y→x

S(y, y) , (A.10a)

= lim
σ→0

h(t) +
1
4π

ln σ (A.10b)

=
1
4π

ln
(

1 + b4 + 2b2 cos 2t

1 + b4 − 2b2 cos 2t

)
+ C . (A.10c)

Since we are only concerned with determining points on the boundary where Rb has
minima and maxima, the constant C is irrelevant. This completes the proof.
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