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Abstract

We consider a class of one-dimensional reaction-diffusion systems,

{

ut = ε2uxx + f(u,w)
τwt = Dwxx + g(u,w)

with homogeneous Neumann boundary conditions on a one dimensional interval. Under some
generic conditions on the nonlinearities f, g and in the singular limit ε → 0, such a system
admits a steady state for which u consists of sharp back-to-back interfaces. For a sufficiently
large D and for sufficiently small τ , such a steady state is known to be stable in time. On the
other hand, it is also known that in the so-called shadow limit D → ∞, patterns having more
than one interface are unstable. In this paper we analyse in detail the transition between
the stable patterns when D = O(1) and the shadow system when D → ∞. We show that
this transition occurs when D is exponentially large in ε and we derive instability thresholds
D1 ≫ D2 ≫ D3 ≫ . . . such that a periodic pattern with 2K interfaces is stable if D < DK

and is unstable when D > DK . We also study the dynamics of the interfaces when D is
exponentially large; this allows us to describe in detail the mechanism leading to the instability.
Direct numerical computations of stability and dynamics are performed, and these results are
in excellent agreement with corresponding results as predicted by the the asymptotic theory.

1 Introduction

One of the most prevalent phenomena observed in reaction-diffusion systems is the formation of mesa
patterns. Such patterns consist of a sequence of highly localized interfaces (or kinks) that are separated
in space by regions where the solution is nearly constant. These patterns has been studied intensively
for the last three decades and by now an extensive literature exists on this topic. We refer for example
to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and references therein. In this paper we are concerned with the following
class of reaction-diffusion models:

{

ut = ε2uxx + f(u,w)
0 = Dwxx + g(u,w)

(1)

where u,w ∈ R; t ≥ 0; x ∈ (a, b), a one-dimensional interval of a finite size, with Neumann boundary
conditions and in the limit

ε≪ 1 and D ≫ 1 (2)

where all other parameters are assumed to be O(1) independent of ε,D.
Due to the large diffusivity ratio D/ε2, and under certain general conditions on the nonlinearities f

and g that will be specified below, the system (1) admits a steady state for u(x) which consists of an
interface layer solution. Such a solution has the property that u is very close to some constants u+ or u−
with u+ 6= u− everywhere except near the interface location, where it has a layer of size O(ε) connecting
the two constant states u±. On the other hand, w(x) is nearly constant. A single mesa (or a box) solution
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Figure 1: (a) Coarsening process in Lengyel-Epstein model (8), starting with random initial conditions.
Time evolution of u is shown; note the logarithmic time scale. The parameter values are ε = 0.06, a = 10,
D = 500, τ = 0.1, domain size is 8 with Neumann boundary conditions for both u and w. (b,c) The
snapshots of u and w at t = 1, 000, 000.

consists of two interfaces, one connecting u− to u+ and another connecting u+ back to u−. By mirror
reflection, a single mesa can be extended to a symmetric K mesa solution, consisting of K mesas or 2K
interfaces (see Figure 1b).

The general system (1) has been thoroughly studied by many authors. In particular, the regime
D = O(1) is well understood. Under certain general conditions on g and f , it is known that a K-mesa
pattern is stable for all K – see for example [1], [11]. On the other hand, in the limit D → ∞ and on a
finite domain [a, b], the system (1) reduces to the so-called shadow system,

ut = ε2uxx + f(u,w0);

∫ b

a

g(u,w0)dx = 0. (3)

where w0 is a constant. Equation (3) also includes many models of phase separation such as Allen-Cahn
[4] as a special case. Under the same general conditions on g and f , a single interface of the shadow
system is also stable; however a pattern consisting of more than one interface is known to be unstable
[12].

The main question that we address in this paper is how the transition from the stable regimeD = O(1)
to the unstable shadow regime D → ∞ A rough outline of this description is as follows. takes place. when
D is not too large, the stability of a K mesa pattern is due to the stabilizing effect of the global variable
w, as shown for example in [1]. However as D is increased, the stabilizing effect of w is decreased,
and eventually the pattern loses its stability. We find that the onset of instability is caused by the
interaction between the interfaces of u. This interaction is exponentially small, but becomes important
as D becomes exponentially large. By analysing the contributions to the stability of both w and u, we
compute an explicit sequence of threshold values D1 > D2 > D3 > . . . such that a K mesa solution on
the domain of a fixed size 2R is stable if D < DK and is unstable if D > DK . These thresholds have the
order ln(DK) = O(1ε ), so that DK is exponentially large in ε.

There are many systems that fall in the class described in this paper. Let us now mention some of
them. In the models below the parameters β0, f0, q, κ, α are assumed to be constants.

• Cubic model: One of the simplest systems is a cubic model,

{

ut = ε2uxx + 2u− 2u3 + w
0 = Dwxx − u+ β0

. (4)
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It is a variation on FitzHugh-Nagumo model used in [5] and in [13]. It is a convenient model for
testing our asymptotic results.

• Model of Belousov-Zhabotinskii reaction in water-in-oil microemulsion: This model is a
was introduced in [14], [15]. In [16], the following simplified model was analysed in two dimensions:







ut = ε2uxx − f0
u− q

u+ q
+ wu − u2

0 = Dwxx + 1− uw
. (5)

• Brusselator model. In [17] the authors considered coarsening phenomenon in the Brusselator
model; a self-replication phenomenon was studied in [11]. After a change of variables the Brusselator
may written as

{

ut = ε2uxx − u+ uw − u3

0 = Dwxx − β0u+ 1
. (6)

• Gierer-Meinhardt model with saturation. This model was introduced in [18], (see also [19],
[20]) to model stripe patterns on animal skins. After some rescaling, it is







ut = ε2uxx − u+
u2

w(1 + κu2)
τwt = Dwxx − w + u2

. (7)

This model was also studied in [21], where stripe instability thresholds were computed.

• Lengyel-Epstein model. This model was introduced in [22], see also [23]:







ut = uxx + a− u− 4uv

1 + u2

τvt = Dvxx + u− uv

1 + u2

. (8)

• Other models include: models for co-existence of competing species [24]; vegetation patterns in
dry regions [25]; models of chemotaxis [26] and models of phase separation in diblock copolymers
[27].

Note that some of the models such as (7) and (8) are a slight generalization of (1), in that they include
a time derivative of w, namely

{

ut = ε2uxx + f(u,w)
τwt = Dwxx + g(u,w)

. (9)

All of the results of this paper remain unchanged provided that τ is not too large, in particular 0 < τ ≪
O(1/ε). See Remark 3.5. On the other hand, it can be shown that oscillatory instabilities can and do
occur if τ = O (D/ε) [28].

Figure 1 illustrates the instability phenomenon studied in this paper, as observed numerically in the
Lengyel-Epstein model. Starting with random initial conditions, Turing instability leads to a formation
of a three-mesa pattern at t ≈ 10. However such a pattern is unstable, even though this only becomes
apparent much later (at t ≈ 100). This is due to the very slow instability of a three-mesa pattern.
The resulting two-mesa pattern then drifts towards a symmetric position which is stable. Note that the
component u consists of a sequence of localized interfaces that connects u− ≈ 0.57 to u+ ≈ 6.84; on
the other hand w is nearly constant with w ≈ 5.50. Also note that the top of the mesa pattern is not
completely flat: there is some (weak) interaction between the two interfaces making up the mesa. The
relative strength of such interaction is what effectively determines the stability of a pattern.

A similar phenomenon for the Belousov-Zhabotinskii model (5) is illustrated in Figure 7(b). It shows
the time-evolution a 2-mesa solution to (5) with D > D2, starting with initial conditions that consist of
a slightly perturbed two-mesa pattern. After a very long time, one of the mesas absorbs the mass of the
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other. The surviving mesa then moves towards the center of the domain where it remains as a stable
pattern.

In addition to studying the stability of the mesa patterns, we also study their dynamics. This allows
us to describe in detail the mechanism by which the exchange of mass between two mesas can take place,
as well as the motion of the interfaces away from the equilibrium. For a pattern consisting of K mesas, we
derive a reduced problem, consisting of 2K ODE’s that govern the asymptotic motion of the 2K interfaces.

The results in this paper are derived using the methods of formal asymptotics. It is a difficult challenge
to provide a rigorous justification, especially due to the presence of exponentially small and large terms,
and we have not attempted to do so. However extensive numerics were used to verify the asymptotic
results. As will be shown in §5, the agreement between the numerics and the analytical theory is excellent,
even for relatively large values of ε (for example less than 1% error when ε = 0.2 for certain problems).
The effectiveness of our theory even for moderate values of ε is one of the key unanticipated successes of
asymptotic analysis.

The outline of the paper is as follows. In §2 we construct the steady state consisting of K mesas.
The construction is summarized in Proposition 2.1. The main result is presented in §3 (Principal Result
3.1), where we analyse the asyptotics of the linearized problem for the periodic pattern, and derive the
instability thresholds DK . In §4 we derive the reduced equations of motion for the interfaces. In §5 we
present numerical computations to support our asymptotic results. We conclude with a discussion of
open problems in §6.

2 Preliminaries: construction of the K−mesa steady state

We start by constructing the time-independent mesa-type solution to (1). The mesa (or box) solution
consists of two back-to-back interfaces. Thus we first consider the conditions for existence of a single
interface solution and review its construction. A mesa solution can then be constructed from a single
interface by reflecting and doubling the domain size. Similarly, a K-mesa pattern is then constructed by
making K copies of a single mesa. We summarize the construction as follows.

Proposition 2.1 Consider the time-independent steady state of the PDE system (1) satisfying

{

0 = ε2uxx + f(u,w)
0 = Dwxx + g(u,w)

(10)

with Neumann boundary conditions and in the limit

ε≪ 1 and D ≫ 1. (11)

Suppose that the algebraic system

∫ u+

u−

f(u,w0)du = 0; f(u+, w0) = 0 = f(u−, w0) (12)

admits a solution u+, u−, w0, with u+ 6= u−. Define

g± := g (u±, w0) (13)

and suppose in addition that

fu (u±, w0) < 0 and 0 <
g−

g− − g+
< 1. (14)

Then a single interface solution, on the interval [0, L] is given by

u(x) ∼ U0

(

x− l

ε

)

, w ∼ w0 (15)
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where U0 is the heteroclinic connection between u+ and u− satisfying






U0yy + f(U0, w0) = 0;
U0 → u− as y → ∞; U0 → u+ as y → −∞;

f(U0(0), w0) = 0
(16)

and l is the location of the interface so that

u ∼
{

u+, 0 < x < l
u−, l < x < L

.

Moreover, l satisfies
l = l0 + εl1 +O(ε2) (17)

where
l0 =

g−
g− − g+

L (18)

and

l1 =

∫∞

0 [g(U0(y), w0)− g−] dy +
∫ 0

−∞
[g(U0(y), w0)− g+] dy

g− − g+
(19)

A single mesa solution on the interval [−L,L] is obtained by even reflection of the interface solution on
an interval [0, L] around x = 0. A K-mesa solution on the interval of size 2KL is then obtained making
K copies of the single mesa solution on the interval [−L,L].

For future reference, we also define

µ± :=
√

−fu (u±, w0) ≥ 0; (20)

and define constants C± to be such that

U0(y) ∼ u− + C−e
−µ−y, y → +∞;

U0(y) ∼ u+ − C+e
µ+y, y → −∞.

(21)

The constants C± > 0 are known constants determined by the far-field behavior of the heteroclinic solution
U0(y).

We note that the assumption D ≫ 1 implies that to leading order, w ∼ w0 throughout the interval.
In particular, the equation (15) is valid throughout the whole interval and not just near the boundary
layer; that is,

∣

∣u(x)− U0

(

x−l
ε

)∣

∣ < Cmax(ε, 1
D ) and |w(x) − w0| ≤ C

D for for some constant C and for
all x in the domain of definition. More generally, the construction of the steady state can be generalized
under a weaker assumption ε2 ≪ D = O(1). In this case, w ∼ w0 within the interface layer but has an
x dependence in the outer region, away from the interface layer [1], [8], [11]; and (15) would be valid
only near the interface, |x− l| ≪ ε. However as was shown in [1] (see also [11]), the K-mesa pattern is
stable when D = O(1). Since we are concerned about transitions to instability, we only consider the case
D ≫ O(1) here.

The construction in Proposition 2.1 is straightforward and we outline its derivation here. First,
consider a single interface located at x = l inside the domain [0, L].We assume that u ∼ u+ for 0 < x < l
and u ∼ u− for l < x < L where u± are constants to be determined. Since we assumed that D ≫ 1, we
expand

w = w0 +
1

D
w1 + · · ·

so that to leading order w ∼ w0 is constant. Near the interface we introduce inner variables

x = l + εy; u(x) ∼ U0

(

x− l

ε

)

, w ∼ w0. (22)

Then U0(y) satisfies the system (16) which is parametrized by w0. In order for such a solution to exist,
u± must both be roots of f(u,w0) = 0 and U0 must be a heteroclinic orbit connecting u+ and u−. This
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yields the three algebraic constraints (12) which determine u± and w0. To determine the location l of the
interface, we integrate the second equation in (1), and using Neumann boundary condtions we obtain

∫ L

0

g(u,w0)dx = 0.

Changing variables x = l + εy we estimate

0 ∼ ε

∫ 0

−l/ε

g(U0(y), w0)dy + ε

∫ (L−l)/ε

0

g(U0(y), w0)dy;

0 ∼ lg+ + ε

∫ 0

−∞

[g(U0(y), w0)− g+] dy + (L− l)g− + ε

∫ ∞

0

[g(U0(y), w0)− g−] dy

Expanding l in ε as in (17) then yields (18) and (19). Since we must have 0 < l < L, this yields an
additional constraint (14).

3 Stability of K−mesa pattern

We now state the main result of this paper.

Principal Result 3.1 Consider the steady state consisting of K mesas on the interval of size 2KL, with
Neumann boundary conditions, as constructed in Proposition 2.1, in the limit ε→ 0. Suppose that

(

gw − gu
fw
fu

)

u=u±,
w=w0

< 0 and (g− − g+)

∫ u+

u−

fwdu > 0. (23)

Let

α+ :=
2C2

+µ
3
+

∫ u+

u−
fwdu

1

ε
exp

(

−2µ+

ε
l

)

; α− :=
2C2

−µ
3
−

∫ u+

u−
fwdu

1

ε
exp

(

−2µ−

ε
(L− l)

)

(24)

where the constants C±, µ±, l are as defined in Proposition 2.1.
Define

D1 :=
Lg2−

2 (g− − g+)α−

=
l0g−
2α−

; (25)

Di
1 :=

Lg2+
2 (g− − g+)α+

=
(L− l0) g+

2α+
; (26)

and for K ≥ 2, define

DK :=















D1 if µ−(L− l0) < µ+l0
Di

1 if µ−(L− l0) > µ+l0

L

2(g−−g+)(g−2

+
α++g−2

−
α−)

(

1
2 +

√

1
4 − 2α+α−(1−cosπ/K)g2

+
g2
−

4(g2
−
α++g2

+
α−)

2

)−1

if µ−(L − l0) = µ+l0.

(27)

Then the K mesa pattern is a stable equilibrium of the time-dependent system (1) if D < DK , and is
unstable if D > DK .

Principal Result 3.1 follows from a detailed study of the linearization about the steady state. We
consider small perturbations of the steady state of the form

u(x, t) = u(x) + φ(x)eλt, w(x, t) = w(x) + ψ(x)eλt
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where u(x), w(x) denotes the K-mesa equilibrium solution of (10) on the interval of length 2KL with
Neumann boundary conditions, whose leading order asymptotic profile was constructed in Proposition
2.1. For small perturbations φ, ψ we get the following eigenvalue problem,

{

λφ = ε2φ′′ + fu(u,w)φ+ fw(u,w)ψ
0 = Dψ′′ + gu(u,w)φ+ gw(u,w)ψ

. (28)

with Neumann boundary conditions. The sign of the real part of the eigenvalue λ determines the linear
stability: the system is said to be linearly unstable if there exists a solution to (28) with Re(λ) > 0; it is
linearly stable if Re(λ) < 0 for all solutions λ to (28).

Remark 3.2 As will be shown in Lemma 3.6, the conditions (23) guarantee that a single interface is
stable for any D ≫ 1 : they imply that λeven < 0 where λeven is given by (57). In addition, second
condition in (23) guarantees that λodd < 0 whenever 1 ≪ lnD ≪ 1/ε, where λodd is given by (56). Taken
together, the conditions (23) are precisely those that guarantee the stability of a single mesa whenever
1 ≪ lnD ≪ 1/ε.

To determine the threshold conditions for stability under Neumann boundary conditions, we first
consider the case of periodic boundary conditions. One key ingredient in the analysis below is featured
in the following Lemma:

Lemma 3.3 (Periodic boundary conditions) Consider the steady state consisting of K mesas on
the interval of size 2KL, as constructed in Proposition 2.1, and consider the linearized problem (28) with
periodic boundary conditions

φ (−L) = φ(2KL− L), φ′ (−L) = φ′(2KL− L); ψ (−L) = ψ(2KL− L), ψ′ (−L) = ψ′(2KL− L).

The linearized problem admits 2K eigenvalues. Of these, 2K − 2 are given asymptotically by

λ±θ ∼ (a± |b|)
ε
∫ u+

u−
fwdu

∫∞

−∞
U2
0ydy

(29)

where

a = α+ + α− +
(g+ − g−)

D

L

1− cos θ
− g+l0

D
(30)

|b|2 = α2
+ + α2

− + 2α+α− cos θ +
2 (g+ − g−)

D

[

L (α+ + α−)

1− cos θ
− l0α+ − (L − l0)α−

]

(31)

+
(g+ − g−)

2

D2 (1− cos θ)
2

[

L2 − 2 (1− cos θ) l0(L− l0)
]

with α± given by (24) and
θ = 2πk/K; k = 1 . . .K − 1. (32)

The other two eigenvalues are λ = 0 (for which the corresponding eigenfunction is (φ, ψ) = (ux, wx)) and

λeven ∼ − g+ − g−
σ+l0 + σ−(L − l0)

ε
∫ u+

u−
fwdu

∫∞

−∞
U2
0ydy

(33)

where σ± < 0 are given by

σ± ≡
(

gw − gu
fw
fu

)∣

∣

∣

∣

u=u±,w=w0

. (34)
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Remark 3.4 Note that if θ = π and recalling (18), the equations (30) and (31) simplify to

|b| =
∣

∣

∣

∣

L

2D

g2+ − g2−
g+ − g−

+ α+ − α−

∣

∣

∣

∣

; a = α+ + α− +
L

2D

g2+ + g2−
g+ − g−

.

Therefore the formula (29) simplifies as follows: If |b| = b then

λ−π =

(

2α− − g2−L

D(g− − g+)

) ε
∫ u+

u−
fwdu

∫∞

−∞
U2
0ydy

; λ+π =

(

2α+ − g2+L

D(g− − g+)

) ε
∫ u+

u−
fwdu

∫∞

−∞
U2
0ydy

(35)

Otherwise λ±π are given by (35) except that λ+π and λ−π are interchanged.

Derivation of Lemma 3.3. The idea is to make use of Floquet theory. That is, instead of
considering (28) with periodic boundary conditions on [−L, 2KL− L], we consider (28) on the interval
[−L,L] with the boundary conditions

φ(L) = zφ(−L), φ′(L) = zφ′(−L); ψ(L) = zψ(−L), ψ′(L) = zψ′(−L), (36)

We then extend such a solution to the interval [L, 3L] by defining φ(x) := zφ(x − 2L) for x ∈ [L, 3L]
and similarly for ψ. This extension assures continuity of φ, ψ and φ′, ψ′ at L. Morever, since u,w are
periodic with period 2L, it is clear that φ, ψ extended in this way satisfies (28) on [−L, 3L] and moreover
φ(3L) = z2φ(−L). Repeating this process, we obtain solution of (28) on the whole interval [−L, 2KL−L]
with φ(2KL− L) = φ(−L)zK . Hence, by choosing

z = exp (2πik/K) , k = 0 . . .K − 1,

we have obtained a periodic solution to (28) on [−L, 2KL− L].
To solve (28) on [−L,L] subject to (36), we estimate the eigenfunctions as

φ ∼ c±ux; ψ ∼ ψ (±l) when x ∼ ±l. (37)

Note that
0 = ε2uxxx + fuux + fwwx.

Multiplying the equation for φ in (28) by ux and integrating by parts on [−L, 0] we then obtain

λc−

∫ 0

−L

u2xdx ∼ ε2 (φxux − φuxx)
0
−L +

∫ 0

−L

fw (ψux − φwx) dx

We note that the integral term on the right hand side is dominated by the contribution from x = −l.
Using the anzatz (37) we then obtain

λc−

∫ 0

−L

u2xdx ∼ ε2 (φxux − φuxx)
0
−L + (ψ(−l)− c−wx (−l))

∫ u+

u−

fwdu (38)

Similarly on the interval [0, L] we get

λc+

∫ L

0

u2xdx ∼ ε2 (φxux − φuxx)
L
0 − (ψ(+l)− c+.wx(−l))

∫ u+

u−

fwdu (39)

We estimate
∫ L

0

u2xdx ∼
∫ 0

−L

u2xdx ∼ 1

ε

∫ ∞

−∞

U2
0ydy

and write (38) and (39) as

λκ0

(

c+
c−

)

=

(

κ1 (−φuxx)L0 − ψ(+l) + c−wx(+l)

κ1 (−φuxx)0−L + ψ(−l)− c−wx(−l)

)

(40)
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where

κ0 =

∫∞

−∞
U2
0ydy

ε
∫ u+

u−
fwdu

; κ1 =
ε2

∫ u+

u−
fwdu

.

We now transform (40) into a matrix eigenvalue problem. To do so, we will express the boundary terms
as well as ψ (±l) in terms of c±.

Determining ψ (±l) . We start by estimating

∫ −l+

−l−
guuxdx ∼

∫ u+

u−

gudu ∼ g+ − g−;

∫ +l+

+l−
guuxdx ∼

∫ u−

u+

gudu ∼ g− − g+

where
∫ ±l+

±l− denotes integration over any interval that includes ±l and g± = g (u±, w0) . On the other
hand, φ is dominated by the contribution from the interfaces. Hence we estimate

guφ ∼ c− (g+ − g−) δ (x+ l) + c+ (g− − g+) δ (x− l) (41)

where δ is the delta function. Therefore from the equation for ψ in (28) we write

ψ (x) ∼ − (g+ − g−)

D
(c−η(x;−l)− c+η(x; l))

where η(x;x0) is a Green’s function which satisfies

η′′ +
σ(x)

D
η = δ (x− x0) (42)

with boundary conditions

η (L) = zη(−L), η′(L) = zη′(−L), z = exp (2πik/2K) , k = 0 . . .K − 1 (43)

where

σ (x) ≡
{

σ+, |x| < l
σ−, l < |x| < L

; σ± ≡
(

gw − gu
fw
fu

)∣

∣

∣

∣

u=u±,w=w0

. (44)

with σ± < 0 by the assumption (23).
There are two distinct cases to consider: either z = 1 or z 6= 1. For the case z = 1, we will show below

that there is a large solution of η = O(D) that depends on σ at the leading order. On the other hand, if
z 6= 1 then we expand η = η0 +

1
Dη1 + . . . . The boundary terms in (40) will come at the same order as

η0 and the correction terms 1
Dη1 + . . . may therefore be discarded. The leading order for η then satisfies,

after dropping the subscript η0 = η,

ηxx = 0; η
(

x−0 ;x0
)

= η
(

x+0 ;x0
)

; η′
(

x+0 ;x0
)

− η′
(

x−0 ;x0
)

= 1

so that

η ∼
{

A+ (x+ L)B, x < x0
A+ (L+ x0)B + (1 +B)(x − x0), x > x0

.

The constants A,B are to be chosen so that the boundary conditions (36) are satisfied:

A+ 2BL+ L− x0 = zA; 1 +B = zB

We then obtain

B =
z − 1

(z − 1)2
; A =

2L+ (L− x0) (z − 1)

(z − 1)2

9



η(l; l) = η(−l;−l) = 2Lz

(z − 1)
2 ; (45)

η(l;−l) = 2Lz + 2zl(z − 1)

(z − 1)2
; (46)

η(−l; l) = 2Lz + 2l(1− z)

(z − 1)
2 = η(l;−l).

In summary, we obtain
(

ψ (l)
−ψ (−l)

)

∼ (g+ − g−)

D

(

η(l; l) −η(l;−l)
−η(l;−l) η(l; l)

)(

c+
c−

)

(47)

where η(l; l), η(l;−l) are given by (45) and (46), and the overbar denotes complex conjugate.
Boundary terms. Next we compute the boundary terms in (38, 39), corresponding to the behaviour

of φ at x = ±L, 0. We start by estimating the behaviour of ux and φ near −L. Since ux(−L) = 0, we
have

u ∼ u− +A [exp(µ−z) + exp(−µ−z)] , z =
x+ L

ε
. (48)

The constant A is found by matching u to the heteroclinic solution as x :

U0 (y) ∼ u− + C− exp (µ−y) ;

u(x) ∼ U0(
x+ l

ε
) ∼ u− + C− exp

(

µ−

x+ l

ε

)

. (49)

Matching (48) and (49) we then obtain

A = C− exp
(

−µ−

ε
(L− l)

)

.

Performing a similar analysis at x = 0 and at x = L we get:

uxx(±L) = 2C−

µ2
−

ε2
exp

(

−µ−

ε
(L− l)

)

; uxx(0) = −2C+
µ2
+

ε2
exp

(

−µ+

ε
l
)

.

Next we estimate φ(−L). Near x ∼ −L we write

φ = C1 exp
(µ−

ε
(x+ L)

)

+ C2 exp
(

−µ+

ε
(x+ L)

)

where C1 and C2 are to be determined. Away from −L, we have φ ∼ c−ux. Matching the decay modes,
we then obtain

C1 = c−C−

µ−

ε
exp

(

−µ−

ε
(L− l)

)

.

On the other hand, near x ∼ +L we write

φ = C3 exp
(µ−

ε
(x+ L)

)

+ C4 exp
(

−µ+

ε
(x+ L)

)

;

as before, we get

C4 = −c+C+
µ+

ε
exp

(

−µ+

ε
(L− l)

)

.

The constants C2 and C3 are determined by using the boundary condtions (43), which yields

C3 = zC1; C4 = zC2

In summary, we get

φ(−L) ∼ C−

µ−

ε
exp

(

−µ−

ε
(L− l)

)

[

c− − 1

z
c+

]

;

φ(L) ∼ C−

µ−

ε
exp

(

−µ−

ε
(L− l)

)

[zc− − c+] .

10



Performing a similar analysis at x ∼ 0, we obtain

φ(0) ∼ C+
µ+

ε
exp

(

−µ+

ε
l
)

[c− − c+] .

We thus obtain

(φuxx)
L
0 = 2C2

−

µ3
−

ε3
exp

(

−2µ−

ε
(L− l)

)

[zc− − c+] + 2C2
+

µ3
+

ε3
exp

(

−2µ+

ε
l

)

[c− − c+] ;

(φuxx)
0
−L = −2C2

−

µ3
−

ε3
exp

(

−2µ−

ε
(L− l)

)[

c− − 1

z
c+

]

− 2C2
+

µ3
+

ε3
exp

(

−2µ+

ε
l

)

[c− − c+] ;

so that
[

κ1 (φxux − φuxx)
L
0

κ1 (φxux − φuxx)
0
−L

]

=

[

α+ + α− −α+ − zα−

−α+ − 1
zα− α+ + α−

] [

c+
c−

]

(50)

where α± are given by (24).
Finally, we estimate

w′(l) ∼ −g+l
D

∼ −w′(−l). (51)

Substituting (50), (51) and (47) into (40) we obtain

λκ0

(

c+
c−

)

=

(

a b
b̄ a

)(

c+
c−

)

where

a = α+ + α− +
(g− − g+)

D
η(l; l)− g+l

D
; b = −α+ − zα− − (g− − g+)

D
η(l;−l).

It follows that
λκ0 = a± |b| .

Next we compute

a = α+ + α− +
2 (g− − g+)

D

Lz

(z − 1)2
− g+l

D

b = −α+ − zα− − 2 (g− − g+)

D

Lz + zl(z − 1)

(z − 1)
2

b̄ = −α+ − 1

z
α− − 2 (g− − g+)

D

Lz − l(z − 1)

(z − 1)2

|b|2 = α2
+ + α2

− + α+α− (z + z̄) + α+
2 (g− − g+)

D

(

2Lz

(z − 1)
2 + l

)

+ α−

2 (g− − g+)

D

(

L
(

z2 + 1
)

(z − 1)
2 − l

)

+
4 (g− − g+)

2

D2

(

z2L2

(z − 1)
4 +

zl(L− l)

(z − 1)2

)

We write
z = eiθ, φ = 2πk/K

and note that
2z

(z − 1)2
=

1

cos θ − 1
;

(

z2 + 1
)

(z − 1)
2 =

cos θ

cos θ − 1
.

Combining these computations, we obtain (29), (30), (31), provided that z 6= 1.
Next we consider (36) with z = 1, which corresponds to periodic boundary conditions on [−L,L].

This admits two solutions. One is λ = 0 corresponding the odd eigenfunction φ = ux, ψ = wx. The other
eigenfunction is even. This corresponds to imposing the boundary conditions

φ′(0) = 0 = φ′(L); ψ′ (0) = 0 = ψ′ (L) .

11



As before, we assume
φ ∼ ux; ψ ∼ ψ (l) when x ∼ l. (52)

and obtain

λ

∫ L

0

u2xdx ∼ ε2 (φxux − φuxx)
L
0 − (ψ(l)− wx(l))

∫ u+

u−

fwdu (53)

As before, we obtain

ψ (x) ∼ (g+ − g−)

D
η(x; l)

where η(x;x0) satisfies (42) with boundary conditions η′(0) = 0 = η′(L). We then obtain

η ∼ D
∫ L

0
σ(x)dx

∼ D

σ+l + σ−(L − l)
.

Therefore ψ(l) = O(1) ≫ wx(l) = O(1/D) and we estimate

ψ(l)− wx(l) ∼
(g+ − g−)

σ+l+ σ−(L− l)
.

The boundary term is evaluated as previously, but is of smaller order. This yields the formula (33) for
the even eigenvalue. �

Remark 3.5 All the results of this paper remain unchanged if (1) is generalized to (9) provided that
0 ≤ τ ≪ O(1/ε) while other conditions remain unchanged. This is seen as follows. The addition of the
τwt term has the effect of changing (44) to

σ (x) ≡
{

σ+, |x| < l
σ−, l < |x| < L

; σ± ≡ −λτ +
(

gw − gu
fw
fu

)∣

∣

∣

∣

u=u±,w=w0

. (54)

To leading order, this is equal to (44) as long as λτ ≪ 1; in that case the remaining computations are
unchanged, and the end result is that λeven = O(ε) while all other eigenvalues are of order O( ε

D ) ≪ O(ε).
Therefore the results remains unchanged provided that 0 ≤ τ ≪ O (1/ε) .

We now use Lemma 3.3 to characterize stability with Neumann boundary conditions as follows.
Suppose that φ has Neumann boundary conditions on [0, a]. Then we may extend φ by even reflection
around the origin; it then becomes periodic on [−a, a]. The same argument applies to ψ. From this
principle, it follows that the eigenvalues of a K mesa steady state with Neumann boundary conditions
form a subset of the eigenvalues of 2K mesas with periodic boundary conditions. On the other hand,
if φ, ψ is an eigenfunction on [−a, a] with periodic boundary conditions then so is φ(−x) and hence

φ̂(x) = φ(x) + φ(−x), ψ̂(x) = ψ(x) + ψ(−x) is an eigenfunction on [0, a] with Neumann boundary

conditions, provided that at least one of ψ̂(x), φ̂(x) 6= 0 for some x ∈ [0, a]. Since φ̂′(0) = ψ̂′(0) = 0 and

φ, ψ satisfies a 2nd order ODE we have that φ̂, ψ̂ 6= 0 iff φ̂(0) 6= 0 or ψ̂(0) 6= 0; iff φ(0) 6= 0 or ψ (0) 6= 0.
Verifying this condition, we obtain the following result.

Lemma 3.6 (Neumann boundary conditions) Consider the steady state consisting of K mesas on
the interval of size 2KL, with Neumann boundary conditions. The linearized problem admits 2K eigen-
values. Of these, 2K − 2 are given asymptotically by (29, 30, 31) of Lemma 3.3, but with

θ = πk/K, k = 1 . . .K − 1. (55)

The additional two eigenvalues correspond to an even and odd eigenfunction with Neumann boundary
condtions on [−L,+L]. They are

λodd =
ε

D

(

2α−D − g2−L

(g− − g+)

)

∫ u+

u−
fwdu

∫∞

−∞
U2
0ydy

(56)

λeven = −ε g+ − g−
σ+l + σ−(L− l)

∫ u+

u−
fwdu

∫∞

−∞
U2
0ydy

(57)

with all the symbols as defined in Lemma 3.3.
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Figure 2: Top row: steady-state with two mesas. The cubic model (4) was used with L = 1,K = 2, ε =
0.13, D = 40, β0 = −0.3. Bottom four rows: the four possible eigenfunctions and the corresponding
eigenvalues. The numerical computations are described in §5. The last column shows the numerically
computed value of λ as well as the asymptotic estimate λ(29) as given by (29). Excellent agreement is
observed in all cases (less than 1% error).
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To understnd how the instability thresholds occur, consider the eigenvalue (56) first. Note that α−

is exponentially small in ε, i.e. α− = O(e−c/ε) for some positive constant c. Thus, as ε is sufficiently
decreased, α−D rapidly drops off to zero and hence by assumption (23), λodd becomes negative and
of O( ε

D ). On the other hand, as ε is sufficiently increased (but still small), the term α−D eventually

overtakes the constant term
g2
−L

(g−−g+) ; and λodd then becomes positive, leading to an instability. In this

case, the eigenvalue λodd becomes of O(εe−c/ε), independent of D. Similar remarks holds for λ±θ : they are
of the O(max( ε

D , εe
−c/ε)) for some constant c. On the other hand, λeven does not involve any boundary

terms and is of O(ε), always independent of D. In conclusion, |λeven| is always much bigger than the
magnitude of the rest of the eigenvalues.

Figure 2 shows the actual numerical computation of the four distinct eigenvalues/eigenfunctions for
the cubic model (4) with K = 2 (see §5 for numerical methods used). Note that φ is localized at the
interfaces and is nearly constant elsewhere; whereas ψ has a global variation. An excellent agreement
between the asymptotic results and numerical computations is observed.

Critical thresholds. To obtain instability thresholds, we set λ±θ = 0 in Lemma 3.3; we then obtain

a− |b|2 = 0. Using l = g−L
g−−g+

and after some algebra we obtain:

0 = 2α+α− (1− cos θ)D2 − 2L
g2−α+ + g2+α−

g− − g+
D + L2 g2+g

2
−

(g− − g+)
2 (58)

which implies that λ+θ = 0 iff D > Dθ where

Dθ ∼















Lg2+
2 (g− − g+)α−

if α+ ≪ α−

Lg2−
2 (g− − g+)α+

if α− ≪ α+

(59)

and more generally, without any assumptions on α− and α+,

Dθ =
L

2 (g− − g+)
(

g−2
− α− + g−2

+ α+

)

(

1

2
+

√

1

4
− 2α+α− (1− cos θ) g2+g

2
−

4
(

g2−α+ + g2+α−

)2

)−1

. (60)

Note that in the limit ε → 0, α+ ≪ (≫)α− ⇐⇒ µ−(L − l0) < (>)µ+l0. Together with (59, 60) this
yields (27).

It is clear that Dθ is an increasing function of θ. In addition, it is also easy to verify that λ±θ < 0 if α±

is decreased sufficiently, or equivalently, if D is sufficiently small: in this case the formula (29) reduces to

λ±θ κ0 ∼ (g+ − g−)L

D2 (1− cos θ)

(

1±
√

[

1− 2 (1− cos θ)
ld

L2

]

)

− g+l

D
. (61)

On the other hand, when K = 1, the eigenvalues are λodd and λeven, given by (56, 57). It is clear that
λeven < 0 for all D. On the other hand setting λodd = 0 yields the threshold (25). This completes the
derivation of Principal Result 3.1.

4 Dynamics

We now derive the equations of motion of quasi-stable fronts. This will allow us to describe the dynamics
of the fronts that are not necessarily in a symmetric pattern. In addition, this will also enable us to
describe in more detail the aftermath of an instability of a symmetric pattern.

We assume that the pattern consists of K mesas on the interval of length 2KL. Each mesa is bounded
by two interfaces located at xli and xri and we assume the ordering

−L < xl1 < xr1 < xl2 < xr2 < · · · < xlK < xrK < (2K − 1)L.
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Moreover to leading order we assume

u ∼
{

u+, if x ∈ (xli, xri) for some i ∈ (1,K)
u−, otherwise

and near each interface we assume that

u (xli + εy) ∼ U0(−y), u (xri + εy) ∼ U0(y), y = O(1), i = 1 . . .K, (62)

where U0 is the heteroclinic orbit given in (16), with U0(y) → u± as y → ∓∞. Equation (62) can be
viewed as determining the precise interface locations xli, xri; that is, for example xri is chosen to minimize
the difference |u (xri + εy)− U0(y)| for all y ≪ O(1ε ). We also suppose that xli, xri are slowly changing
with time. In addition we define:

xci :=
xli + xri

2
, i = 1 . . .K;

xdi :=
xri + xl(i+1)

2
, i = 1 . . .K − 1; xd0 := −L, xdK := (2K − 1)L.

The equations of motions are derived from 2K solvability conditions about each interface.
First consider the interface xl1. We expand

u(x, t) = u0(z) +
1

D
u1, w(x, t) = w0 +

1

D
w1

where w0 is given by (12) and

z = x− xl1(t); u0(z) = U0 (−z/ε) .

Expanding in terms of 1
D we obtain

0 = εu0zz + f(u0, w0); (63)

−x′l1(t)Du0x = ε2u1zz + fu(u0, w0)u1 + fw(u0, w0)w1; (64)

0 = w1xx + g(w0, u0). (65)

We will see later that x′l1 = O( 1
D ) so the above expansion is indeed consistent. We multiply (64) by u0x

and integrate on x ∈ (−L, xc1). Upon integrating by parts we obtain:

−x′l1(t)D
∫ xc1

−L

(u0x)
2 dx ∼ ε2 (u1zu0z − u1u0zz)

x=xc1

x=−L +

∫ xc1

−L

fww1dx.

The boundary term is evaluated similarly as in Section 3. The end-result is,

ε2 (u1zu0z − u1u0zz)
x=xc1

x=−L = 2D

(

−C+µ
2
+ exp

(

−µ+

ε
(xr1 − xl1)

)

+ C−µ
2
− exp

(

−2µ−

ε
(L+ xl1)

))

.

The integral terms are estimated as

∫ xc1

−L

(u0x)
2 dx ∼ 1

ε

∫ ∞

−∞

(

dU0

dy

)2

dy;

∫ xc1

−L

fww1dx ∼ w1(xl1)

∫ u+

u−

fw(w0,u)du.

A similar analysis is performed at each of the remaining interfaces. In this way, we obtain the following
system:















x′li(t) ∼
ε

∫∞

−∞
U2
0ydy

(

(BT )li − 1
Dw1(xli)

∫ u+

u−
fw(w0,u)du

)

x′ri(t) ∼
ε

∫∞

−∞
U2
0ydy

(

(BT )ri +
1
Dw1(xri)

∫ u+

u−
fw(w0,u)du

) , i = 1 . . .K (66)
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where

(BT )l1 = −2C−µ
2
− exp

(

−2µ−

ε
(L+ xl1)

)

+ 2C+µ
2
+ exp

(

−µ+

ε
(xr1 − xl1)

)

(67)

(BT )li = −2C−µ
2
− exp

(

−µ−

ε

(

xl1 − xr(i−1)

)

)

+ 2C+µ
2
+ exp

(

−µ+

ε
(xri − xli)

)

, i = 2 . . .K − 1

(68)

(BT )ri = −2C−µ
2
− exp

(

−µ−

ε
(xri − xli)

)

+ 2C+µ
2
+ exp

(

−µ+

ε

(

xl(i+1) − xri
)

)

, i = 2 . . .K − 1

(69)

(BT )rK = −2C−µ
2
− exp

(

−µ−

ε
(xrK − xlK)

)

+ 2C+µ
2
+ exp

(

−2µ+

ε
((2K − 1)L− xrK)

)

, (70)

The constants w1(xli) and w1(xri) are obtained by recursively solving for w1 which satisfies:

w′′

1 =

{

g+, x ∈ [xli, xri], i = 1 . . .K
g− otherwise

; w′

1(−L) = 0 = w′

1((2K − 1)L).

To simplify the expression for w1, we first define the interdistances

mi =







xl1 + L, i = 0
xl(i+1) − xri, i = 1 . . .K − 1
(2K − 1)L− xri, i = K

; pi = xri − xli, i = 1...K.

We obtain the following recursion formulae,

w′(xli) =

{

−g−m0, i = 1
w′(xr(i−1))− g−mi, i = 2 . . .K

w′(xri) = w′(xli)− g+pi, i = 1 . . .K;

w (xli) =

{

w(−L)− g−
m2

0

2 , i = 1

w
(

xr(i−1)

)

+ w′(xr(i−1))mi − g−
m2

i

2 , i = 2 . . .K

w(xri) = w(xli) + w′(xli)pi − g+
p2i
2
, i = 1 . . .K.

Expanding, we obtain

w1(xl1) = w(−L)− g−
m2

0

2

w1(xr1) = w(−L)− g−

(

m2
0

2
+m0p1

)

− g+
p21
2

w1(xl2) = w(−L)− g−

(

m2
0

2
+m0p1 +m0m1 +

m2
1

2

)

− g+

(

p21
2

+ p1m1

)

w1(xr2) = w(−L)− g−

(

m2
0

2
+m0p1 +m0m1 +

m2
1

2
+m0p2 +m1p2

)

− g+

(

p21
2

+ p1m1 + p1p2 +
p22
2

)

...

The general pattern is

w(xli) = w1(−L)− g−

(

∑i−1
j=0

∑i−1
k=j+1mjmk +

∑i−1
j=0

∑i−1
k=j+1mjpk +

∑i−1
j=0

m2
j

2

)

−g+
(

∑i−1
j=1

∑i
k=j+1 pjpk +

∑i−1
j=1

∑i−1
k=j pjmk +

∑i−1
j=1

p2
j

2

) (71)

w(xri) = w1(−L)− g−

(

∑i−1
j=0

∑i−1
k=j+1mjmk +

∑i−1
j=0

∑i
k=j+1mjpk +

∑i−1
j=0

m2
j

2

)

−g+
(

∑i
j=1

∑i
k=j+1 pjpk +

∑i
j=1

∑i−1
k=j pjmk +

∑i
j=1

p2
j

2

) . (72)
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It remains to determine the constant w1(−L); this is done by considering the conservation of mass as
follows. Integrating the equation for w in (1) we obtain that for all time t,

g−
∑

mj + g+
∑

pj = 0;

moreover
∑

mj = 2KL−∑ pj so that

∑

(xri − xli) =
2KLg−
g− − g+

. (73)

Differentiating (73) with respect to t and substituting into (66) we then obtain,

K
∑

i=1

(BT )ri − (BT )li +
1

D
[w1(xri) + w1(xli)]

∫ u+

u−

fw(w0,u)du = 0. (74)

Substituting (67-70), and (71-72) into (74) then determines the constant w1(−L).
Dynamics of a single mesa. For a single mesa, we define x0 = xl1+xr1

2 to be the midpoint of the
mesa. Due to mass conservation, we have

xl1 = x0 − l, xr1 = x0 + l; l =
g−

g− − g+
L. (75)

Substituting (75) and x′0 = (x′l1 + x′r1)/2 into (66) and after some algebra we then obtain,

d

dt
x0 =

ε

2
∫∞

−∞
U2
0ydy







−2C−µ
2
− exp

(

− 2µ−

ε (L− l + x0)
)

+ 2C+µ
2
+ exp

(

− 2µ+

ε (L− l − x0)
)

− 2
D

g2−
∫ u+

u−
fw(w0,u)du

g− − g+
x0






(76)

Note that for the special case where C± = C0; µ± = µ0 the formula further simplifies to

d

dt
x0 =

ε

2
∫∞

−∞
U2
0ydy

(

C0µ
2
0 exp

(

−2µ0

ε
(L− l)

)

sinh

(

2µ0

ε
(x0)

)

− 2

D

g2−
∫ u+

u−
fw(w0,u)du

g− − g+
x0

)

. (77)

5 Numerical computations

In this section we validate our asymptotic results for the stability thresholds in Principal Result 3.1 with
corresponding full numerical results computed from the eigenvalue problem (28). The predictions from
these stability thresholds are then confirmed from full numerical simulations of the full PDE system (1).
Let us first describe the numerical methods used.

To perform the numerical simulation of the full system (1) we used the standard software FlexPDE
[29]. It uses a FEM-based approach and automatic adaptive meshing with variable time stepping. We
used a global error tolerance of errtol=0.0001 which is more than sufficient to accurately capture the
interface dynamics [we also verified that changing the error tolerance did not change the solution].

To determine the eigenvalues in the spectrum of the linear eigenvalue problem (28), we have reformu-
lated it as a boundary value problem by adjoining an extra equation dλ

dx = 0 as well as an extra boundary
condition such as ψ(−L) = 1. We used the asymptotic solution derived in §2 as our initial guess. Maple’s
dsolve/numeric/bvp routine was then used to solve the resulting boundary value problem (this routine
is based on a Newton-type method, see for example [30]). Unfortunately, we found that sometimes the
Newton’s method failed to converge, especially for problems with several interfaces. So we resorted to
second method: we discretized the laplacian using the standard finite differences, thus converting (28)
to a linear algebra matrix eigenvalue problem. On the other hand, this second approach is much less
accurate; especially since the required eigenvalue is very small. Because of this, we used the combination
of the two approaches: we used method 2 as initial guess to the boundary value problem solver. This
finally converged with sufficient precision.
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Figure 3: (a) Dynamics of a single mesa for the cubic model (4) with with β0 = −0.2; ε = 0.22, D =
20, L = 1. Vertical axis is time, horizontal axis is space. The contour u = 0 is shown. Solid lines
are the asymptotic results derived in §4. Dots represent the output of the full numerical simulation
of (4) using FlexPDE. The initial conditions are given by (90) with x0 = 0.15. (b) Same as in (a),
but x0 = 0.16. (c) Dynamics of two-mesas. The parameters are K = 2, L = 1 (so that x ∈ [0, 4]);
β0 = −0.3, ε = 0.13, D = 70. Initial interface locations are 0.8, 1.5, 2.3, 3.0. (d) Same as (c) except that
D = 85.

5.1 Cubic model

We now specialize our results to the cubic model (4),

f = 2(u− u3) + w; g = β0 − u.

Let us first consider a symmetric mesa solution on interval [−L,L], with its maximum at x = 0. For such
a solution, we find

w0 = 0; u− = −1, u+ = +1; U0(y) = − tanh (y) ; (78)

g+ = β0 − 1, g− = β0 + 1; (79)
∫ ∞

−∞

U2
0ydy =

4

3
;

∫ u+

u−

fw(u,w0)du = 2; (80)

l0 =
β0 + 1

2
L; l1 = 0; (81)

µ± = 2; C± = 2; α± = 32
1

ε
exp

(

−2

ε
(1± β0)L

)

. (82)

The condition (14) simply states that 0 < l0 < L; this implies |β0| < 1. One of the advantages of using
the cubic model as a test case is that due to symmetry, the correction l1 to the interface location is l1 = 0.
This means that the asymptotic results are expected to be very accurate.
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We obtain the following expressions for λodd and λeven :

λeven ∼ −12ε (83)

λodd ∼ −3 (β0 + 1)
2

4

Lε

D
+ 96 exp

(

−2L

ε
(1− β0)

)

(84)

The even eigenvalue λeven is always stable. Alternatively, the odd eigenvalue λodd becomes unstable
as D is increased past the critical threshold D1 which is given by

D1 =
(β0 + 1)

2
Lε

128
exp

(

2L

ε
(1− β0)

)

(85)

with λodd < 0 when D < D1 and with λodd > 0 when D > D1. In terms of D1, we have

λodd ∼ −3 (β0 + 1)
2
Lε

4

(

1

D
− 1

D1

)

.

and the equations of motion for a single mesa become

dx0
dt

=
3 (β0 + 1)

2

4
Lε

(

1

D1

ε

4
sinh

(

4x0
ε

)

− 1

D
x0

)

, (86)

where x0 = xl1+xr1

2 is the center of the mesa. Note that

∂

∂x0

(

dx0
dt

)∣

∣

∣

∣

x0=0

= λodd

so that the linearization of the equations of motion around the symmetric equilibrium agrees with the
full linearization of the original PDE. We remark that the equilibrium x0 = 0 undergoes a pitchfork
bifurcation and becomes unstable as D increases past D1.

For K symmetric mesas on the interval of length 2R, we have

L = R/K

and the thresholds (27) become:

DK ∼















(1− β0)
2 R

K ε

128
exp

(

2R
εK (1 + β0)

)

, if β0 < 0;

(1 + β0)
2
Lε

128
exp

(

2R
εK (1− β0)

)

, if β0 > 0

; K ≥ 2 (87)

Finally, if we take the “inverted” mesa with u ∼ +1 near the boundaries, by changing the variables
u → −u, w → −w, the model remains the same except β0 is replaced by −β0. Thus the stability
threholds for the inverted mesa are

Di
1 =

(1− β0)
2
Lε

128
exp

(

2L

ε
(1 + β0)

)

(88)

Di
K ∼















(1− β0)
2 R

K ε

128
exp

(

2R
εK (1 + β0)

)

, if β0 < 0;

(1 + β0)
2 R

K ε

128
exp

(

2R
εK (1− β0)

)

, if β0 > 0

; K ≥ 2 (89)

We now numerically validate our asymptotic results by direct comparison with full numerical simula-
tion of the system (4).
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Mesa dynamics: single mesa. Choose L = 1, ε = 0.22 and β0 = −0.2. From (85) we then get
Dc = 60.138. Now suppose that D = 20. Then the ODE (86) admits three equilibria: x0 = 0 (stable)
and x± = ±0.156 (both unstable). We now solve the full system. We take initial conditions to be

u(x, 0) = tanh

(

(x− x0) + l

ε

)

− tanh

(

(x− x0)− l

ε

)

− 1; w(x, 0) = 0. (90)

This corresponds to a mesa solution of length l centered at x0. Thus if x0 ∈ (−0.156, 0.156) then we expect
the mesa to move to the center of the domain and stabilize there. On the other hand, if x0 > 0.156 then
the mesa will move to the right until it merges with the right boundary. In Figure 3, we plot the numerical
simulations for x0 = 0.150 and x0 = 0.160. The observed behaviour agrees with the above predictions.

Dynamics of two-mesa solution. Here we consider a two-mesa solution. We take the domain
x ∈ [0, 4] (i.e. L = 1,K = 2) and take β0 = −0.3, ε = 0.13. From (81), we get l = 0.35 so that the
symmetric equilibrium location of the interfaces are 1±0.35 and 3±0.35 which yields 0.65, 1.35, 2.65, 3.35.
According to (87), the two-mesa symmetric configuration is stable provided that D < 82, and is unstable
otherwise. To verify this, we solve the full system with initial interface locations given by 0.8, 1.5, 2.3, 3.0.
These are relatively close to the symmetric equilibrium. We found that whenD < 80, such a configuration
converges to the symmetric two-mesa equilibrium; however it is unstable if D > 80 – see Figure 3(c,d).
This is in good agreement with the the theoretical threshold D2 = 82. Moreover, the instability triggers a
“mass exchange”, whereby one of the mesas grows in size whereas the other shrinks by the same amount,
until only one mesa is left. This is clearly visible in Figure 3(d).

Next we also compute the four eigenvalues for several values of D, and compare to asymptotic results,
shown in Figure 4. An excellent agreement is once again observed, including the crossing of zero for λ+π/2
at D = 82.
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Figure 4: The four eigenvalues of the two-mesa pattern of (4) as a function of D. Other parameters are
as in Figure 3(c,d). Circles represent numerical computations of (28); lines are the asymptotic results
given by (29). Excellent agreement is observed, including the crossing of λ+π/2 at D = D2 = 82.

The transitional case of β0 = 0. This is the degenerate case for which the formula (87) does not
apply. In this case, α+ = α− and the formula (27) reduces to

DK ∼ L

256 cos2
(

π
4K

)ε exp(2L/ε); β0 = 0, K ≥ 1. (91)

(this formula is also valid when K = 1, as can be verified by comparing it to (85)). Note that this is
also qualitatively different from β0 6= 0, in that DK actually depends on K when β0 = 0. To validate
(91) numerically, we set ε = 0.17, L = 1, β0 = 0. Formula (91) then yields the asymptotic thresholds

D1 = 170.8, D2 = 100.1, D3 = 91. Next, we have computed the eigenvalues λ
π/K
+ explicitly using the

full formulation (28) for K = 1, 2, 3 several different D and for ε, L as above. These are shown in Figure
5. An excellent agreement can be observed with the predicted threshold values. For example for D = 95,
a two-mesa steady state on the interval [−1, 3] of of size 4 is stable but a three-mesa steady state on the
interval [−1, 5] of size 6 is not.
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Figure 5: Instability thresholds of the K-mesa pattern in the cubic model with K = 1, 2 and 3. (a)
L = 1, ε = 0.17, β0 = 0. Circles show λ as computed by numerically solving the full formulation (28)
for different values of D and the three different modes, as indicated. Solid curves are the asymptotic
approximations for λ as given by (29). The K-mesa pattern is unstable for D > DK where D1 =
171, D2 = 100, D3 = 91. (b) The graph of DK versus β0 with L = 1, ε = 0.17, as given by Principal
Result 3.1 (note the logarithmic scale). The insert shows the zoom near β0 = 0.

Boundary-mesa versus interior mesas. Let us now compare the stability properties of interior
mesas versus patterns with half-mesas attached to the boundary. The latter are equivalent to an “inverted
mesa” patterns. This situation is shown in the Figure 6.

Fix ε = 0.15, L = 1. Moreover β0 = −0.1 < 0 so that the roof of the mesa occupies more space than
its floor (l = 0.45 < 1/2). In this case, the instability threshold for a single mesa is (85), D1 ∼ 2223 and
for the inverted mesa it is (88), Di

1 = 230. Moreover the instability thresholds for K interior mesas on
the interval 2LK with K > 1 is also (87) DK ∼ 230. This threshold is also the same for two boundary
mesas or K inverted mesas (89).

Despite the fact that the stability analysis in section 3 required retaining exponentially small terms,
the numerical results have shown that the stability thresholds from the asymptotic theory can be used
very effectively, and in excellent agreement with full numerical simulations, even when ε is not very small.
There are two possible explanations for this. The first explanation is specific to the cubic model: due to
the symmetry of the nonlinear term, the first correction l1 to the interface location is identically zero.
The second explanation is that the “effective” small quantity is exp(−c/ε), which can be very small even
if ε is only moderately small.

5.2 Model of Belousov-Zhabotinskii reaction in water-in-oil microemulsion

The cubic model is unusual in the sense that due to the symmetry of the interface, the correction to
interface length l1 of Proposition 2.1 is zero. To see the more usual case when it is not – and a dramatic
effect that it can have on the accuracy of asymptotics – consider the Belousov-Zhabotinskii model (5):

f(u,w) = −f0
u− q

u+ q
+ wu− u2; g(u,w) = 1− uw; q ≪ 1. (92)

As was done in [16], in the limit q ≪ 1, the condition (12) reduces to

∫ u+

0

(

−f0 + w0u− u2
)

du ∼ 0 ∼ −f0 + w0u+ − u2+

and we obtain to leading order,

u− ∼ 0; u+ ∼
√

3f0; w0 ∼ 4
√

f0/3 as q → 0.
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Figure 6: (a) Single Interior mesa (b) Two interior mesas (c) Double boundary half-mesas, or an inverted
single interior mesa (d) Two half-mesas at the boundaries and one interior mesa, or an inverted two-mesa
pattern. In all four cases, β0 = −0.1 and ε = 0.15. The instability threshold for D is given above the
graph.

(in fact, u− = O(q) ≪ 1). To leading order, the profile U0 then solves U ′′
0 − f0 + 4

√

f0/3U0 −U2
0 = 0 for

y < 0; with U0(0) = 0 = U ′
0(0) and U0(y) = 0 for y > 0 and U0 → u+ as y → −∞. We then obtain

U0 ∼
{ √

3f0 tanh
2
(

3−1/4f
1/4
0 2−1/2y

)

, y < 0

0, y > 0
.

and
g− = 1, g+ ∼ 1− 4f0

l0 =
L

4f0
.

Next we compute the correction l1 to the interface position using (19). We have

∫ 0

−∞

[g(U0(y), w0)− g+] dy

=

∫ 0

−∞

4f0 − 4f0 tanh
2
(

3−1/4f
1/4
0 2−1/2y

)

dy

= 4f0

∫ ∞

0

sech 2
(

3−1/4f
1/4
0 2−1/2y

)

dy = 31/421/24f
3/4
0

so that
l1 = 31/421/2f

−1/4
0 .

Finally, we have

U0 ∼
√

3f0 tanh
2
(

3−1/4f
1/4
0 2−1/2y

)

∼
√

3f0

(

1− 4 exp(3−1/4f
1/4
0 21/2y)

)

as y → −∞
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Figure 7: (a) A stable two-mesa solutions to Belouzov-Zhabotinskii model (5). Parameter values are
D = 100, ε = 0.1, , q = 0.001 and f0 = 0.61. Circles show the full numerical solution. The solid
line shows the asymptotic approximation as computed in Proposition 2.1, with the mesa half-length l
computed to two orders. The dashed line is the same approximation, except l1 is set to zero. (b) Time
evolution in the BZ model. Parameter values are the same as in (a), except for f0 = 0.63. Initial conditions
were given in the form of a two-mesa asymptotic solution, but shifted to the left by 0.05.

so that

C+ = 4
√

3f0; µ+ = 3−1/4f
1/4
0 21/2;

∫ u+

u−

fwdu =
u2+
2

=
3f0
2

;

α+ = 64 · 3−3/4f
3/4
0 23/2 exp(−2µ+l1)

1

ε
exp

(

−2µ+

ε
l0

)

= 64 · 3−3/4f
3/4
0 23/2 exp(−4)

1

ε
exp

(

−2−1/23−1/4

εf
3/4
0

L

)

On the other hand, µ− = O (1/q) ≫ µ+, so that the critical threshold given by (27) becomes

DK = C0ε (1− 4f0)
2
f
−7/8
0 exp

(

2−1/23−1/4

εf
3/4
0

L

)

; C0 ≡ e433/42−21/2 = 0.085942, K ≥ 2 (93)

To verify this formula numerically, we set D = 100, ε = 0.1, q = 0.001, L = 1 and K = 2. Next we
solved (1) for several different values of f0, with initial conditions given by the two-mesa steady state
approximation on the interval [−1, 3], perturbed by a small shift of size 0.1. We found the two-mesa state
was unstable with f0 ≥ 0.62 but became stable when we took f0 ≤ 0.61 – see Figure 7. On the other
hand, the threshold value as predicted by (93) with above parameter values and DK = D is f0 = 0.6124.
Thus we obtain an excellent agreement between the asymptotic theory and direct numerical simulations.

In Figure 7(a), the approximation with and without l1 to the steady state is shown. We remark that
it was essential to compute the correction l1 to the mesa width; if we were to set l1 = 0 the constant
C0 = 0.085942 in (93) would be replaced by 0.00157, a dramatic difference by a factor of e4 ≈ 50. In
figure 7(b), the two-mesa equilibrium is shown to be unstable for f0 = 0.63, though the instability is
very slow and the two-mesa solution persists until about t ≈ 105. Such slow instability is an example of
metastability.
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6 Discussion

We have examined in detail the route to instability of the K-mesa pattern of (1) as the diffusion coefficient
D is increased. The onset of instability occurs for exponentially largeD; it is well known that such solution
is unstable for the shadow system case D → ∞, see [12]. We have computed explicit instability thresholds
DK given by Principal Result 3.1; as well as mesa dynamics when D is large.

The instability thresholds are closely related to the coarsening phenomenon – see Figure 1 for example.
This was previously analysed for the Brusselator in [17], where the authors have guessed at the formula
for DK , K > 1 as given in Principal Result 3.1 by constructing the so-called asymmetric patterns,
and without computing the eigenvalues. The formula for DK appears to correspond precisely to the
point at which the asymmetric solution bifurcates from the symmetric branch [17]. This is indeed the
case when µ+l 6= µ−(L − l), i.e. O(α+) 6= O(α−). In particular, this is true when either l or L − l is
sufficiently small. However the study of asymmetric patterns cannot predict the instability thresholds if
µ+l = µ−(L − l): in this case, the formula (27) for DK actually depends on K, unlike the former case;
whereas the construction of asymmetric patterns is K independent. So in the case µ+l = µ−(L− l), the
full spectral analysis is unavoidable.

There are some similarities between the instability thresholds for mesa patterns computed here, and
instability thresholds for Gierer-Meinhardt system computed in [31], [32]. [In [31], a singular perturbation
and matrix algebra approach was used; in [32] an approach using Evans functions and Floquet theory was
used. In this paper we have used a combination of both singular perturbation methodology and Floquet
theory.] To be concrete, consider the “standard” GM system,

at = ε2axx − a+ a2/h; 0 = Dhxx − h+ a2. (94)

Unlike the K mesa patterns considered in this paper, the steady state for GM system considered in [31]
consists of K spikes, concentated at K symmetrically spaced points. The authors derived a sequence of
thresholds

D⋆
1 = ε2 exp(2/ε)/125 (95)

D⋆
K =

1
[

K ln
(√

2 + 1
)]2 , K ≥ 2 (96)

such that K spikes on the interval [−1, 1] are stable if D < D⋆
K and unstable if D > D⋆

K . By comparison,
letting L = 1

K , and considering only the case µ+l < µ−(L − l), the thresholds in Principal Result 3.1
become

D1 = O

(

ε

K
exp

(

1

Kε

2µ−g+
g+ − g−

))

;

DK = O

(

ε

K
exp

(

1

Kε

2µ+g−
g− − g+

))

if µ+l < µ−(L− l), K > 1.

Thus DK is exponenetially large in ε for all K, whereas D⋆
K is O(1) for K > 1 and exponentially large

for K = 1.
We remark that the GM model with saturation (7) exhibits mesa patterns when the saturation is

sufficiently large, but exhibits spikes when saturation is small. It is an interesting open question to
elucidate the transition mechanism whereby a mesa can become a spike and how the various instability
thresholds change from being exponentially large to algebraically large as saturation is decreased.

The coarsening phenomenon observed in reaction-diffusion systems is also reminiscent of Ostwald
ripening in thin fluids – see for example [33], [34] and references therein.

Throughout the paper, we used the methods of formal asymptotics and no attempt has been made
to provide a rigorous justification. There are several techniques available to provide a more rigorous
foundation, such as the renormalization group method [35], [36] (for dynamics) or Lyapunov-Schmidt
reduction [37] (for steady states and stability computations). One of the difficulties here is the presence
of exponentially small (or large) quantities. It is an open problem make our results rigorous.
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In two dimensions, another instability occurs for radially symmetric spot solutions, see for example
[16], [13], [38]. However the instability computed there is initiated because of the curvature of the spot
and the instability thresholds occur when D = Dc = O(1/ε), with the spot being stable if D > Dc and
unstable if D < Dc. Such an instability leads to the deformation of the spot into a peanut-like shape and
has no analogy to the one dimensional instabilities studied in this paper. Yet, just like in one dimension,
it is expected that an interior two-dimensional spot is unstable for the shadow system D → ∞. This
suggests that there exists in two dimensions a number Dc′ > Dc such that one spot is stable when
D ∈ (Dc, Dc′) and is unstable otherwise. We anticipate that just like in the one dimensional case, Dc′

would be exponentially large; the exact computation remains an open problem (but see [39] for related
computations for a spike in GM model).
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