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Highlights of past work

® 1994, Pearson: self-replication in Gray-Scott model. Also observed a
zoo of different patterns: spots, stripes, hexagonal patterns,
oscillatory instabilities, spatio-temporal chaos...

® 1994, Lee, McCormick, Pearson and Swinney: experimental
verification

® 1994-2006: Self-replication observed experimentally and numerically
In other chemical/biological systems:

#® Ferrocyanide-iodide-sulfite reaction (Lee, Swinney)

#® Belousov-Zhabotinsky reaction (Vanag, Epstein, Muiuzuri, Pérez-Villar
Markus)

#® Bonhoffer-van der Pol system (Hayase, Ohta)

® Gierer-Meinhardt model (Meinhardt)

#® Gray-Scott model (Doelman, Kaper, Muratov, Osipov, Kolokolnikov, Ward,
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Part |. Self-replication in 1D
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The Brusselator model

Rate equations:

AT X BYX Y 4+C 2X4Y —3X, X%E

After rescaling, we get a PDE system:
Ut :52um—u+oz+u21}

TV = 52vm +(1—=53)u— w2,

In terms of total mass w = u + v, steady state becomes

0=c’u —u+a+u’(w—u)

0 =ce*w" + a— fPu.
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Slow-fast structure

Introduce

2

E
60 é) D o
v v

and assuming « small, the steady state problem becomes

0 =" —u+u?(w — u)
0=Duw" +1- Byu.
w'(0) = w' (L) =4/ (0) =/ (L) =0

and we assume

e< 1, <D, fy=0(1).

Then w I1s slow and w Is fast.
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Steady state

O:€2um—u+u2(w—u); 0= Dwgy +1— Bou

—

0 [ L

#® Analyse the inner and outer region separately
#® Use asymptotic matching.
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Steady state: Outer region

O:52um—u+u2(w—u); 0 = Dwgy + 1 — Bou

Neglect e?u,,. Then —

1
wwa—ku:g(u),

Dwgy = 509_1(’LU) —1 l
So u Is slave to w Iin the outer region.
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Steady state: Inner region

O:€2um—u+u2(w—u); 0= Dwgy +1— Bou

-

Rescale
| .

Y= :
E

then w,, ~ 0 so that to leading order,

w(y) ~ wo; Uy = f(u) =u— u?(wy — u).

To get a heteroclinic connection the areas between roots of
f are equal; obtain
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Steady state: matching

O:52um—u+u2(w—u); 0= Dwgz + 1 — Bou

Solve
( Dwg, = Pou— 1, x € (0,1),
1

< w:g(u):a%—u

7
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Construction of multiple mesas

#® Replace L by 2L and use reflection:

12-
0.8
0.4-
-1 05 90 o5 1

#® Replace L by KL and use translation, reflection,

1.2 f ‘ | |
0.8
0.4
— SN U B —
0 1 2 3 4

DINRWT
r: 3 Self-replication — p. 10/2



Dissapearence of steady state

® Outer region:

( Dw,, = Bou—1, x € (0,1), \
1 212
Jw=g(w)=—+u o S
3
w'(0) =0, w(l) =g(V2) == 2
| w/(0) 1) =9(v2) =
1 141
® Note that w(0) | as D |. The min value for w(0) is 2, corresponding to
D=D..
® Theorem: Solution exists iff D > D_. where
27/
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Dissapearence of steady state

2.12

When D = D., we have asymptotically,
w(0) ~ 2; u(0) ~ 1.

\

1 141

® A boundary layer forms near x = 0 when D is decreased past D..:

1.4*:

1.2
0.8
0.6 -
0.4 -

s |
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Boundary layer analysis

u=14du(z)+---;
w=2+ 8w (z)+-;
D=D.+---

xr = 20, § = %/3

This leads to the core problem

{ U'(y) =U% = A—y%  U'(0)=0

U -1 as y— oo.

with A = w; (0) ( D )2/3.
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U —1 as y— oo.

Core problem: {U"@)UQ‘A”Q; U(0) =0

® When A is large negative then no solutions exists

® When A is large positive there are exactly two monotone solutions:
Ut =\A+y% U =U"'(1-3sech’ ((2)"%y)).

® Monotone solution cannot connect to a non-monotone branch: U™
and U~ connect to each otherat A = A..

® This fold point is unique. Self-replication occurs if A is decreased
below A..
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Dimple eigenfunction

At the fold point A = A., the shape of the eigenfunction is

given by ¢ = aA Using monotonicity of U and conservation
of mass, we show that the eigenfunction has "dimple"
shape, responsible for the initiation of self-replication.

A
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In 2D: “Volcano” instabllity

1
U’ (y) — U"(r) + ;U'(r), y2 syt
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Universality of the Core Problem

® Some other models that exhibit mesa self-replication are:

» Keener-Tyson model of BZ reaction:

v—q.
v4q’

Uy = €200 + 0 — 0% — foz

T2 = D2ypyw — 2+ 0

» Lengyel-Epstein model:

4uv UV
Up = EM Uy — U+ G — 1—|—u2; Tfut:Dvm—i—b(u— 1—|—u2>

» Gilerer-Meinhardt model with saturation:

2
2 a

— & Qgx — ;
at ¢ ot h(1 + ka?)

7hy = Dh,, — h + a*

® The same core problem appears at self-replication threshold.
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Universality of the Core Problem

Lengyel-Epstein model:
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Part Il: Self-replication of spots
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Keener-Tyson model of BZ reaction

v—4
Ut=€2vm+v—02—foz : Tzt = Dzypyw — 2+ 0
U+
® Weassumee <1, ¢< 1,7 =0.
® Here, we look at the case D > 1, on I
a disk of radius R in 2D. zz
® Radial steady state given by: -
—ly-
(§tanh2(r 23/2), r<l |
UV~ < 4 I 7 0 3 3 |
[ & r> |
3
0~ :
RTINS
l LR +2v/2¢
4fo
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Peanut-shaped instability

We consider perturbation of the form:

v (xz,t) = ve (1) + exp (At) cos (mb) ¢ (1),
z(x,t) = ze (r) + exp (At) cos (mB) Y (r)

and expand A =\ +.... End result is:
15 R 1 1 1 \™ 4m? foe
e vigVig ((-a5) - (04 () ) - "=

Conclusion: When fo = O(1), the radial mesa is

® Unstable in the limit = —0

® Stable in the limit % — 00

® |Instability thresholds when 5 = O(1). @
® The first unstable mode can be m = 2 or 3 or...
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Spots of “small” radius: <K<K 1

Since | = R/2f, /%, we get1 < fo < %. Then:

15 R\/To 1 ) 64 fi/%eD
Ao = V2 1———A A=
° \/_16 D ( m m)’ 15v/2 R3

® |Instability sets in as f, is decreased to fo = O <ﬁ) and1 < D < <.

® To solve instability thersholds: (1 — LX) — Am® =0, -5 —24Am=0 =
m=3/2,A=4/27.

® Conclusion: m = 2 is the first unstable mode for “small” spots! The
corresponding instability threshold is

1/2eDR™3 = .041.
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Open questions

Creation vs. replication

Core problem in 2D (spot-to-ring): D = O(1)

Interface motion for large D (Like Cahn-Hilliard??)
Spike patterns in the Brusselator and BZ system
Transition of mesa into a spike (I = O(¢))

Dynamics of self-replication in 2D: slowly moving fronts
Weakly nonlinear analysis?

© o o o o o o ©

Numerical challenges: need very robust code ¢ = 0.005
to verify the theory of small spots.
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Some References

® T. Kolokolnikov, T. Erneux and J. Wel, Mesa-type patterns in the
one-dimensional Brusselator and their stability, Physica D 214(2006)
63-77.

® T. Kolokolnikov, M.J. Ward, and J. Wel, Self-replication of mesas in
reaction-diffusion models, preprint

® T. Kolokolnikov, M.J. Ward and J. Wel, The Stability of a Stripe for the
Gierer-Meinhardt Model and the Effect of Saturation, to appear, SIAM
J. Appl. Dyn. Systems.

These can be downloaded from my website,
http://www.mathstat.dal.ca/~tkolokol
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