Complex patterns in patricle aggregation
models of biological formation
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Introduction

e Animals often aggregate in groups

e Biologically, it can provide protection from predators; conserve heat, act without an
apparent leader, enable collective behaviour

e Examples include bacteria, ants, fish, birds, bees....















Aggregation model

We consider a simple model of particle interaction,

dz; 1 ri— T .
k=1...N
=

e Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

e Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

e Note that acceleration effects are ignored as a first-order approximation.

e Mathematically F'(r) is positive for small 7, but negative for large 7.



e Commonly, a Morse interaction force is used:

F(r)=exp(—r)— Gexp(—r/L); G<1,L>1 2)

0.4
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e Under certain conditions on repulsion/attraction, the steady state typically consists
of a bounded “particle cloud” whose diameter and is independent of NV in the limit
N — 00. Then the continuum limit becomes

b+ V- (pu) = 0 v(w)—/n o — o) =Y p(y)dy.

z—y|”

e Questions

1. Describe the equilibrium cloud shape in the limit ¢ — oo

2. What about dynamics?



Morse force, h-stable vs. catastrophic

o IfGL" > 1, the system is catastrophic: doubling /V doubles the density but cloud
volume is unchanged:

F(r)=e" —0.5e"?

r=1.43535 r=1.44716

.....
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o If GL"! < 1, the system is h-stable: doubling N doubles the cloud volume: but
density is unchanged:

F(r)y=¢e¢"— 0.5¢"/12

r=9.56367 r=13.3742 r=19.3298
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tanh (1 —r)a) +b

Tanh-type force: F(r)
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Part I. Ring-type steady states

e Seek steady state of the form x; = r (cos (275 /N) ,sin (275 /N)), j=1...N.

e In the limit N — oo the radius of the ring must be the root of

I(r) = /2 F(2rsin @) sin 6df = 0. (3)
0

e For Morse force F'(1) = exp(—r)—G exp(—r/L), such root exists whenever G L* >
1 [coincides with 1D catastrophic regime]

e For general repulsive-attractive force F'(r), aring steady state exists if F'(r) < C' < 0
for all large 7.

e Even if the ring steady-state exists, the time-dependent problem can be ill-posed!
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Continuum limit for curve solutions

e If particles concentrate on a curve, in the limit N — 0o we obtain

< 2o Pt >
Pt = p Qt , a=HKxp (4)

|24

where 2 («; t) is a parametrization of the solution curve; p («; t) is its density and

Koxp= [ Fa() - @) S — ool asi@). @

e Depending on F'(r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

e \We used a Lagrange particle-based numerical method to resolve (4).
- Agrees with direct simulation of the ODE system (1):

W Lt

t=1C 0 t—40 t=300

QOOO@

=90 t=100 t=110 t=147
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Local stability of a ring

e Linearize: x;; = rgexp (2wik/N) (1 + exp(tA)¢y) where ¢ < 1.

e Ring is stable of Re (A) < 0 for all pair (\, ¢). There are three zero eigenvalues
corresponding to rotation and translation invariance; all other eigenvalues come in
pairs due to rotational invariance.

e )\ is the eigenvalue of

_ [ Lilm) Lim) |
2 [ F'(2rsin6) N .
;/0 orsin + F'(2rsin (9)_ sin” ((m + 1)6) db; (7a)
_2 (F(2rsing) .9 9
/0 rend F'(2r sin 9)} [sm (m#) — sin (9)} df. (7b)

e Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
the circle.

m=3, N=50, lambda=0.05 m=25, N=50, lambda=-1.17
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Quadratic force Fr)=r —r?

e Computing explicitly,
(4m4 —m?— 9)
(4m?2 — 1)(4m?2 — 9)
3m?(2m* + 1)

det M (m) = (Im? — 9)(AmZ — 1)? >0, m=2,3,...

tr M (m)=— <0, m=2,3,...

e Conclusion: ring pattern correspondingto  F(r) =r — 72 is locally stable

e For large m, the two eigenvalues are A ~ —i and \ ~ —% — 0asm — o0. The

presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.

t=0 t=6 t=20 t=1000 t=10000
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General power force

F(ry=r"—r?1 0<p<gq

e The mode m = oo is stable if and only if pg > 1 and p < 1.
e Stability of other modes can be expressed in terms of Gamma functions.

e The dominant unstable mode corresponds to m = 3; the boundary is given by

0 =723 — 594(p + q) — 27(p* + ¢*) — 431pq + 106 (pg® + p’q) + 19 (p*q + pg®)

+ 10 (1t)3612 +p2q3) + 6 (p3 + qg) + pgqg;

e Boundaries for m = 4,5,... are similarly expressed in terms of higher order

polynomials in p, q.
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(In)stability of m > 1 modes

e If A\(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed .

e For ill-posed problems, the ring can degenerate into either an annulus (eg. F'(x) =
0.5+ z — %) or discrete set of points (eg F'(z) = z'* — %)

e . if F(r)is C* on [0,2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F(0)=0, F"(0)<0 and (8)
/2 [ F(2rsin ) L
/0 ( g F'(2rsin 9)) df < 0. (9)

e Ring solution for the morse force F'(r) = exp(—r) — Fexp(—r/L) is always ill-
posed.
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Discrete vs. continuous

e Consider e.g. F'(r) = tanh(4(1 — r)) — 0.5. The ring for the continuous model is
ill-posed since F'(0) > 0. But the ring for the discrete model is stable with N = 120

particles!

e The most unstable mode in the discrete system is . = N/2 and can be stable even
if the continuous model is ill-posed!

e This can lead to “thin annuli” solutions...

det(M({m))
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Weakly nonlinear analysis

e Near the instability threshold, higher-order analysis shows a supercritical pitchfork
bifurcation, whereby a ring solution bifurcates into an m—symmetry breaking
solution

e This shows existence of nonlocal solutions.

e Example: F'(r) = rl?

analysis predicts

— r4; bifurcation m = 3 occurs at ¢ = q. ~ 4.9696; nonlinear

max |z;| — min |z;| = v/max (0, 7(q¢ — ¢.)); 7 ~ 0.109.
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3D sphere instabllities

e Radius satisfies: foﬂ F(2rgsin@)sinfsin 20 = 0

e Instability can be done using spherical harmonics




Stability of a spherical shell

Define

_ F(V2s)
g(s) == Vol

The spherical shell has a radius given implicitly by

0= /1 g(R*(1 — 8))(1 — s)ds.

Its stability is given by a sequence of 2x2 eigenvalue problems
A [(l+ 1)\
\ (cl) _ (a + Ni(g1) (Z(ZL)) 5(92)) (cl> 1—92.34...
C2 Ai(g2) 7 A1(G3) C2

N(f):=2m /1f(s)Pl(s) ds;
with P(s) the Legendre polynomial and
o = 8mg(2R?) 4+ Xo(g(R*(1 — 57))
gi(s) = R°g'(R*(1 — s))(1 — 5)” — g(R*(1 — 5))

where

S
R%(1—s)

ga(s) = g(R*(1 — 5))(1 — s); g3(s) = 0 g(z)dz.

20



Well-posedness in 3D

Suppose that g(s) can be written in terms of the generalized power series as

o0

g(s) = Zcispi, P <py<--- with ¢ > 0.
i=1

Then the ring is well-posed [i.e. A < 0 for all sufficiently large [] if
(i) <0 and (i) p; € (—=1,0)J(1,2)J(3,4)...
The ring is ill-posed [ i.e. A > 0 for all sufficiently large [] if either « > 0 or p; ¢

[—1, 0]JU[L, 2][3, 4] - ..

21



Key identity to prove well-posedness:

1
L (I —p)T 2
[0 appio ds = 27 T DD
. p+ 1T+ p+2)(—p)
~ 1 sin (7p) T(p + 1)2PT%72  as] — oo.
T

Proof:

e Use hypergeometric representation: P;(s) = oF} ( [+ i’ —! ,%) .
e Use generalized Euler transform
1
ai,...,aq4,cC F(d) c—1 d—c—1 apy...,04,(
F ; = (1t F
At B+1(b17"'7bB7d’Z> F(C)F(d—C)/O ( ) ATB b17"'7bB70
1 _ opoptl p+17l+la_l
toget [ (1—s)PP(s)ds= SRR ( D21 1) .

e Apply the Saalschiitz Theorem to simplify

p+1,01+1,—I F(l—p)F(p—l—Q)
55 1) = .

29



Generalized Lennard-Jones interaction

g(s)=sP—s1 0<pg<l; p>gq

e Well posed if ¢ < %; ill-posed if g > %.

Example: steady state with N = 1000 particles. (a) (p,q) = (1/3,1/6). Particles
concentrate uniformly on a surface of the sphere, with no particles in the interior. (b)
(p,q) = (1/2,1/4). Particles fill the interior of a ball. The particles are color-coded
according to their distance from the center of mass.

22



Custom-designed kernels

e In 3D, we can design force F'(r) which is stable for all modes except specified mode.

e EXAMPLE: Suppose we want only mode m = 5 to be unstable. Using our algorithm,
we get

R (e R (N (= ) S

Particle stmulation [Linearized solution

24



Part II: Constant-density swarms

e Biological swarms have sharp boundaries, relatively constant internal population.
e Question: What interaction force leads to such swarms?

e More generally, can we deduce an interaction force from the swarm density?

275



Bounded states of constant density

Claim. Suppose that

1
F(r)= — 1, where n = dimension
/r»n_l ?

Then the aggregation model
L —Y
ot Vo) =0 e = [ Pl =) =)

admits a steady state of the form
(z) = L, || <R o(z) = 0, |z|<1
PAYI=3 0, |z >R | —az, |z|>1"

where R = 1forn = 1,2 and a = 2 in one dimension and a = 27 in two dimensions.

N=800, t=5000

N=200, t=0..10 N=200, t=5000 N=400, t=5000
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Proof for two dimensions

Define )
T
G(x) —bel-%; M= [ ply)dy
Rn
Then we have: -
VG:F(\:EDH and AG(z) = 216(z) — 2.
so that
o) = [ V.Gl y)oludy
Thus we get:

Vv [ (ersle - y) - 2pludy

= 2mp(x) — 2M
B 0, |z|] <R
| —2M, |x| > R

The steady state satisfies V - v = () inside some ball of radius R with p = 0 outside such
a ball but then p = M/ inside this ball and M = [, p(y)dy = MR* — R =1.

27



Dynamics in 1D with  F(r)=1—-7+

[orms = [

v(as)—/oo (o — ) ==Y o)y

_ /OO (1 = |z —y|)sign(z — y)p(y)

(0. ¢]

—2 [ sty - MGa+1)

—0o0

Assume WLOG that

Then

and continuity equations become

Pt T VPy = —Uzp
= (M —2p)p

Define the characteristic curves X (t, x) by

d
@X(t;xo) =v;  X(0,20) = z0

2Q



Then along the characteristics, we have p = p( X, t);

d
—p=p(M —?2
7P =1l p)

Solving we get:

M

p(X(t, x0)7 t) - 2+ e—Mt(M/po - 2)7

p(X(t, xy),t) = M/2 ast — oo

20



Solving for characteristic curves

w = /1 py)dy

v=22w—-Mx+1); v,=2p—M
and integrating p; + (pv)x = (0 we get:

Let

then

wy +ovw, =0

Thus w is constant along the characteristics X of p, so that characteristics %X = v
become
d

X = 2uwg — M(X +1); X(0;20) = o

20N



Summary for F@r)=1-r1in 1D:

2w B 2w
X = ?\(40)—1+e Mt(x0+1— ?\(40))

wnan) = [tz M= [ s
M

p(X, 1) =

2+ e="M(M/po(xo) — 2)
Example: py(z) = exp ( /f M=1:

rho for t=0..5
0.4
0.3
] 0.2
| 4
0.1
| ]
H o
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Global stability

In limit £ — oo we get:

2 M
X:%—l; wy=0...M; p(X,oo):7
We have shown that as ¢ — 00, the steady state is
M/2, |x| <1
p(z,00) = { O/ \x‘\ ‘> ) (10)

e This proves the global stability of (  10)!

e Characteristics intersect at £ = oo; solution forms a shock at x = £1 at¢ = oc.

29



Dynamics in 2D, F(r)=41—

T

e Similar to 1D,
Vv =2mp(x) — 4 M,

pr+v-Vp=—pV - v
= —p(p—2M)2m

e Along the characterisitics:

d

—X(tzo) =v;  X(0,20) = 2o

dt

we still get
d
—p =2mp(2M — p);
P = 2mp p):;
2M
p(X(t;20),1) = > (11)
1 + (m — 1) exXp (—47TMt)

e Continuity equations yield:
p(X(t;20),t) det V,, X (t; x0) = polxo)

22



e Using (11) we get

det V,, X (t; x0) =

po(xo) (1 ~ pol)

i i ) exp (—4mMt) .

e If pis radially symmetric , characteristics are also radially symmetric, i.e.
X(t; xo) = A (‘xo‘ , t) Lo

then
det Vo, X (t; o) = A& 7) (At r) + No(E 7)), 7 = |0

so that

N4 N Ar = /)02(1\3;)) + (1 — pog(]\?)> exp (—4mw Mt)

1 r T
N2 = M/o spo(s)ds + 2€Xp(—47th)/O S (1 — 25\?) ds

So characteristics are fully solvable !

e This proves global stability in the space of radial initial conditions
po(|z]).

e More general global stability is still open.

22A
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The force F(r)=1—r4—1 in 2D

e If ¢ = 2, we have explicit ode and solution for characteristics.

e For other ¢, no explicit solution is available but we have differential inequalities:

Define
Pmax ‘= sup p(z,t); R(t) := radius of support of p(z,t)
Then
d max —
pdta S (aRq o bpmax)pmax

d
—R < ey/Pmax — AR

where a, b, ¢, d are some [known] positive constants.

e It follows that if R(0) is sufficiently big, then R(t), pmax(t) remain bounded for all ¢.
[using bounding box argument]

e Theorem: For g > 2, there exists a bounded steady state [uniqueness??]

25



Inverse problem: Custom-designer
kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

bo + box® + byt + ... + by x®", |x| < R
plx) = { 0, |z|> Rn (12)
Define the following quantities,
R
Moy = / p(r)r*idr. (13)
0
Then p(r) is the steady state corresponding to the kernel
az 5 Q4 5 A2n on+1
Firy=1—-ayr——r"——r"—...— ——r 14
(r) M 5 on + 1 14)
where the constants ag, as, . . . , as,, are computed from the constants by, b, . .., by, by
solving the following linear problem:
_ J _
bgk—zagj (2k)m2(jk)7 k=0...n. (15)
j=k

2R/



Example: custom kernels 1D

Example1: p=1—2% R=1,then F(r)=1—9/5r +1/2r5.
Example 2: p =2 R=1,then F(r)=1+9/5r — .

Example 3: p=1/2+ 2% — 2% R=1;then F(r)=1+

p()= 1-x°

0.8
0.6
0.4
0.2

p(X)= X

Ex.2

27

-1 ) () j 1

2094257,__ 4150753_+ f%r5.

336091
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p(X)= 4/3 (0.5+x°~x*




Inverse problem: Custom-designer
kernels: 2D

Theorem. In two dimensions , conisder a radially symmetric density p(x) = p(|z|) of
the form

b0+b2T2—|—b4T4—|—...—|—b2nT2n, r<R
o) = { R a6
Define the following quantities,
R
Moy = / p(r)r*idr. (17)
0
Then p(r) is the steady state corresponding to the kernel
L ay  ap A2n
Flry=-——r— =y — . — —2 pontl 18
(r) r 2 4 2n + 2 (18)
where the constants ag, as, . . . , as,, are computed from the constants by, b, ..., by, by
solving the following linear problem:
n . 2
bgk = Z a2 ( L]ZZ ) mg(j_k)_H; E=0...n. (19)
j=k

This system always has a unique solution for provided that mg # 0.

29



Numerical simulations, 1D

e First, use standard ODE solver to integrate the corresponding discrete particle model,

dz; 1 Ti— T .
dt N Z (o = ] |z, — xp|’ /
e How to compute p(z) from x;7 [Topaz-Bernoff, 2010]
- Use ; to approximate the cumulitive distribution, w(z) = [*_ p(z)dz.

- Next take derivative to get p(z) = w'(x)

[Figure taken from Topaz+Bernoff, 2010 preprint]

20



Numerical simulations, 2D

e Solve for x; using ODE particle model as before [2/V variables]
e Use x; to compute Voronoi diagram ;

e Estimate p(x;) = 1/a; where a; is the area of the voronoi cell around ;.

Use Delanay triangulation to generate smooth mesh.

e Example: Take
(r) = 1+ r<1
PPT=Y 0, r>0

Then by Custom-designed kernel in 2D is:

Running the particle method yeids...

A0
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Numerical solutions for radial steady
states for F(r)=1— a1

T

R
e Radial steady states of radius R satisfy p(r) = 2¢ / (' p(r") I (ryr")dr’
0
where ¢(q) is some constantand I(r, ') = ["(r? + r'? — 2rr’sin 6)4/2~1df.

e To find p and R, we adjust R until the operator p — ¢(q) fOR(r’p(r’)K(r, r)dr' has
eigenvalue 1; then p is the corresponding eigenfunction.

20
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Discussions/open problems

e Constant density states with F(r) — 717" — . What is the biological mechanism
to minimizes overcrowding?

1—

e Open question: global stability for F(r) = r'~" — r? [can show for n = 1 or for

radial initial conditions if n > 2.]

e Connection to Thompson problem and ball-packing problems:

- Equilibrium is a hexagonal lattice with “defects”. Can we study these??
e Most of the results generalize to n dimensions.

e This talk and related papers are downloadable from my website
http://www.mathstat.dal.ca/"tkolokol/papers

Thank you!

AR
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