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Highlights of past work
1994, Pearson: self-replication in Gray-Scott model. Also observed a
zoo of different patterns: spots, stripes, hexagonal patterns,
oscillatory instabilities, spatio-temporal chaos...

1994, Lee, McCormick, Pearson and Swinney: experimental
verification

1994-2006: Self-replication observed experimentally and numerically
in other chemical/biological systems:

Ferrocyanide-iodide-sulfite reaction (Lee, Swinney)

Belousov-Zhabotinsky reaction (Vanag, Epstein, Muñuzuri, Pérez-Villar
Markus)

Bonhoffer-van der Pol system (Hayase, Ohta)

Gierer-Meinhardt model (Meinhardt)

Gray-Scott model (Doelman, Kaper, Muratov, Osipov, Kolokolnikov, Ward,

Wei)
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Part I: Self-replication in 1D
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The Brusselator model
Rate equations:

A
slow→ X, B + X → Y + C, 2X + Y → 3X, X

slow→ E.

After rescaling, we get a PDE system:

ut = ε2uxx − u + α + u2v

τvt = ε2vxx + (1 − β) u − u2v.

In terms of total mass w = u + v, steady state becomes

0 = ε2u′′ − u + α + u2(w − u)

0 = ε2w′′ + α − βu.
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Slow-fast structure
Introduce

β0 ≡ β

α
, D ≡ ε2

α

and assuming α small, the steady state problem becomes

0 = ε2u′′ − u + u2(w − u)

0 = Dw′′ + 1 − β0u.

w′(0) = w′(L) = u′(0) = u′(L) = 0

and we assume

ε � 1, ε2 � D, β0 = O(1).

Then w is slow and u is fast.
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Steady state

0 = ε2uxx − u + u2(w − u); 0 = Dwxx + 1 − β0u

0 l L

Analyse the inner and outer region separately

Use asymptotic matching.

Self-replication – p. 6/24



Steady state: Outer region

l

0 = ε2uxx − u + u2(w − u); 0 = Dwxx + 1 − β0u

Neglect ε2uxx. Then

w ∼ 1

u
+ u ≡ g(u);

Dwxx = β0g
−1(w) − 1

So u is slave to w in the outer region.
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Steady state: Inner region

l

0 = ε2uxx − u + u2(w − u); 0 = Dwxx + 1 − β0u

Rescale

y =
x − l

ε
;

then wyy ∼ 0 so that to leading order,

w(y) ∼ w0; uyy = f(u) ≡ u − u2(w0 − u).

To get a heteroclinic connection the areas between roots of
f are equal; obtain

w(l) ∼
√

3

2
; u(l−) ∼

√
2.
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Steady state: matching

√
2

l

0 = ε2uxx − u + u2(w − u); 0 = Dwxx + 1 − β0u

Solve






















Dwxx = β0u − 1, x ∈ (0, l),

w = g(u) =
1

u
+ u

w′(0) = 0, w(l) = g(
√

2) =
3√
2

and l is determined by

∫ l

0
u =

L

β0
.
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Construction of multiple mesas
Replace L by 2L and use reflection:
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Dissapearence of steady state
Outer region:






















Dwxx = β0u − 1, x ∈ (0, l),

w = g(u) =
1

u
+ u

w′(0) = 0, w(l) = g(
√

2) =
3√
2

2

2.12

1 1.41

w = g(u)

Note that w(0) ↓ as D ↓. The min value for w(0) is 2, corresponding to
D = Dc.

Theorem: Solution exists iff D > Dc where

β0 − 1

4β2
0

(3
√

2 + 4) ≤ Dc ≤
√

2β0 − 1

2β2
0
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Dissapearence of steady state

When D = Dc, we have asymptotically,
w(0) ∼ 2; u(0) ∼ 1.

2

2.12

1 1.41

o

w = g(u)

A boundary layer forms near x = 0 when D is decreased past Dc:
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Boundary layer analysis
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u = 1 + δu1(z) + · · · ;

w = 2 + δ2w1(z) + · · · ;

D = Dc + · · ·

x = zδ, δ = ε2/3

This leads to the core problem

{

U ′′(y) = U2 − A − y2; U ′(0) = 0

U ′ → 1 as y → ∞.

with A = w1(0)
(

Dc

β0−1

)2/3
.
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Core problem:
{

U ′′(y) = U2 − A − y2; U ′(0) = 0

U ′ → 1 as y → ∞.

When A is large negative then no solutions exists

When A is large positive there are exactly two monotone solutions:
U+ =

√

A + y2; U− = U+
(

1 − 3 sech2
(

(A
2
)1/2y

))

.

Monotone solution cannot connect to a non-monotone branch: U+

and U− connect to each other at A = Ac.

This fold point is unique. Self-replication occurs if A is decreased
below Ac.
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Dimple eigenfunction
At the fold point A = Ac, the shape of the eigenfunction is
given by φ = ∂U

∂A . Using monotonicity of U and conservation
of mass, we show that the eigenfunction has "dimple"
shape, responsible for the initiation of self-replication.
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In 2D: “Volcano” instability

U ′′(y) → U ′′(r) +
1

r
U ′(r), y2 → r2
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Universality of the Core Problem
Some other models that exhibit mesa self-replication are:

Keener-Tyson model of BZ reaction:

vt = ε2vxx + v − v2 − f0z
v − q

v + q
; τzt = Dzxx − z + v

Lengyel-Epstein model:

ut = ε2uxx − u + a − 4uv

1 + u2
; τvt = Dvxx + b

(

u − uv

1 + u2

)

Gierer-Meinhardt model with saturation:

at = ε2axx − a +
a2

h(1 + κa2)
; τht = Dhxx − h + a2

The same core problem appears at self-replication threshold.
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Universality of the Core Problem
Lengyel-Epstein model:
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Part II: Self-replication of spots
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Keener-Tyson model of BZ reaction

vt = ε2vxx + v − v2 − f0z
v − q

v + q
; τzt = Dzxx − z + v
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We assume ε� 1, q � 1, τ = 0.

Here, we look at the case D � 1, on

a disk of radius R in 2D.

Radial steady state given by:

v ∼

8><>: 3

4
tanh2

�

r − l

ε
2−3/2

�
, r < l

q, r > l

;

z0 ∼
3

16f0
;

l ∼

r
1

4f0
R+ 2

√
2ε
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Peanut-shaped instability

We consider perturbation of the form:

v (x, t) = ve (r) + exp (λt) cos (mθ)φ (r) ,

z (x, t) = ze (r) + exp (λt) cos (mθ)ψ (r)

and expand λ = ελ0 + . . . . End result is:

λ0 ∼
√

2
15

16

p

f0
R

D

��

1 −
1

4f0

�
−

1

m

�
1 +

�
1

4f0

�m��
−

4m2f0ε

R2
.

Conclusion: When f0 = O(1), the radial mesa is

Unstable in the limit ε
D

→ 0

Stable in the limit ε
D

→ ∞

Instability thresholds when ε
D

= O(1).

The first unstable mode can be m = 2 or 3 or...
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Spots of “small” radius: ε � l � 1

Since l = R/2f
−1/2
0 , we get 1 � f0 � 1

ε2 . Then:

λ0 =
√

2
15

16

R
√
f0

D

�

1 −
1

m
−Am2

�
, A =

64

15
√

2

f
1/2
0 εD

R3

Instability sets in as f0 is decreased to f0 = O

�
1

(εD)2
�

and 1 � D � 1
ε
.

To solve instability thersholds:

�
1 − 1

m

�
−Am2 = 0, 1

m2 − 2Am = 0 =⇒
m = 3/2, A = 4/27.

Conclusion: m = 2 is the first unstable mode for “small” spots! The
corresponding instability threshold is

f
1/2
0 εDR−3 = .041.
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Open questions
Creation vs. replication

Core problem in 2D (spot-to-ring): D = O(1)

Interface motion for large D (Like Cahn-Hilliard??)

Spike patterns in the Brusselator and BZ system

Transition of mesa into a spike (l = O(ε))

Dynamics of self-replication in 2D: slowly moving fronts

Weakly nonlinear analysis?

Numerical challenges: need very robust code ε = 0.005
to verify the theory of small spots.
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Some References
T. Kolokolnikov, T. Erneux and J. Wei, Mesa-type patterns in the
one-dimensional Brusselator and their stability, Physica D 214(2006)
63-77.

T. Kolokolnikov, M.J. Ward, and J. Wei, Self-replication of mesas in
reaction-diffusion models, preprint

T. Kolokolnikov, M.J. Ward and J. Wei, The Stability of a Stripe for the
Gierer-Meinhardt Model and the Effect of Saturation, to appear, SIAM
J. Appl. Dyn. Systems.

These can be downloaded from my website,
http://www.mathstat.dal.ca/∼tkolokol
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