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Abstract

Recent experiments have shown that patterns can emerge in bacterial colonies programmed
to have a drop in diffusion when population densities (detected via a quorum sensing mechanism)
are sufficiently large. We examine one partial differential equation model of this system, and
construct its non-constant stationary solutions. We demonstrate analytically that these solutions
are stable when the diffusion rate of bacteria is large and the diffusion rate of signalling molecules,
Dh, is small. We further demonstrate that increasing Dh induces a Hopf bifurcation, resulting
in a loss of stability. These results are confirmed by numerical simulations.

1 Introduction

Several species of bacteria move via a run and tumble mechanism—motion in a straight line (runs)
punctuated by periods of random reorientation (tumbles)—which, for sufficiently large populations,
can be modelled as diffusion. Moreover, by changing the ratio of runs to tumbles, a population
can effectively change its diffusion rate. Such a change can give rise to chemotaxis and other
types of non-linear diffusion, each of which may lead to the formation of patterns or other group
behaviour [1]. Explaining such phenomena naturally leads to the development of mathematical
models. Perhaps the best known of these is the Keller-Segel model [2], though the literature is
replete with examples of reaction-diffusion type models where simple diffusion has been replaced
by some nonlinear variant [3–11].

The bacterial species Vibrio fischeri secretes acyl-homoserine lactone (AHL), a signalling molecule
which acts as part of a quorum sensing mechanism [12]. When large populations of V. fischeri gather
in one place, the concentration of AHL can reach sufficiently high levels to trigger changes in the
behaviour of the bacteria. In the wild, this particular mechanism allows the bacteria to regulate
bioluminescence. Similar quorum sensing mechanisms abound in nature [12]. Using techniques
from synthetic biology, Liu et al. [13] introduced this mechanism to a strain of E. coli, and coupled
it to a pathway which controls run-and-tumble motility. The net effect is for the bacteria to have
a sudden drop in diffusion when population density is large enough for the AHL concentration to
surpass a given threshold. Similar population-dependent changes in diffusion are known to gener-
ate patterns [14–16]. Further experiments showed that these modified bacteria form patterns when
grown on agar plates. The group proposed two partial differential equation (PDE) models to help
explain this behaviour [13,17].
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The model introduced in [13,17] is a one-dimensional non-linear PDE system:

pt = (s(h)p)xx + γp

(
1− p

ps

)
, (1)

ht = Dhhxx + αp− βh . (2)

The quantities p(x, t) and h(x, t) measure the density of bacteria and AHL respectively. AHL
is produced by the bacteria at a rate α, and decays at a rate β. The constants γ and ps represent,
respectively, the logistic growth rate and equilibrium population of the bacteria. The diffusion rate
Dh for h is assumed to be constant whereas the diffusion rate of p is state-dependent on h. At
low h concentration, bacteria diffuse freely. High h concentrations, however, trigger the synthetic
genetic circuit described above, inducing a drop in the diffusion rate of the bacteria.

The drop in diffusion happens at some critical AHL concentration, hc. This is modelled using
a step function

s(h) =

{
D− h ≤ hc
D+ h > hc

, D− > D+ . (3)

More generally, the state-dependent diffusion is assumed to be a smoothed-out step function such
as e.g.

s(h) = (D+ −D−)
1

2

[
tanh

(
h− hc
δ

)
− 1

]
+D+, δ � 1 (4)

with a transition around h = hc. See Appendix A for the derivation of space-dependent diffusion
from first principles.

We non-dimensionalize the system by rescaling p = psp̂, h = (αps/β)ĥ, t = (1/β)t̂. Define
rescaled parameters as D̂h = Dh/β, D̂± = D±/γ, τ = β

γ , hc = (αps/β)ĥc, δ = (αps/β)δ̂. After
dropping the hats we obtain the non-dimensionalized system

τpt = (s(h)p)xx + p (1− p) , (5a)

ht = Dhhxx + p− h. (5b)

These equations are solved on a finite domain, which, by choosing the correct scaling, we may
take to be the unit interval, [0, 1]. We impose no-flux boundary conditions for both p and h.

In this paper we explore nonlinear patterns that occur for the model (5). Examples of such
patterns are shown in Figures 1, 6. In the limit of sharp step-like diffusion (δ → 0 in (4)), Turing
analysis reveals that the constant state is h = p = 1 of (5) unstable (and therefore patterns form)
provided that the transition point hc occurs precisely at the steady state:

hc = 1. (5c)

Turing instability then initiates pattern formation. As illustrated in Figure 1, the resulting pattern
consists of (one or more) interfaces. Once formed, the interfaces start to move. Depending on the
choice of parameters, the interface may eventually settle to a specific location, or it can undergo
some rather complex dynamics (e.g. see Figure 1 bottom right, Figure 5 and Figure 6). The main
goal of this paper is to describe such interface solutions explicitly. In the limit of sharp diffusion
drop, these solutions contain jump discontinuities. In Section 2 we derive an equation of motion
for a single discontinuity in the case where the diffusion of signalling molecules, Dh, is small. The
resulting equation (see Proposition 1) is

x′0(t) ∼
√
Dh

(D+/D−) (1− x0(t))− x0(t)√
(D+/D−)x0(t)(1− x0(t))

. (6)
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This equation shows that x0(t) → 1
D−/D++1 for large t. As such, the interface profile is stable

when bacterial diffusion is large. We then address the question of stability more generally, when
Dh is not necessary small. In section 3 we use linear stability analysis to formulate the associated
eigenvalue problem, and derive a transcendental equation which has the eigenvalues as its roots.
Solving this equation numerically, we show that the system exhibits a Hopf bifurcation (see figure
1). We conclude by showing that the linear stability analysis reproduces the eigenvalue derived via
the equation of motion.

Figure 1: Top: Turing instability of a constant state resulting in a moving-interface pattern. The
interface develops fully around t ≈ 0.15, and eventually settles to a stationary state. (Dh = 0.1).
Left: Evolution of the interface in the stable regime (Dh = 0.19). The red line tracks the motion
of the interface. Right: Evolution of the interface in the unstable regime (Dh = 0.202). The red
line tracks the motion of the interface. The interface is eventually destroyed. In each of the above
simulations τp = 0, and s(h) is as given in (4) with D+ = 50, D− = 100, and with δ = 0.01 in
the top, δ = 0.001 in the right and left.
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1.1 Turing instability

A preliminary insight is obtained by performing Turing analysis. The system (5) admits a trivial
steady-state solution (p = h = 1). Take perturbations of the form

p = 1 + eλteimxφ, h = 1 + eλteimxψ, φ, ψ � 1

which yields

λ

(
φ
ψ

)
=

(
−m2s(1)+1

τ −m2s′(1)
τ

1 −Dhm
2 − 1

)(
φ
ψ

)
.

Note that the trace of this matrix is −m2s(1)+1
τ −Dhm

2 − 1, which is always negative. Therefore,
the homogeneous state is unstable if and only if the determinant is negative, that is,

s(1)Dhm
4 + (Dh + s(1) + s′(1))m2 + 1 < 0 for some m > 0. (7)

The determinant is positive for large m. Therefore the instability of constant state equivalent to
Dh+s(1)+s′(1) < 0 as well as to having a positive descriminant, (Dh+s(1)+s′(1))2−s(1)Dh > 0.

In the case where s(h) is a near-step function with a sharp drop at h = hc such as (4), the
instability of a constant state will happen if and only if hc ∼ 1, that is, the drop in diffusion occurs
precisely at the steady state h = 1.

There is some debate about what is the appropriate model for density-dependent diffusion:
whether it should be (sp)xx, (spx)x, or some linear combination of both [13]. We include Appendix
A in which we argue, from first principles, that the former form is the appropriate way to model
the diffusion. In fact, it is easy to see that the latter form does not have Turing instability: if
we were to replace (sp)xx by (spx)x then the equation for φ becomes fully decoupled from ψ:
λτφ = −(s(1)m2 + 1)φ, and as a result, λ is always negative.

Movivated by Turing analysis, in what follows we will assume hc = 1, so that the constant state
is Turing-unstable. Note that in [17] numerical simulations of (5) resulted only in transient pattern
formation. The eventual steady state was homogeneous in space. This was due to a parameter
choice which did not satisfy (7).

2 Interface motion

As with many non-linear PDE, general solutions are beyond our grasp. We begin with a selection
of solutions for special cases. Our analysis will focus primarily on stationary and near-stationary
solutions, and, beyond what has already been said about Turing instability, we will largely ignore
the details behind a solution’s transition from a nearly constant profile to one with large-scale
inhomogeneities.

2.1 Jump conditions

We start by looking for stationary non-homogeneous solutions to equations (5) where we take
hc = 1,

s(h) =

{
D− h ≤ 1

D+ h > 1
, D− > D+ . (8)

We will derive a solution consists of a single interface at x = x0 as shown in Figure 2.First, let
us suppose that τpt = 0, that is either τ = 0 or the interface is stationary. At the interface, we have
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Figure 2: Numerically calculated solutions vs the piecewise constant approximation. Parameters
are Dh = 0.005, τp = 0, and with s(h) as given in (4) with D+ = 50, D− = 100, δ = 0.001.

h = 1 whereas p has a jump discontinuity. Outside the interface, p solves the Fischer’s equation
D±pxx = −p(1− p) for x 6= x0 subject to jump conditions that we now derive.

Assume that s(h) = D− to the right of x0, and s(h) = D+ to the left; in other words h(x) is
decreasing as shown in figure 2. Integrating (5a) in a small neighbourhood around x0, we obtain

0 =

∫ x+0

x−0

(s(h)p)xxdx+

��
��

�
��
�*0∫ x+0

x−0

p(1− p)dx

= D−px(x+
0 , t)−D+px(x−0 , t) . (9)

Similarly, premultiplying (5a) by x before integrating yields

0 = D−p(x
+
0 , t)−D+p(x

−
0 , t) . (10)

From this, we see that p will have a discontinuity at x0 (see figure 2). The same calculation can be
done for equation (5b) to obtain the following conditions:

0 = hx(x+
0 , t)− hx(x−0 , t) , (11)

1 = h(x+
0 , t) = h(x−0 , t) . (12)

These four constraints will be collectively referred to as jump conditions, since p will have a
jump discontinuity at each point where h = 1. For a given a number of jumps, the jump conditions
and the no-flux boundary conditions give us enough constraints to determine a unique stationary
solution. Note, however, that there is nothing to determine the number of jumps (in general this
will depend on the initial conditions of the system), or to guarantee that a stationary solution
exists that satisfies all the constraints (we will see an example of this non-existence later). We may,
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however, concatenate copies of a stationary solution to construct a new solution on a larger domain.
With this in mind, the rest of this paper will focus on solutions with a single jump discontinuity.

More generally, for a moving interface the condition τpt = 0 may not hold. In this case a Dirac
delta may appear in the pt term in equation (5a), which will contribute an additional term when
we integrate around x0(t). To account for this, we will re-integrate the equation for more carefully.
Suppose p takes the form p = A(t)H(x−x0(t))+ p̂(x, t), where x0(t) is the location of the interface,
H is a Heaviside function, and p̂(x, t) is continuous. We then obtain

τ

∫ x+0

x−0

ptdx =

∫ x+0

x−0

(sp)xxdx+

��
�
��

�
��*

0∫ x+0

x−0

p(1− p)dx (13)

−τA(t)x′0(t) = spx|
x+0
x−0

(14)

The other three jump conditions remain unchanged.

2.2 Solutions for τ = 0, small Dh and large D±

We now turn our attention to approximate solutions with one jump discontinuity. Setting τ = 0,
we recover the PDE for stationary p. We will not, however, assume the system as a whole is
stationary. Consequently, p depends on time implicitly via the position of the jump discontinuity,
x0(t). Since the exact solution for h does not lend itself to easy algebraic manipulation, we limit
our consideration to the small diffusion case, 0 < Dh � 1.

Solutions for h are obtained by matching approximate solutions constructed near x0(t) and
away from x0(t). Away from x0(t), diffusion is very small, and so h is approximately equal to p
(see figure 2). To determine the behaviour of h around x0(t), we introduce inner variables,

h(x) = H(y), y =
x− x0(s)√

Dh
, t̂ =

√
Dht (15)

so that (5b) becomes
−x0t̂Hy = Hyy + p−H. (16)

In order to match with the solution away from x0, we require that H → p
(
x±0
)

as y → ±∞. At
the jump x = x0 we have

H
(
0±
)

= 1 and H ′(0+) = H ′
(
0−
)
. (17)

Solutions for h are defined piecewise on either side of the jump, and take the form

H = p+ c1e
r1y + c2e

r2y (18)

where r1 and r2 are roots of the characteristic equation 0 = r2 + x0t̂r − 1,

r1 =
−x0t̂ +

√
x2

0t̂
+ 4

2
and r2 =

−x0t̂ −
√
x2

0t̂
+ 4

2
(19)

with r1 > 0 and r2 < 0. We will use the subscripts l and r to denote solutions to the left and right
of x0(t). Applying the limiting conditions H → pl as y → −∞ and H → pr as y → +∞, we have
Hl = pl + c1e

r1y and Hr = pr + c2e
r2y. The jump conditions (17) then yield

pl + c1 = pr + c2 = 1, c1r1 = c2r2 . (20)
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Eliminating c1, c2 then yields

pl − pr
1− pr

=
r1 − r2

r1
=

2
√
x2

0t̂
+ 4

−x0t̂ +
√
x2

0t̂
+ 4

. (21)

Solving for x′0, we finally obtain the equation for the motion of the interface,

x′0(t) =
√
Dh

pl(x0) + pr(x0)− 2√
1− pr(x0)

√
pl(x0)− 1

. (22)

In constructing an equation of motion for the jump x0, we have effectively eliminated h from
the system. The motion of x0 doesn’t depend explicitly on h, and all that is needed to specify the
value of p is the location of x0. In principle, this can be done by solving for p in outer region in
terms of Jacobi elliptic functions, resulting in a set of transcendental equations. However, we can
obtain more explicit results if we assume D+ and D− are large. In this case, the diffusive term
dominates, so p(x) is approximately piecewise constant. Expanding p(x) in terms of a Taylor series
at either end of the domain, we then obtain the following approximations

pl(x) ∼ pl0 + pl2x
2 for x < x0 ,

pr(x) ∼ pr0 + pr2(x− 1)2 for x > x0 .

Without loss of generality, assume pl0 > pr0 (see Figure 2) i.e. s(h) = D+ in the left of x0, and let

s0 :=
D+

D−
< 1. (23)

The jump conditions (9) and (10) then yield

pr0
pl0

= s0 =
pr2(x0 − 1)

pl2x0
.

Substituting the approximations for p into (5a), assuming ptτ = 0 yields two more conditions:

0 =2D+pl2 + pl0(1− pl0),

0 =2D−pr2 + pr0(1− pr0).

Eliminating pr2, pl2 then yields

s0
x0 − 1

x0
=
pl0 − 1

pr0 − 1
(24)

so that

pl0 =
s0x0 − s0 − x0

s2
0x0 − s2

0 − x0
; pr0 = s0p0l. (25)

Upon substituting (25) into (22) we finally obtain the full equation of motion of the interface. Note
that when computing p, we assumed that the term τpt can be dropped. Since the interface speed

is of O(D
1/2
h ), this assumption is valid as long as τD

−1/2
h � 1. We summarize.

Proposition 1. Suppose

D− > D+ � 1, Dh � 1 and τ � O(D
−1/2
h ). (26)
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Figure 3: Motion of the front as predicted by the ODE (in black) compared to simulation results
(red crosses). Simulation parameter are Dh = 0.01, τp = 0, and with s(h) as given in (4) with
D+ = 50, D− = 100, δ = 0.001.

Then there is a time-dependent solution to (5) consisting of a single interface at x0(t) which has
the following asymptotic form,

p(x) =


s0x0−s0−x0
s20x0−s20−x0

x ≤ x0

s20x0−s20−s0x0
s20x0−s20−x0

x > x0

, h ∼ p for |x− x0| � O(1/
√
Dh). (27)

where s0 = D+/D− and where x0 satisfies the ODE

x′0(t) =
√
Dh

s0(1− x0(t))− x0(t)√
s0x0(t)(1− x0(t))

. (28)

Figure 3 shows a comparison between the asymptotic formula (28) and the full numerical sim-
ulation of (28). The trajectory of x0(t) in simulation matches the behaviour predicted by the
equation of motion. The interface settles to x0 ≈ 0.333 which appears to be stable. To validate
this, note that ODE (28) admits a steady state

x0 =
s0

s0 + 1
∈ (0, 1) . (29)

in full agreement with numerics of Figure 3. The associated eigenvalue of linearization around this
steady state is given by

λ = −
√
Dh

(1 + s0)2

s0
(30)

and is negative, showing the stability of the interface, again in agreement with full numerics of
Figure 3.

3 Steady state and its stability

The fully analytical formula for the interface motion (28) was possible by making assumptions
(26). Under these assumptions, the interface moves towards a stable steady state (29). When
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these conditions are relaxed, in particular if Dh and/or τ are no longer small, instabilities may
occur. However under these relaxed conditions, the construction of a moving interface becomes
analytically intractable. Instead, we take a different approach: we compute the steady state and
its linearization.

Let us construct the steady state under a relaxed assumption that Dh is not necessary small,
while D± are still large (for the steady state, pt = 0, so that τ can take any value; it affects stability
but not the steady state). The steady state for p(x) is then the same as given in Proposition 1. On
the other hand, assuming h is stationary, equation (5b) reduces to

0 = Dhhxx + p− h

whose solution is given by

h =

 pl0 + c1 cosh
(√

1
Dh
x
)
, x < x0

pr0 + c2 cosh
(√

1
Dh

(x− 1)
)
, x > x0

. (31)

The jump conditions (11) and (12) then yield

1 = pl0 + c1 cosh

(√
1

Dh
x0

)
,

1 = pr0 + c2 cosh

(√
1

Dh
(x0 − 1)

)
,

c1 sinh

(√
1

Dh
x0

)
= c2 sinh

(√
1

Dh
(x0 − 1)

)
.

Substituting into (24) we finally obtain

s0
x0 − 1

x0
=

tanh
(√

1
Dh

(x0 − 1)
)

tanh
(√

1
Dh
x0

) . (32)

Solving this equation determines the stationary value of x0, which in turn determines both p

and h. When Dh is small, we may approximate
tanh

(√
1

Dh
(x0−1)

)
tanh

(√
1

Dh
x0
) ∼ −1 so that (32) reduces to

s0 ∼ x0
1−x0 , which is equivalent to (29). Conversely, for large values of Dh, Taylor expansion of (32)

yields s0 ∼ 1 which contradicts (23).
In summary we have the following result for the steady state

Proposition 2. Suppose D+, D− � 1, and let s0 = D+

D−
. Let x0 be the solution to (32). Then

the system (5) admits a non-trivial steady-state solution with p(x) given by (27) and h(x) given by
(31). If in addition, Dh � 1, then

x0 =
s0

s0 + 1

and p simplifies to

p(x) =

{
2

s0+1 x ≤ x0

2s0
s0+1 x > x0

(33)

No solution to (32) (and therefore no steady state) exists if Dh � 1.
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3.1 Linearization and an Eigenvalue Problem

We now linearize around the steady state constructed in Proposition 2 as follows

p(x, t) = ps(x) + eλtφ(x), h(x, t) = hs(x) + eλtψ(x).

This leads to the following eigenvalue problem:

λτφ(x) = D±φ
′′(x) + φ(x) (1− 2ps(x)) , (34)

λψ(x) = Dhψ
′′(x) + φ(x)− ψ(x) . (35)

with no-flux boundary conditions for φ and ψ. Deriving jump conditions for the eigenvalue problem,
however, requires more care. There are two ways to carry out the calculation: by integrating the
equations across the jump, as we did for the original system, or by linearizing the original jump
conditions. We begin with the former.

3.2 Jump Conditions via Integration

We assume that φ takes the form φ(x) = φ̂(x) + cδ(x− x0), where c is a constant to be deterimed,
δ is a Dirac delta, and φ̂ is a (potentially discontinuous) function. We also assume ψ has no Dirac
delta component.

Integrating (35) on a small interval around x0, we obtain

λ
�
�
�
�
�>

0∫ x+0

x−0

ψdx = Dh

∫ x+0

x−0

ψxxdx+

∫ x+0

x−0

φdx−
�
�
�
�
�>

0∫ x+0

x−0

ψdx

0 = Dhψ′|
x+0
x−0

+ c .

Premultiplying (35) by x and performing integration by parts, we derive

λ

�
�
�
�
��>

0∫ x+0

x−0

xψdx = Dh

∫ x+0

x−0

xψxxdx+

∫ x+0

x−0

xφdx−
�
�
�
�
��>

0∫ x+0

x−0

xψdx

0 = −x0c−Dhψ|
x+0
x−0

+ cx0

0 = ψ|x
+
0

x−0
.

Integrating (34) requires care in taking limits. Begin by integrating over (x0 − ∆, x0 + ∆),
where ∆ is some small constant. We temporarily replace s by a sufficiently continuous sigmoid
which switches value in some ε-neighbourhood around x0 (i.e. s(h) is approximately constant
outside (x0 − ε, x0 + ε)). Observe that

s(h)p(x, t) ≈ s(hs)ps(x) + ps(x)s′(hs)ψ(x)eλt + s(hs)φ(x)eλt ,

and adjust the linearization accordingly to obtain

λτφ(x) =
(
ψ(x)s′(hs)ps(x) + s(hs)φ(x)

)
xx

+ φ(x) (1− 2ps(x)) . (36)
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After integrating, we will take the limit ∆ → 0, and assume ε � ∆. We also adopt the notation
f± := f(x±0 ). Integrating (36) and taking the aforementioned limit yields

τλ

∫ x0+∆

x0−∆
φdx =

∫ x0+∆

x0−∆
(ψs′(hs)ps + s(hs)φ)xxdx+

∫ x0+∆

x0−∆
φ(1− 2ps)dx

τλc = lim
∆→0

(ψs′(hs)ps + s(hs)φ)x|x0+∆
x0−∆ + c(1− p+

s − p−s )

τλc = s(hs)φ
′|x

+
0

x−0
+ c(1− p+

s − p−s ) .

Similarly, premultiplying (36) by x and integrate by parts, we obtain

0 = s(hs)φ|
x+0
x−0

.

Finally, premultiply (36) by x2 and integrate by parts twice, we obtain

c =
ψ(x0)

h′s(x0)
(p+
s − p−s ) .

This last equation can be used to eliminate c, yielding the final jump conditions for the eigenvalue
problem:

0 = sφ′|x
+
0

x−0
+
ψ(x0)

h′s(x0)
(p+
s − p−s )

(
1− p+

s − p−s − τλ
)
, (37a)

0 = sφ|x
+
0

x−0
, (37b)

0 = Dhψ′|
x+0
x−0

+
ψ(x0)

h′s(x0)
(p+
s − p−s ) , (37c)

0 = ψ|x
+
0

x−0
. (37d)

3.3 Jump Conditions via Linearization

We will now derive these equations by linearizing the matching conditions from the original system.
Begin by noting that in the perturbed regime x0 may vary with time. Because of this, we will need
to linearize (14) rather than (9).

We linearize as before, taking p(x, t) = ps(x) + φ(x)eλt and h(x, t) = hs(x) + ψ(x)eλt. Since
the location of the jump will change, we also perturb the interface location x0(t) = x0s + θeλt. As
before, we split p and h into left and right components, denoted hl, hr, etc.

Expanding hl(x0, t) and discarding higher order terms, we obtain

hl(x0, t) ≈ 1 + eλt (θh′sl(x0s) + ψl(x0s)) .

We do the same for hr, and substitute into (12). Recalling that h′sl(x0) = h′sr(x0), this then
yields

ψl(x0s) = −θh′sl(x0s) = ψr(x0s) .

Similarly, expanding ∂xhl(x0, t) yields

∂xhl(x0, t) ≈ h′sl(x0s) + eλt (θh′′sl(x0) + ψ′l(x0)) .
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Substituting into (11) and and simplifying yields

ψ′|x
+
0s

x−0s
= θ

α

Dh
ps|

x+0s
x−0s

.

Repeating this procedure for p and ∂xp and substitute into (14) and (10) we obtain

0 = sφ|x
+
0s

x−0s
,

0 = sφ′|x
+
0s

x−0s
+ θ

(
τλ(p+

s − p−s ) + sps′′|
x+0s
x−0s

)
.

Eliminating θ, and reverting to the previous notation x0s → x0, we recover

0 = sφ′|x
+
0

x−0
− ψ(x0)

h′e(x0)

(
τλ(p+

s − p−s ) + sps′′|
x+0
x−0

)
, (38a)

0 = sφ|x
+
0

x−0
, (38b)

0 = Dhψ′|
x+0
x−0

+
ψ(x0)

h′e(x0)
ps|

x+0
x−0

, (38c)

0 = ψ|x
+
0

x−0
. (38d)

At first glance, the first of these may appear different to the equations (37). However, using
the fact that sp′′s = −ps(1− ps), we can show that these are, in fact, equivalent.

3.4 Solutions to the Eigenvalue Problem for Large D±

Having adequately set up the eigenvalue problem, we now solve the system in the limit of large D±.
In this case, the steady state is approximated by a piece-wise linear function (see Proposition 2), and
the resulting eigenvalue problem can be simplified as follows. In keeping with our previous notation,
we define φl, φr, etc. Recall that, to leading order, psl(x) = pl0. Let ωl = 1

D+
(1− 2pl0 − τλ).

Solving (4.1) in the left of the domain, we obtain φl(x) = cl1 cos(
√
ωlx), where cl1 is some constant

to be determined. A similar solutions can be found for the right part of the domain.
Substituting int (35) yields a differential equations for ψl;

ψ′′l (x) = − cl1
Dh

cos(
√
ωlx) +

1 + λ

Dh
ψl(x) .

It has the following solution,

ψl(x) =
cl1

1 + λ+Dhωl
cos(
√
ωlx) + cl2 cosh

(√
1 + λ

Dh
x

)
,

where cl2 is a constant.
We can find similar solutions for the right of the domain. We substitute these solutions into

equations (37). To simplify notation, let k = p+s −p−s
hs′(x0) (1− p+

s − p−s − τλ). This results in the equa-
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tions

0 =−D−cr1
√
ωr sin(

√
ωr(x0 − 1)) +D+cl1

√
ωl sin(

√
ωlx0)

+ k

(
cl1

1 + λ+Dhωl
cos(
√
ωlx0) + cl2 cosh

(√
1 + λ

Dh
x0

))
,

0 =D−cr1 cos(
√
ωr(x0 − 1))−D+cl1 cos(

√
ωlx0) ,

0 =
cr1

1 + λ+Dhωr
cos(
√
ωr(x0 − 1)) + cr2 cosh

(√
1 + λ

Dh
(x0 − 1)

)

− cl1
1 + λ+Dhωl

cos(
√
ωlx0)− cl2 cosh

(√
1 + λ

Dh
x0

)
,

and

0 =−
cr1
√
ωr

1 + λ+Dhωr
sin(
√
ωr(x0 − 1)) + cr2

√
1 + λ

Dh
sinh

(√
1 + λ

Dh
(x0 − 1)

)

+
cl1
√
ωl

1 + λ+Dhωl
sin(
√
ωlx0)− cl2

√
1 + λ

Dh
sinh

(√
1 + λ

Dh
x0

)

+
1

Dhhs′(x0)
(p+
s − p−s )

(
cl1

1 + λ+Dhωl
cos(
√
ωlx0) + cl2 cosh

(√
1 + λ

Dh
x0

))
.

Written in matrix notation, we have

M


cl1
cr1
cl2
cr2

 =


0
0
0
0


where M is given by

M =


M11 −D−

√
ωr sin(

√
ωr(x0 − 1)) k cosh (Bx0) 0

−D+ cos(
√
ωlx0) D− cos(

√
ωr(x0 − 1)) 0 0

−Al cos(
√
ωlx0) Ar cos(

√
ωr(x0 − 1)) − cosh (Bx0) cosh (B(x0 − 1))

M41 −√ωrAr sin(
√
ωr(x0 − 1)) M43 B sinh (B(x0 − 1))

 , (39)

M11 = D+
√
ωl sin(

√
ωlx0) + kAl cos(

√
ωlx0)

M41 =
√
ωlAl sin(

√
ωlx0) +

(p+
s − p−s )

Dhh′s(x0)
Al cos(

√
ωlx0)

M34 = −B sinh (Bx0) +
(p+
s − p−s )

Dhhs′(x0)
cosh (Bx0)

Al =
1

1 + λ+Dhωl
, Ar =

1

1 + λ+Dhωr
B =

√
1 + λ

Dh
.
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In order to have non-trivial solutions, we require that detM = 0. Written in full, this determi-
nant is

0 = detM = −D+D−
√
ωrB cos(

√
ωlx0) sin(

√
ωr(x0 − 1)) sinh(B)

+
p+
s − p−s

Dhhs′(x0)
D+D−

√
ωr cos(

√
ωlx0) sin(

√
ωr(x0 − 1)) cosh(B(x0 − 1)) cosh(Bx0)

−ArBD+k cos(
√
ωlx0) cosh (Bx0) cos(

√
ωr(x0 − 1)) sinh (B(x0 − 1))

−D+k
√
ωrAr cos(

√
ωlx0) cosh (Bx0) cosh (B(x0 − 1)) sin(

√
ωr(x0 − 1))

+D−D+
√
ωlB cos(

√
ωr(x0 − 1)) sin(

√
ωlx0) sinh(B) (40)

− p+
s − p−s

Dhhs′(x0)
D−D+

√
ωl cos(

√
ωr(x0 − 1)) sin(

√
ωlx0) cosh(B(x0 − 1)) cosh(Bx0)

+D−kAlB cos(
√
ωr(x0 − 1)) cos(

√
ωlx0) sinh(B)

+D−kAlB cos(
√
ωr(x0 − 1)) cosh (Bx0) cos(

√
ωlx0) sinh(B(x0 − 1))

+D−k
√
ωlAl cos(

√
ωr(x0 − 1)) cosh (Bx0) cosh(B(x0 − 1)) sin(

√
ωlx0) .

Thus, the eigenvalue problem reduces to finding the roots of this expression. While this is an-
alytically intractable, we can nevertheless find roots numerically, tracking the movement of the
first eigenvalues (see Figure 4). This analysis reveals that Hopf bifurcations may occur when one
of Dh or τ is sufficiently large. Simulations at appropriate parameter values reveal the expected
oscillatory behaviour (see Figure 5).

We double-checked these calculations by solving the eigenvalue problem (35), (36) directly. To
do this, we replaced s(h) by a sharp sigmoid. We first solved for the steady state using a boundary
value problem bvp45 in Matlab. We then discretized the eigenvalue problem (35), (36) using finite
differences in space. This converts the problem to a matrix eigenvalue problem where the matrix
in question is very sparse. We then used matlab to readily find the eigenvalues of the resulting
matrix. The resulting computations confirmed the validity of (40).

3.5 Revisiting Stability in the Small Dh, τ = 0 Regime

While the equation governing the eigenvalues in the large s case is generally intractable, we should
expect it to simplify considerably when Dh is small and τ = 0. After all, we have already shown
that this limiting case is stable and has a relatively simple eigenvalue. Expanding (40) for small
Dh and large D± yields, after a lot of algebra,

0 = (s0 + 1)D−

(√
Dh (s0 + 1)2 + 2s0 (1 + λ)

)√
1 + λ− (2λ+ 2)D−s0(s0 + 1).

Solving for λ we then find

λ = −1 ,

λ =
1

2

−
√
Dh (s0 + 1)2 −

√
s2

0 − 2
√
Dh (s0 + 1)2 s0 − s0

s0
,

λ =
1

2

−
√
Dh (s0 + 1)2 +

√
s2

0 − 2
√
Dh (s0 + 1)2 s0 − s0

s0
.

Finally, expanding
√
s2

0 − 2
√
Dh (s0 + 1)2 s0 ∼ s0−

√
Dh (s0 + 1)2, we find that these two last roots

are λ ∼ −1 and λ ∼ −
√
Dh

(s0+1)2

s0
. This recovers the formula (30) obtained through linearization
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Figure 4: Plotting the real part of the first two eigenvalues as a function of Dh with τ = 0 (Top
Left), and as a function of τ with Dh = 0.18 (Top Right), with D+ = 50, D− = 100. Notice
in the former that as Dh becomes large, the first eigenvalue grows very quickly. This apparent
asymptote corresponds to the onset of non-existence of single-jump solutions. At intermediate Dh

values the first two roots become a complex pair, and the system undergoes a Hopf bifurcation at
Dh ≈ 0.20001. For small Dh values, the first two roots are again real, but remain negative. In the
top right plot, a Hopf bifurcation occurs at τ ≈ 0.45885. As τ is increased further, the complex
pair splits into real roots, and the second root approaches zero (not shown). The solid line in the
bottom figure tracks the value of τ that produces a Hopf bifurcation for any given value of Dh

( D+ = 50, D− = 100). To the left and right of this curve, solutions are stable and unstable
respectively. The curve has a vertical asymptote at Dh ≈ 0.16296.
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Figure 5: Plots comparing the motion of x0 in the linearly stable (Dh = 0.199, top) and linearly
unstable (Dh = 0.203, bottom) regimes. In both cases τp = 0, and s(h) is given as in (4) with
D+ = 50, D− = 100, and δ = 0.001. In each plot, the steady-state solution was perturbed, and the
location of x0 tracked as the solution evolved. In the stable case, the location of x0 exhibits damped
oscillations consistent with the predicted eigenvalues. In the unstable case, the oscillations grow
until x0 drifts to the edge of the domain, at which point the solution collapses to an approximately
constant and homogeneous profile (t ≈ 18). This is followed by repeated spontaneous emergence
of structure via Turing instability, punctuated by collapse to a nearly constant solution.
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Figure 6: Complex, chaotic dynamics for the system (5) with x ∈ [0, 50], Dh = 1.5, τp = 1, and
with s(h) as given in (4) with D+ = 2, D− = 40, δ = 0.1. Right panel is a zoom of the left panel.
The interfaces are being continuously created and destroyed.

of the equations of motion of the interface. Notice also that in figure 4 the second eigenvalue goes
to −1 as Dh → 0, as predicted by this analysis.

4 Discussion

We have studied in detail interface patterns of the PDE model (5) proposed in [17]. In the limit
of sharp step-like diffusion function s(h), these solutions contain jump discontinuities, similar to a
square wave. We focused our attention on solutions with a single jump discontinuity, and derived,
assuming the diffusion of AHL was small, an equation of motion for a discontinuity that is not at
equilibrium. The equation of motion was able to predict results from numerical simulations. From
this equation of motion, we were able to deduce that such solutions are stable when diffusion of
bacteria is large.

We then turned our attention to stability in a more general case (lifting the requirement that
AHL diffusion be small, but maintaining the requirement that there be only one jump discontinuity),
and derived an associated eigenvalue problem. We then showed that this eigenvalue problem was
equivalent to finding the roots of a transcendental equation. Solving this equation numerically, we
demonstrated the existence of a Hopf bifurcation, which was then confirmed in simulation. Finally,
we showed that the transcendental equation was able to reproduce the eigenvalues predicted by the
equation of motion.

This behaviour is markedly different from that described in [17]. Though they used the same
model, their choice of parameters were such that only transient patterns could be created; any
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structure that emerged eventually collapsed to the trivial constant state. To obtain the type of
sustained pattern observed in experiment, their group developed a three-component PDE model
[13]. Most of the difference in behaviour can be attributed to the nature of the function s(h). In
this paper, we chose s(h) to ensure that the system exhibited a Turing instability, and this choice
ensured that any observed steady states would be non-constant. It remains an open question
whether or not such stable steady states exist for more generic s(h).

This work provides further evidence that non-linear diffusion can act as a pattern generation
mechanism. While the methods used were largely ad hoc and relied heavily on approximation,
the results obtained agree with numerical simulation and display internal consistency (several of
the results can be derived via multiple methods). It is our hope that these results might act as
a catalyst for further experiments, or as a starting point for anyone who wishes to pursue a more
rigorous analysis.

As we have shown, even a single interface can lead to complex dynamics provided that Dh or
τ is sufficiently large: the Hopf instability causes the interface to merge with the boundary. Ever
more complex dynamics, including chaotic dynamics, can arise if the domain is sufficiently large to
accomodate multiple unstable interfaces. An example of such dynamics is shown in Figure 6.

Unlike many other classical reaction-diffusion systems such as Gierer-Meinhardt model [18]
Gray-Scott model [19] and the Brusselator [20,21], the main driver of patterns for (5) is the state-
dependent diffusion s(h). The model has some resemblence to the logistic chemotaxis model in-
troduced in [22, 23] which was shown to admit very complex chaotic pattern dynamics [24–28].
However the mechanism behind pattern formation appears to be rather different. In particular,
the primary driver of chaotic patterns in the logistic chemotaxis model is the fact that patterns
tend to attract to each other, and merge with each-other [27,28]. By contrast, in the model (5) the
patterns are destabilized via a Hopf bifurcation.

A number of open problems remain. Figure 4 indicates that a Hopf bifurcation occurs for any
value of τ (including τ = 0) if Dh is sufficinetly large. In particular the curve in Figure 4(bottom)
has a vertical asymptote which we computed purely numerically. The proof of these facts is missing
completely. Further numerics indicate the presence of chaotic behaviour in the unstable regime (i.e.
sufficiently large Dh) when the domain is large enough. How does one characterize the stability of
solutions with multiple discontinuities? What can be said of the case where τ 6= 0? Can one derive
similar results where s(h) is a smooth curve? Numerical simulations show that similar patterns
form even when s(h) is a sigmoid curve with a gradual slope. Finally, what happens when we
extend this model to more than one spatial dimension? In the experiments that motivated the
creation of this model, researchers observed stable stripes and concentric circles, and preliminary
simulations show that the model has a natural tendency to develop spots when evolved from a
perturbed homogeneous state. We hope to address these questions in future work.

Appendix A: space-dependent Brownian motion

There is some debate in the literature as to what is the appropriate limit for Brownian motion with
spatially-dependent speed: whether it’s ut = (s(x)ux)x or ut = (s(x)u)xx . In particular, [13, 29]
argues that any combination of these can be considered depending on the choice of methodology (Ito
versus Stratonovich). For reader’s convenience, here we include the derivation from first principles
that argues that the correct form is ut = (s(x)u)xx , at least when modelling Brownian motion with
space-dependent diffusion. See [30] for alternative derivation using stochastic calculus, but which
gives the same result.

Consider the Brownian motion where the speed at each time step dt is chosen according to a
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normal distribtuion with a space-dependent standard deviation σ = f(x)
√
dt. The matlab code

that simulates this is shown in Figure 7.
The probability that a particle that starts at location y and time t moves to a location x at

time t+dt is given by 1√
2πdtf(y)

exp

(
−1

2

(
x−y√
dtf(y)

)2
)
. Summing over all possible starting locations

y, we obtain the following master equation:

u(x, d+ dt) =

∫ ∞
−∞

1√
2πdtf(y)

exp

(
−1

2

(
x− y√
dtf(y)

)2
)
u(y)dy (41)

Change variable y = x+
√

2dtz so that the right hand side becomes∫ ∞
−∞

1√
2πdtf(y)

exp

(
−1

2

(
x− y√
dtf(y)

)2
)
u(y)dy =

1√
π

∫ ∞
−∞

exp

(
−z2 1

f2(x+
√

2dtz)

)
u(x+

√
2dtz)

f(x+
√

2dtz)
dz.

(42)
Using the standard Laplace’s method, note that

1√
π

∫ ∞
−∞

exp(−z2h(x+ εz))g(x+ εz) ∼ g(x)h−1/2(x) + ε2

(
g(x)h−3/2(x)

4

)
xx

+O(ε4).

Taking ε =
√

2dt, h = 1/f2 and g = u/f we obtain

1√
π

∫ ∞
−∞

exp

(
−z2 1

f2(x+
√

2dtz)

)
u(x+

√
2dtz)

f(x+
√

2dtz)
dz = u(x) + (

(
u(x)f2(x)

4

)
xx

dt+O((dt)2).

Taylor-expanding the left-hand side of (41) in dt then yields the final result,

ut =

(
f2(x)u

4

)
xx

. (43)

To compare this PDE with stochastic simulations, consider the case where f(x) = 1− a sinx with
x ∈ [0, 2π] with periodic boundary conditions. Then the steady-state t → ∞ of (43) is given by

u = C/f2 = C/ (1− a sinx)2 where C = (1−a2)3/2

2π is chosen so that
∫ 2π

0 u(x)dx = 1. Figure 7 shows
an excellent agreement between the stochastics and its continuum limit (43) in this case.

Acknowledgements

We would like to thank Andrew Rutenberg for discussions of the state-dependent Brownian motion.
T.K. was supported by NSERC Discovery Grant No. RGPIN-33798 and Accelerator Supplement
Grant No. RGPAS/461907. D.I. was supported by NSERC Discovery Grant No. RGPIN-2016-
04314.

References

[1] E. Ben-Jacob, I. Cohen, H. Levine, Cooperative self-organization of microorganisms, Advances
in Physics 49 (4) (2000) 395–554.

[2] D. Horstmann, et al., From 1970 until present: the keller-segel model in chemotaxis and its
consequences.

19



0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 
stochastics
PDE

dt=0.1; N=1E5; X=zeros(1,N); a=0.5;

for sim=1:N

x=0;

for t=0:dt:10

dx=randn *(1-a*sin(x))*sqrt(dt);

x=mod(x+dx ,2*pi);

end

X(sim)=x;

end;

clf;hold on;

[y,x]=hist(X, linspace (0,2*pi ,50));

bar(x,y/N*50/2/pi ,'b');

C=(1-a^2) ^(3/2) /2/pi;

plot(x, C./(1-a*sin(x)).^2);

legend('stochastics ', 'PDE');

Figure 7: Left: comparison of stochastic simulation versus the PDE limit (43) for Brownian motion
with a space-dependent speed f(x) = 1 − a sinx. Right: matlab code of the simulation that was
used to produce this figure.

[3] J. A. Sherratt, Wavefront propagation in a competition equation with a new motility term
modelling contact inhibition between cell populations, in: Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, Vol. 456, The Royal Society,
2000, pp. 2365–2386.

[4] D. del Castillo-Negrete, B. Carreras, V. Lynch, Front propagation and segregation in a
reaction–diffusion model with cross-diffusion, Physica D: Nonlinear Phenomena 168 (2002)
45–60.

[5] R. Ruiz-Baier, C. Tian, Mathematical analysis and numerical simulation of pattern formation
under cross-diffusion, Nonlinear Analysis: Real World Applications 14 (1) (2013) 601–612.

[6] C. Tian, Z. Lin, M. Pedersen, Instability induced by cross-diffusion in reaction–diffusion sys-
tems, Nonlinear Analysis: Real World Applications 11 (2) (2010) 1036–1045.

[7] G. Gambino, M. C. Lombardo, M. Sammartino, Turing instability and traveling fronts for
a nonlinear reaction–diffusion system with cross-diffusion, Mathematics and Computers in
Simulation 82 (6) (2012) 1112–1132.

[8] J. Müller, W. van Saarloos, Morphological instability and dynamics of fronts in bacterial
growth models with nonlinear diffusion, Physical Review E 65 (6) (2002) 061111.

[9] P. Rosenau, Reaction and concentration dependent diffusion model, Physical review letters
88 (19) (2002) 194501.

[10] B. Gilding, R. Kersner, A fisher/kpp-type equation with density-dependent diffusion and con-
vection: travelling-wave solutions, Journal of Physics A: Mathematical and General 38 (15)
(2005) 3367.

20



[11] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada, Modeling spatio-
temporal patterns generated bybacillus subtilis, Journal of Theoretical Biology 188 (2) (1997)
177–185.

[12] M. B. Miller, B. L. Bassler, Quorum sensing in bacteria, Annual Reviews in Microbiology
55 (1) (2001) 165–199.

[13] C. Liu, X. Fu, L. Liu, X. Ren, C. K. Chau, S. Li, L. Xiang, H. Zeng, G. Chen, L.-H. Tang,
et al., Sequential establishment of stripe patterns in an expanding cell population, Science
334 (6053) (2011) 238–241.

[14] F. Farrell, M. Marchetti, D. Marenduzzo, J. Tailleur, Pattern formation in self-propelled par-
ticles with density-dependent motility, Physical review letters 108 (24) (2012) 248101.

[15] J. Tailleur, M. Cates, Statistical mechanics of interacting run-and-tumble bacteria, Physical
review letters 100 (21) (2008) 218103.

[16] M. Cates, D. Marenduzzo, I. Pagonabarraga, J. Tailleur, Arrested phase separation in re-
producing bacteria creates a generic route to pattern formation, Proceedings of the National
Academy of Sciences 107 (26) (2010) 11715–11720.

[17] X. Fu, L.-H. Tang, C. Liu, J.-D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial systems
with density-suppressed motility, Physical review letters 108 (19) (2012) 198102.

[18] D. Iron, M. Ward, J. Wei, The stability of spike solutions to the one-dimensional Gierer–
Meinhardt model, Physica D: Nonlinear Phenomena 150 (1) (2001) 25–62.

[19] A. Doelman, R. Gardner, T. Kaper, Stability analysis of singular patterns in the 1d gray-scott
model: a matched asymptotics approach, Physica D: Nonlinear Phenomena 122 (1) (1998)
1–36.

[20] T. Erneux, E. L. Reiss, Brussellator isolas, SIAM Journal on Applied Mathematics 43 (6)
(1983) 1240–1246.

[21] T. Kolokolnikov, T. Erneux, J. Wei, Mesa-type patterns in the one-dimensional brusselator
and their stability, Physica D: Nonlinear Phenomena 214 (1) (2006) 63–77.

[22] G. F. Oster, J. D. Murray, Pattern formation models and developmental constraints, Journal
of Experimental Zoology 251 (2) (1989) 186–202.

[23] P. Maini, M. Myerscough, K. Winters, J. Murray, Bifurcating spatially heterogeneous solutions
in a chemotaxis model for biological pattern generation, Bulletin of Mathematical Biology
53 (5) (1991) 701–719.

[24] Z. Wang, T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis
model, Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (3) (2007) 037108–037108.

[25] T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of
overcrowding, Advances in Applied Mathematics 26 (4) (2001) 280–301.

[26] K. J. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive move-
ment, Can. Appl. Math. Quart 10 (4) (2002) 501–543.

21



[27] T. Kolokolnikov, J. Wei, A. Alcolado, Basic mechanisms driving complex spike dynamics in a
chemotaxis model with logistic growth, SIAM Journal on Applied Mathematics 74 (5) (2014)
1375–1396.

[28] T. Hillen, J. Zielinski, K. J. Painter, Merging-emerging systems can describe spatio-temporal
patterning in a chemotaxis model., Discrete & Continuous Dynamical Systems-Series B 18 (10).

[29] N. G. van Kampen, Stochastic processes in physics and chemistry (1981).

[30] P. C. Bressloff, Stochastic processes in cell biology, Vol. 41, Springer.

22


