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Abstract

When ceramics are heated inside a microwave cavity, a well known phenomenon is the

occurrence of hot spots – localized regions of high temperature. This phenomenon was

modelled by Kriegsmann [IMA J. App. Math. 59(2), (1997) pp. 123–146], [IMA J. App.

Math. 66(1), (2001) pp. 1–32] using a non-local evolution PDE. We investigate profile

and the stability of hot spots in one and two dimensions using Kriegsmann’s model with

exponential nonlinearity. The linearized problem assciated with hot spot type solutions

posesses two classes of eigenvalues. The first type are the large eigenvalues are assocaited

with the stabititly of the hot spot profile and in this paticular model there can not be

instablitly associated with these eigenvalues. The second type are the small eigenvalues

associated with translation invarience. We show that the hot spots can become unstable

due to the presence of small eigenvalues, and we characterize the instability thresholds. In

particular, we show that for the material with low heat conductivity (such as ceramics),

and in the presence of a variable electric field, the hot spots are typically stable inside a

plate (in 2D) but can become unstable for a slab (in 1D) provided that the microwave

power is sufficiently large. On the other hand for materials with high heat conductivity,

the interior hot spots are unstable and move to the boundary of the domain in either one or

two dimensions. For materials with moderate heat conductivity, the stability of hot spots

is determined by both the geometry and the electric field inside the microwave cavity.

1 Introduction

The usage of microwave heating to join ceramic materials can result in the formation of stable highly

localized hot spots [16]. The formation of a localized hot spot cannot be explained using a simple

linear theory. Several nonlinear models of hot spot formation have been proposed to explain this

phenomenon, see for example review [5] and the references therein. In [1] a model for the temperature

of a sample placed in a resonant chamber is derived. A wave guide keeps the amplitude of the

microwaves constant along one axis. The formation of a stable hot-spot is the result of considering

a temperature dependent electrical conductivity in conjunction with a local detuning in the resonant

chamber containing the sample. The electrical conductivity changes occurring in the sample interfere

with the formation of a standing wave in the resonant chamber. These considerations result in the
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following non-local reaction-diffusion equation:

Uτ = D∆U − 2
(

U + b[(U + 1)4 − 1]
)

+
Pf(x)G(U)

(1 + χ
∫

Ω
f(x)G(U) dx)2

, x ∈ Ω , (1)

∂nU = 0, x ∈ ∂Ω . (2)

Here f(x) is proportional to the square of the magnitude of the electric field along the sample, G(u) is

the scaled temperature-depedent electrical conductivity, D is the constant thermal diffusivity, χ > 0

is a parameter based on the geometry of the sample and the Q-factor of the cavity (see [1]), b � 1 is

the ratio of radiative to convective heat loss along the axis of the sample at the ambient temperature,

and P > 0 is the nondimensional power of the resonant cavity mode. The form of f(x) is determined

by the wave guide used as well as the geometry of the chamber and placement of the sample within

the chamber. In [12], the sample is placed across the chamber and the wave guide keeps the electric

field constant along the axis of a thin cylindrical sample. In this instance, the hot spot is actually

unstable and propagates exponentially slowly along the sample until reaching the boundary of the

domain [9]. In [13] a thin cylindrical sample is placed along the wave guide and the electric field may

then vary along the length of the sample. Under certain additional assumptions on the parameters,

it was shown in [9] that the hot spot will travel along the length of the sample until reaching a local

maximum of f . The function G(u) is the dimensionless electrical conductivity of the sample. We

will consider a realistic exponential model G(U) = ecU . We will also consider the small Biot number

(b). For ceramics, the thermal diffusivity D is typically small. We make a further simplicfication by

assuming that χ
∫

Ω
f(x)ecU dx � 1. This assumption is consistent with most applications where the

hot spot is observed [9]. In the non-dimensional form, we obtain

ut = d2∆u− u+
pf(x)eu

(∫

Ω
f(x)eu

)2 , x ∈ Ω; ∂nu = 0, x ∈ ∂Ω. (3)

where p = cP
2χ2 and d =

√

c
2D. While the diffusivity coefficient d2 is typically small for ceramic

materials, we will also consider the more general mathematical problem where d may be of O(1). For

example, in two dimensions and with d = 1, this model is related to the Liouville equation [15]. We

will also consider the general form of f(x), not restricted to the standard geometries and wave guides.

Equation (3) is the starting point of our analysis.

Let us summarize the main results of this paper. We consider the equilibium hot spot solutions on

a one-dimensional interval, a bounded two dimensional domain and a two-dimensional disk. The hot

spot location and its stability is determined by the geometry of the problem as well as the electric field

strength f(x). The detailed results for one and two dimensions are given in §2 and §3, respectively
(Principal Results 2.1 and 2.2 for one dimension, Principal Results 3.1 and 3.2 for two dimensions).

In particular, the hot spots are found to exist provided that the power p is sufficiently large, even for

relatively large value of the thermal diffusivity d. An important case is the radially symmetric domain

and f(x) = f(|x|), which we now describe. In this case, by symmetry, the hot spot is located at the

center of the domain. For a disk domain Ω = BL(0) = {x : |x| ≤ L} ⊂ R
2 and a radially symmetric

electric field strength f(x) = f(|x|), we find that the hot spot is stable with respect to both the large

and small eigenvalues provided that

−f ′′ (0)

f (0)
≥ 2

d2

(

K ′′
0 (L/d)

I ′′0 (L/d)
− K ′

0(L/d)

I ′0(L/d)

)

(4)

where I0 and K0 are Bessel functions; it is unstable with respect to the small eigenvalues if the

inequality in (4) is reversed. For typical ceramics with d � 1, the stability condition (4) reduces to

−f ′′ (0)

f (0)
≥ 4π

d2
e−2L/d (5)
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Since the right hand side of (5) is exponentially small, the two-dimensional hot spot for a ceramic

material will be stable at the center provided that f has a maximum there.

For a one-dimensional situation with f(x) = f(−x) and Ω = [−L,L], we show in Principal Result

2.2 that the hot spot is stable provided that

L/d � 1 and − f ′′(0)

f(0)
≥ 4

d2
ln

(

p

2d2f(0)

)

exp

(−2L

d

)

; Ω = [−L,L] ∈ R (6)

Both of these requirements are necessary; if one of them does not hold, then the hot spot was found

to be unstable. In particular, this shows that in one dimension, the heat diffisivity d must be small.

In addition, the hot spot can be distabilized if the power p is sufficiently large. This is unlike the

two-dimensional case, where the stability result is independent of the power p. Equations (4) and (6)

also show that in either one or two dimensions, the hot spot cannot be stable if f(x) is constant; a

necessary condition for the radially symmetric case is that f(x) must have a maximum at the origin.

In §5 we study numerically and analytically how the formation of the hot spots depends on the

power p. For the case of small diffusion d � 1, we show that the necessary condition for hot spot

formation is that p > pc where pc is the critical power given by

pc = Me

(
∫

Ω

W

(

−f(x)

Me

)

dx

)2

, (7)

where M = maxx∈Ω |f(x)| and W (x) is the principle branch of the Lambert W function (which

satisfies x = W (x)eW (x) with −1 < W (x)). Finally, we study the possibility of a pattern with two

spots. We show in §5 that two hot spots cannot be stable. Moreover the unstable mode corresponds

to a competition instability, whereby one of the two spots is rapidly absorbed by the other. This is

analogous to the so-called shadow limit of reaction-diffusion equations, see for example [8], where a

similar phenomenon is observed for the Geirer-Meinhardt model. We conclude with some discussion

of open problems in §6.
We note that the results in this paper rely on the use of careful but formal asymptotics. No

attempt has been made to provide a rigorous justification. However careful numerics were used to

verify all of the results.

2 One dimension

In this section we study hot spots on a one-dimensional domain Ω = [−L,L] . We first construct a

stationary hot-spot solution using matched asymptotics. An example of such a hot spot is shown in

Figure 1(a).

The steady state problem is

uxx − 1

d2
u+ αf(x)eu = 0, ux(±L) = 0 where (8)

α :=
p

(

d
∫ L

−L
f(x)eu dx

)2 . (9)

Roughly speaking, the hot-spot solution consists of an inner region of hot temperature where the

exponential term in (8) is dominant, and of an outer layer of colder temperature, where the background

effects dominate. The location x0 of the stationary hot spot is determined by both the electric field

strength f(x) and the boundary effects. We summarize the construction as follows.
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Figure 1: (a) Stationary hot spot solution to (8) in one dimension. The parameters are f(x) = 1,

L = 2, d = 1 with p = 1.144 × 109 chosen so that (9) yields α = 0.0001. Solid curve represents

the numerical solution to the boundary value problem (8). Dashed curve is the uniform asymptotic

approximation (15). (b) Hot spot solution to (51) in two dimensions on a disk of radius L = 1.5.

Other parameters are f(x) = 1, d = 1 with p = 1.7217 × 105 chosen so that (52) yields α = 0.004.

Solid curve represents the numerical solution to the boundary value problem (51). Dashed curve is

the uniform asymptotic approximation (101).

Principal Result 2.1. Suppose that either p � 1 or d � 1, with all other parameters of O(1). Then

(8, 9) admits a hot-spot solution concentrated at the location x0, given asymptotically by

sinh
(

2x0

d

)

sinh
(

2L
d

) + µ
f ′(x0)

f(x0)
∼ 0 (10)

where µ � 1 is the spatial extent of the hot spot centered at x0, asymptotically given by

µ ∼ d

ln
(

p
2d2f(x0)

)

(

cosh
(

2x0

d

)

sinh
(

2L
d

) + coth
2L

d

)

. (11)

Inside the hot spot, the temperature profile has the shape

u(x) ∼ ln

{

p

2αµ2f(x0)
sech2

(

x

2µ

)}

, |x− x0| � µ (12)

where α as defined in (9), is asymptotically given by

α ∼ d24

pµ2
. (13)

Away from the hot spot, the temperature profile is

u (x) ∼ 2

µ
G (x, x0) , |x− x0| � µ (14)

where G(x, x0) is the Green’s function defined in (25).

4



0

0.1

0.2

0.3

0.4

0.5

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0

m

x0

(a)

0

0.1

0.2

0.3

0.4

0.5

0.02 0.04 0.06 0.08 0.1 0.12 0.14

m

λ

(b)

Figure 2: (a) The plot of hot spot center x0 vs. m, with f(x) = 1+mx, L = 2.7, d = 1, α = 3.16×10−5.

Crosses denote the numerical solution of (8). Solid line denotes the asymptotic prediction given by

(10) with µ given by (30). (b) The plot of x0 vs. λ where λ is the eigenvalue with largest real part,

in this case the small eigenvalues. Crosses denote the values of λ as numerically computed from (16).

Solid line denotes the asymptotic prediction given by (49).

By combining (12) and (14), for the case of a symmetric hot spot (x0 = 0, f(x) is even), a

composite solution that is uniformly valid on [−L,L] is given by

u(x) ∼ ln

{

1

4
sech2

(

x

2µ

)}

+ |x| /µ+

ln

(

2

µ2f(x0)α

)

cosh(L/d)
cos

( |x| − L

d

)

. (15)

Figure 1(a) shows a favorable comparison between the composite asymptotic solution and the numer-

ical solution to the full problem (8). In Figure 2(a), the effect of variation of the magnitude of the

electric field strength, f(x) along the length of the sample, on the hot spot location is shown. Again,

a favorable comparsion between full numerics and the asymptotic formula for x0 (10) is observed.

Next we address the stability of the hot spot with respect to time. By linearizing near the steady

state:

u(x, t) = u(x) + eλtφ(x), φ � 1

we are led to the study of the following eigenvalue problem

λ

d2
φ = φxx − 1

d2
φ+ αf(x)euφ− 2α3/2p−1/2d−1f(x)eu

∫ L

−L

f(x)euφdx. (16)

Note that (16) is self-adjoint; as a consequence all of its eigenvalues are purely real. The problem (16)

admits large eigenvalues of O
(

1
µ2

)

as well as eigenvalues of that arise due to the translation invariance

of the inner solution, which we will call small eigenvalues. The large eigenvalues are studied in §4,
where it is shown that they are all negative. Thus the stability is controlled by the sign of the small

eigenvalues. We summarize our findings below.
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Principal Result 2.2. Consider a hot-spot solution as constructed in Principal result 2.1. In the

limit µ → 0, there are two cases.

1. d/L = O(1) : The hot spot is unstable.

2. d/L � 1 : The the hot spot is stable if and only if λ < 0 where λ is given by

λ ∼ 2µd

(

f ′′(x0)

f(x0)
−
(

f ′(x0)

f(x0)

)2
)

+ 8 exp

(−2L

d

)

cosh
(x0

d

)

, d/L � 1. (17)

In the first case, the unstable eigenvalue λ is given implicitly by (49).

Formula (17) is an asymptotic estimate to the small eigenvalue of (16). Figure 2(b) shows that

the asymptotic formula (17) is in good agreement with the numerically computed solution to the

eigenvalue problem (16). For a radially symmetric case where f(x) = f(|x|) and x0 = 0, the stability

criterion of Principal Result 2.2 in conjuction with (9) yields the formula (6).

Derivation of Principal Result 2.1. The derivation consists of two steps. We first determine

the leading order profile and the spatial extent µ of the hot spot. In the second step, the location x0

of the hot spot is determined at the next order of the expansion.

Step 1: Hot spot profile. To determine the temperature profile and the spatial extent of the

hot spot, we expand near its center x = x0 as

x = x0 + µy; (18a)

f(x) = f0 + µyf ′
0 + · · · where f0 ≡ f(x0), f ′

0 ≡ f ′(x0); (18b)

u(x) = U(y) = U0(y) + µU1(y) + · · · (18c)

where µ � 1 is the spatial extent of the hot spot, to be determined later. Equation (8) then becomes

Uyy +
µ2

d2
U + µ2αf(x0 + µy)eU = 0

Next we change variables

U(y) = ln

{

V (y)

αµ2f(x0 + µy)

}

(19)

and expand

V = V0 + µV1 + · · ·
U = U0 + µU1 + · · ·

The equation for V0 is then

V0yy −
V 2
0y

V0
+ V 2

0 = 0. (20)

An explicit solution is given by

V0 =
1

2
sech2

(y

2

)

. (21)

Note that (20) admits a scaling invariance V0 = a−2V̂0; y = aŷ. However we can set a = 1 by an

appropriate relabelling of µ.

Next we consider the outer region of (8). We estimate

uxx −
1

d2
u = −C0δ(x− x0) (22)
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where δ(x− x0) is is the Dirac delta function with support at x0 and the constant C0 is given by

C0 =

∫ L

−L

αf(x)eudx ∼ 1

µ

∫ ∞

−∞

V0(y)dy ∼ 2

µ
. (23)

The solution to (22) is therefore

u ∼ 2

µ
G(x, x0) (24)

where G is the Green’s function satisfying

Gxx − 1

d2
G = −δ(x− x0); Gx (±L, x0) = 0

and is explicitly given by

G(x, x0) =
d

sinh
(

2L
d

)

{

cosh
(

x−L
d

)

cosh
(

x0+L
d

)

, x > x0

cosh
(

x0−L
d

)

cosh
(

x+L
d

)

, x < x0.
(25)

The spatial extent of the hot spot µ is now determined by matching the inner and outer solution. To

do so, we write the inner solution in the outer variables as |y| → ∞. Note that

V0 ∼ 2 exp (− |y|) , |y| → ∞

so that from (19) we get

U0 ∼ ln

(

2

αµ2f0

)

− |y| ; |y| → ∞ (26)

µU0 ∼ µ ln

(

2

αµ2f0

)

, µ � |x− x0| � 1 (27)

On the other hand, we expand G in Taylor series around x = x0. We write

G (x, x0) ∼ G0 + (x− x0)G
′
0+ , 0 < x− x0 � 1

G (x, x0) ∼ G0 + (x− x0)G
′
0− , 0 < x0 − x � 1

where

G0 = G(x0, x0) =
d

2

(

cosh
(

2x0

d

)

sinh
(

2L
d

) + coth
2L

d

)

; (28)

G′
0± =

∂

∂x
G(x, x0)

∣

∣

∣

∣

x=x±

0

=
1

2

(

sinh
(

2x0

d

)

sinh
(

2L
d

) ± 1

)

. (29)

Substituting (28) and (27) into (24) we obtain an equation for µ,

µ ln

(

2

αµ2f0

)

= d

(

cosh
(

2x0

d

)

sinh
(

2L
d

) + coth
2L

d

)

. (30)

It remains to verify the consistency condition µ � 1. We evaluate

∫ L

−L

feu dx ∼
∫ ∞

−∞

V

αµ2
dy ∼ 2

αµ
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so that
1

αµ2
∼ p

d24
(31)

µ ∼ d

ln
(

p
2d2f0

)

(

cosh
(

2x0

d

)

sinh
(

2L
d

) + coth
2L

d

)

∼ O

(

d

ln (p/d2)

)

In particular this equation is consistent provided that either p � 1 or d � 1 (with other parameters

being O(1).).

Step 2: Hot spot location. The equation for the location x0 is determined at a higher order.

We have

U0 + µU1 = ln







V0

αµ2f0

1 + µV1

V0

1 + µ
yf ′

0

f0







= ln
V0

αµ2f0
+ µ

(

V1

V0
− y

f ′
0

f0

)

(32)

so that

V0 = µ2αf0e
U0

∣

∣

∞

−∞
; V1 =

(

U1 + y
f ′
0

f0

)

V0 (33)

and the first two orders in the inner variables are

U0yy + V0 = 0 (34)

U1yy + V0U1 + V0y
f ′
0

f0
= 0 (35)

Multiply (35) by U0y and integrate from −∞ to +∞. Integrating by parts we obtain

∫ ∞

−∞

U1 (U0yyy + V0U0y) dy +
f ′
0

f0

∫ ∞

−∞

yV0U0ydy + (U1yU0y − U1U0yy)|∞−∞ = 0. (36)

Note that

V0y = V0U0y; U0yy + V0y = 0

so that
∫ ∞

−∞

U1 (U0yyy + V0U0y) dy = 0; and

∫ ∞

−∞

yV0U0ydy = −
∫ ∞

−∞

V0 = −2. (37)

To evaluate the boundary term, first note that for large y we have

U0y → ∓1, U0yy → 0 as y → ±∞.

The behaviour of U1 for large y is determined by matching to the outer solution. Recall that

U0(y) + µU1(y) ∼
2

µ
G(x, x0), x → x0, |y| → ∞

Writing the right hand side in terms of inner variables we have

G (x, x0) = G (x0 + εy, x0) ∼ G0 + yµG′
0± , y ≷ 0

where G0 and G′
0± are given by (28, 29). For large |y| we then obtain

µU1 + y ∼ 2yG′
0+ , y � 1

µU1 − y ∼ 2yG′
0− , y � 1
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so that

U1y|y=±∞ =
1

µ
(2G′

0± ∓ 1) (38)

and finally,

(U1yU0y − U1U0yy)
∞
−∞ = − 2

µ
(G′

0+ +G′
0−)

= − 2

µ

sinh
(

2x0

d

)

sinh
(

2L
d

) (39)

Substituting (37) and (38) into (36) yields the equation for spike location,

sinh
(

2x0

d

)

sinh
(

2L
d

) = −µ
f ′
0

f0
. (40)

This conlcudes the derivation of Principal Result 2.1. �

Derivation of Principal Result 2.2. We now turn to the stability of the hot spot. In the inner

region y = (x− x0)/µ we expand the eigenfunction as

φ(x) = Φ0(y) + µΦ1(y) + · · · . (41)

Substituting (41), (18) and (20) into (16) we get at the leading order,

ΛΦ0 = Φ0yy + V0Φ0 − V0

∫ ∞

−∞

V0Φ0 dy (42)

where Λ = µ2/d2λ; and V0 is given in (20). Note that the spectrum of (42) admits a zero eigenvalue

Λ = 0, Φ0 = V0y/V0, which corresponds to translation invariance. It will be shown in Principal Result

4.1 that all non-zero eigenvalues of (42) are negative. In view of this, we need to only be concerned

with the zero translational eigenvalue. Since it is zero at leading order, its stability is determined

by considering the correction terms that arise due to the the outer region of (16) and the spatially

inhomogeneous term f(x). In the inner region, we estmate the eigenfunction by

φ ∼ ux ∼ Vx

V
. (43)

The integral term then becomes

∫ L

−L

feuφdx ∼
∫ ∞

−∞

V

αµ2

(

Vy

V

)

dy = 0

To obtain a solvability condition, multiply (16) by ux and integrate. Upon integrating by parts we

obtain
λ

d2

∫ L

−L

φux dx = −uxxφ|L−L −
∫ L

−L

αf ′euφdx

In the outer region for u and φ we have

λ

d2
φ ∼ φxx − 1

d2
φ, x 6= x0;

0 ∼ uxxx − 1

d2
ux, x 6= x0.
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Let D = [−L,L]\ {x0} . We have:
∫

D

(

φxx − 1

d2
φ− λ

d2
φ

)

uxdx ∼ (uxφx − uxxφ)|x
−

0

−L + (uxφx − uxxφ)|Lx+

0

−
∫ L

−L

λ

d2
φuxdx

∼ −uxxφ|L−L −
∫ L

−L

λ

d2
φuxdx− (uxφx − uxxφ)|x

−

0

x+

0

= 0

Therefore we obtain

− (uxφx − uxxφ)|x
+

0

x−

0

∼ −
∫ L

−L

αf ′euφdx (44)

Now in the outer region we have u ∼ C0G(x, x0). Let G
λ, Nλ be the Green’s functions satisfying

Gλ
xx − (1 + λ)

d2
Gλ = −δ(x− x0); Gλ

x(±L) = 0; (45)

Nλ
xx − (1 + λ)

d2
Nλ = −δ′(x− x0); Nλ

x (±L) = 0; (46)

By differentating (45) with respect to x0, we obtain

Nλ = −∂Gλ

∂x0
. (47)

Explicitly, we have

Gλ(x, x0) =
1

ω sinh (2Lω)

{

cosh ((x− L)ω) cosh ((x0 + L)ω) , x > x0

cosh ((x0 − L)ω) cosh ((x+ L)ω) , x < x0.

Nλ(x, x0) =
−1

sinh (2Lω)

{

cosh ((x− L)ω) sinh ((x0 + L)ω) , x > x0

sinh ((x0 − L)ω) cosh ((x+ L)ω) , x < x0.

where ω =

√
1 + λ

d
.

Matching the inner and outer region, we have φ ∼ ux ∼ C0Gx where C0 is given by (23). Thus φ

has a jump discontinuity φ|x=x+

0

x=x−

0

∼ −C0. On the other hand, Nλ has a jump discontinuity of −1 at

x0, Nλ|x=x+

0

x=x−

0

= −1. Therefore in the outer region we get φ ∼ C0N
λ(x, x0). We then obtain

(uxφx − uxxφ)
x+

0

x−

0

∼ −C2
0

(

GxN
λ
x |x

+

x− − 1

d2
GNλ|x+

x−

)

. (48)

Now Nλ
x is continuous at x0 whereas Gx has a jump discontinuity of −1. Using (47) we then simplify

GxN
λ
x |x

+

x− = −Nλ
x |x=x0

= Gλ
x0x|x=x0

and similarly

GNλ|x+

x− = −G|x=x0
.

Therefore

(uxφx − uxxφ)
x+

0

x−

0

∼ −C2
0

(

Gλ
x0x|x=x0

+
1

d2
G|x=x0

)

.

Gλ
x0x|x=x0

=
ω sinh ((x0 − L)ω) sinh ((x0 + L)ω)

sinh (2Lω)

=
ω (cosh (2x0ω)− cosh(2Lω))

2 sinh (2Lω)
; ω =

√
1 + λ

d
;

G|x=x0
=

(cosh (2x0ω0) + cosh(2Lω0))

2ω0 sinh (2Lω0)
; ω0 =

1

d

10



so that

(uxφx − uxxφ)
x+

0

x−

0

=
−4

µ2

(

ω (cosh (2x0ω)− cosh(2Lω))

2 sinh (2Lω)
+

ω0 (cosh (2x0ω0) + cosh(2Lω0))

2 sinh (2Lω0)

)

.

Next we evaluate the the right hand side of (44). Using (43) and (19) we obtain

∫ L

−L

αf ′euφdx ∼ 1

µ2

∫ L

−L

f ′

f
Vx dx ∼ −1

µ2

∫ L

−L

(

f ′

f

)

x

V dx

∼ − 1

µ

(

f ′′
0

f0
− f ′2

0

f2
0

)
∫ ∞

−∞

V0 dy

∼ − 2

µ

(

f ′′
0

f0
− f ′2

0

f2
0

)

The full equation for the eigenvalue is therefore

ω (cosh (2x0ω)− cosh(2Lω))

sinh (2Lω)
+

ω0 (cosh (2x0ω0) + cosh(2Lω0))

sinh (2Lω0)
∼ −µ

(

f ′′
0

f0
− f ′2

0

f2
0

)

(49)

where

ω =

√
1 + λ

d
; ω0 =

1

d
.

From (40) it is clear that either d/L � 1 or else x0 ∼ 0. In the latter case we get

−
√
1 + λ tanh(L

√
1 + λ

d
) + coth

(

L

d

)

∼ 0. (50)

Now note that the left hand side is positive when λ = 0, and goes to −∞ as λ → ∞. Therefore (50)

has a positive solution λ > 0. This shows the instability for the case 1 of Principal Result 2.2. For the

former case, we we must have L
d � 1; ω ∼ ω0 so that λ � 1. We then expand in λ to obtain (17).

This concludes the derivation. �

3 Two-dimensions

The analysis in two dimensions is along the lines of the one dimensional case. However there are

signficant differences and complications due to the logarithmic singularity of the fundamental solution

to the laplacian in two dimensions. As a result, the scaling properties and stability range is very

different from the one dimensional case.

As in one dimensions, we first construct the two dimensional steady state in the form of a hot

spot, then study its stability. We first state the results for general domains; the location and stability

of the spot involves the interaction of the Green’s function and the electric field strength f(x). At the

end of the section, we study in more detail the special case of a disk domain with radially symmetric

f(x) = f(|x|).

Principal Result 3.1. Suppose that d2p � 1, with other parameters of O(1). Consider the steady

state equation in two dimensions,

0 = ∆u− 1

d2
u+ αf(x)eu, x ∈ Ω; ∂nu = 0, x ∈ ∂Ω, (51)

α :=
peu

(

d
∫

Ω f(x)eu
)2 . (52)

11



Then (8) admits a hot-spot solution. It is concentrated at the location x0 given by

8π∇H0 +
∇f(x0)

f(x0)
= 0. (53)

where ∇H0 is the gradient of the regular part of the Green’s function as defined by (66, 67, 70, 74).

The constant α, as defined in (52) is asymptotically given

α ∼ (8πd)
2

p
. (54)

Inside the hot spot, the temperature profile has the shape

u(x) ∼ ln

{

8(1 +R2)−2

αµ2f(x0)

}

, R = |x− x0| /µ; R = O(1)

where µ � 1 is the spatial extent of the hot spot, asymptotically given by

µ ∼ 8π exp(−2γ + 4πH0)d
3

√

2f0
p

, (55)

where γ ≈ 0.5772 is Euler’s constant. Away from the hot spot, the temperature profile has the shape

u ∼ 8πG (x, x0) , |x− x0| � O(µ). (56)

where G(x, x0) is the Green’s function defined in (66).

We remark that a formula similar to (53) was obtained for a Liouville equation in [15] using a

related technique. Next we summarize the stability results.

Principal Result 3.2. Let σ1, σ2 be the two eigenvalues of the matrix 8πM +F, where M and F are

defined in (98). Then the stability problem (83) admits two small eigenvalues given by

λ ∼ d2

2 lnµ−1
σi, i = 1, 2.

All other eigenvalues are strictly negative.

Alternatively, let

g(x0) = 4πH(x0, x0) + ln f(x0)

where H, f is as in Principal Result 3.1. Then the location of the hot spot solution satisfies ∇g(x0) = 0.

Moreover the hot spot is stable if x0 is a non-degenerate maximum of g(x0), i.e. if the hessian of g at

x0 is definite negative. It is unstable if x0 is either a non-degenerate saddle point or a non-degenerate

minimum of g.

Derivation of Principal Result 3.1. As in one dimension, the derivation consists of two steps.

We first derive the hot spot profile, then determine its location.

Step 1, hot spot profile. We expand near the inner region of the spike as

x = x0 + µy; (57)

f(x) = f0 + µyf ′
0 + · · · where f0 ≡ f(x0), f ′

0 ≡ ∇f(x0); (58)

u(x) = U(y) = U0(y) + µU1(y) + · · · (59)

12



where µ � 1 is a scale parameter to be determined later. For convenience we also let

U(y) = ln

{

V (y)

αµ2f(x0 + µy)

}

(60)

and expand

V = V0 + µV1 + · · · (61)

The equation for V0 is then

∆yV0 −
|∇yV0|2

V0
+ V 2

0 = 0. (62)

A radial solution is given by

V0(y) =
8

(1 +R2)
2 , R = |y| . (63)

Note that (62) admits a scaling invariance V0 = a−2V̂0; y = aŷ. However we can set a = 1 by an

appropriate relabelling of µ.

Next we consider the outer region. Assuming α � 1 we estimate

∆u− 1

d2
u = −C0δ(x− x0) (64)

where δ is a delta function and the constant C0 is given by

C0 =

∫ L

−L

αf(x)eudx ∼ 2π

∫ ∞

−∞

V0(R)RdR ∼ 8π. (65)

Now consider the modified Helmholtz G-function that satisfies

∆G− 1

d2
G = −δ(x− x0), x ∈ Ω; ∂nG = 0, x ∈ ∂Ω. (66)

Note that G has a logarithmic singularity as x → x0. To match the inner and outer solution, decompose

G as

G = J (x, x0) +H(x, x0), r = |x− x0| (67)

where J is the Green’s function on the entire space satisfying

∆J − 1

d2
J = −δ(x− x0), x, x0 ∈ R

2; J → 0 as |x| → ∞ (68)

and H = G− J satisfies

∆H − 1

d2
H = 0, x ∈ Ω; ∂nH = −∂nJ, x ∈ ∂Ω. (69)

Explicitly, we have

J(x, x0) =
1

2π
K0

( r

d

)

, r = |x− x0| (70)

where K0 is the Bessel K function of order zero. In the outer region we then obtain that the solution

to (64) for u is

u ∼ 8πG (x, x0) , |x− x0| � O(µ). (71)

To match (71) to the inner solution (60), we expand

J ∼ 1

2π
ln

1

r
+

1

2π
(ln(2d)− γ) +O

(

r2 ln r
)

(72)

H ∼ H0 + (x− x0) · ∇H0 (73)
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where

H0 = H (x0, x0) ; ∇H0 = ∇H(x, x0)|x=x0
. (74)

Writing the outer (71) solution in terms of the inner variables we have

x− x0 = µy; R = |y| ;

u ∼ 4 ln
1

µ
+ 4 ln

1

R
+ 4 (ln(2d)− γ) + 8πH0 + µ8πy · ∇H0 . . . ; µ � µR � 1. (75)

Taking the limit R → ∞ of the inner variables we obtain

V0 ∼ 8

R4
; (76)

u ∼ 4 ln
1

R
+ 2 ln

1

µ
+ ln

(

8

αf0

)

(77)

Equating (75) and (77) we get, to leading order,

4 ln
1

µ
+ 4 (ln(2d)− γ) + 8πH0 ∼ 2 ln

1

µ
+ ln

(

8

αf0

)

µ ∼ exp(−2γ + 4πH0)d
2
√

2αf0 (78)

To determine the spatial extent of the spike in terms of p we substitute (65) into (52) to obtain

α ∼ (8πd)
2

p
. (79)

Substituting (79) into (78) yields (55).

Step 2, hot spot location. To determine the location of the hot spot, we consider the O(µ)

correction terms to the steady state. From (61) and (59) we have

0 = ∆U0 + V0 (80)

0 = ∆U1 + V0U1 + V0y · ∇f0
f0

(81)

In addition we have

∆U0yj + V0yj = 0; V0yj = V0U0yj

where ∗yj denotes the derivative with respect to yj, j = 1, 2. Let B be a ball of a large radius R → ∞.

Multiply (81) by U0j and integrate over B. Integrating by parts we obtain

0 =

∫

∂B

(

U0yj∂nU1 − ∂nU0yjU1

)

dS(y) +

∫

B

U0yjV0y · ∇f0
f0

dy, j = 1, 2.

First consider first the case j = 1. To evaluate the boundary terms, note that the behaviour of U for

large |y| is obtained by taking the limit of the outer expansion for small x. From (75) we obtain

U0 ∼ −4 lnR+O(1); U1 ∼ 8πR (cos θ, sin θ) · ∇H0; R → ∞

U0y1
∼ − 4

R
cos θ; ∂nU0y1

∼ 4

R2
cos θ;

∂nU1 ∼ 8π (cos θ, sin θ) · ∇H0

14



∫

∂B

(U0y1
∂nU1 − ∂nU0y1

U1) dS(y) ∼ 2

∫ 2π

0

−4 cos θ8π (cos θ, sin θ) · ∇H0dθ

∼ −64π2e1 · ∇H0.

Finally we have
∫

B

U0y1
V0y ·

∇f0
f0

dy ∼
∫

R2

V0y1
y · ∇f0

f0
dy ∼ −8π

e1 · ∇f0
f0

.

Performing the same computation with j = 2 we finally obtain

8π∇H0 +
∇f0
f0

= 0. (82)

Stability in 2D As in one dimension, we linearize

u(x, t) = u(x) + eλtφ(x)

to obtain
λ

d2
φ = ∆φ− 1

d2
φ+ αf(x)euφ− 2α3/2p−1/2d−1f(x)eu

∫

Ω

f(x)euφdx. (83)

First we consider the small eigenvalue corresponding to the translation invariance of the inner problem.

In the inner region, the eigenfunction has the form

φ = c1
Vx1

V
+ c2

Vx2

V
(84)

∼ c1ux1
+ c2ux2

(85)

The constants (c1,c2) indicate the direction of the instability. They will be determined at the same

time as the eigenvalue. As in one dimension, the nonlocal term in (83) is of lower order due to the

odd parity of the integrand:
∫

Ω

feuφdx ∼
∫

R2

V

αµ2

(

c1Vx1
+ c2Vx2

V

)

dx = 0.

There are now two solvability conditions to consider, corresponding to two undetermined constants

c1, c2. Multiply (83) by uxj , j = 1, 2 and integrate by parts. We obtain

λ

d2

∫

Ω

φuxjdx ∼
∫

∂Ω

(

uxj∂nφ− φ∂nuxj

)

dS(x) +

∫

Ω

φ

(

∆uxj −
1

d2
uxj + αf(x)euuxj

)

dx

Note that

∆uxj −
1

d2
uxj + αf(x)euuxj = −αfxje

u

so that
λ

d2

∫

Ω

φuxdx ∼ −
∫

∂Ω

φ∂nuxjdS(x) −
∫

Ω

φαfxj e
udx (86)

Now away from the center of the spike we have

∆φ ∼ 1 + λ

d2
φ; ∆uxj ∼

1

d2
uxj , x 6= x0. (87)

Now consider a domain D = Ω\Bδ(x0) where Bδ(x0) is a ball of small radius δ centered around x0;

with µ � δ � 1. We obtain:

0 =

∫

D

(

∆φ− 1 + λ

d2
φ

)

uxjdx =

∫

∂Ω\Bδ(x0)

(

uxj∂nφ− φ∂nuxj

)

dS(x) −
∫

Ω\Bδ(x0)

λ

d2
φuxjdx (88)

∫

∂Ω

φ∂nuxjdS(x) +

∫

Ω

λ

d2
φuxjdx ∼

∫

Bδ(x0)

λ

d2
φuxjdx −

∫

∂Bδ(x0)

(

uxj∂nφ− φ∂nuxj

)

dS(x) (89)
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Substituting (89) into (86) we obtain

∫

∂Bδ(x0)

(

uxj∂nφ− φ∂nuxj

)

dS(x)−
∫

Bδ(x0)

λ

d2
φuxjdx ∼

∫

Ω

φαfxje
udx. (90)

Next we evaluate the left hand side. Recall that

u ∼ −4 lnR, R = |y| = |x− z| /µ, 1 � R � 1

µ

so that in the intermediate region, the leading order behaviour is

φ ∼ c1ux1
+ c2ux2

∼ −4

r
(c1 cos θ + c2 sin θ) ; µ � r � 1 (91)

where r = |x− z| . Therefore φ solves (87) subject to singularity condition (91) as r = |x− x0| → 0.

Now let Gλ be the Green’s function satisfying

∆Gλ − ω2Gλ = −δ(x− z), x ∈ Ω; ∂nG = 0, x ∈ ∂Ω; ω2 :=
1 + λ

d2
(92)

Note that Gλ (x, z) ∼ − 1
2π ln r as r → 0. It follows that Gλ

z1 ∼ 1
2π

cos θ
r ; Gλ

z2 ∼ 1
2π

sin θ
r . By matching

with (91) we obtain the following behaviour of φ in the outer region:

φ ∼ −8π
(

c1G
λ
z1 + c2G

λ
z2

)

, r = O(1).

Next we decompose Gλ into singular and regular part as in (67). We will need to keep terms up to

O(r2). For reference, note that

K0(r) ∼ − ln r + a0 +
r2

4
(− ln r + a0) +O

(

r4 ln r
)

; r → 0, with a0 = ln 2− γ

where K0 is the Bessel K function so that

Gλ ∼ 1

2π

(

− ln r + a0 − lnω − ω2

4
r2 ln r +O(r2)

)

+Hλ(x, z) as z → x, ω =

√

1 + λ

d2
; r = |x− z| .

where Hλ(x, z) is a C2 function given by (69) with 1
d2 replaced by ω2 = 1+λ

d2 . In the intermediate

region we then obtain

φ ∼ −8π

(

−
(

c1
cos θ
2π + c2

sin θ
2π

)

g(r, ω)

+c1H
λ
z1 + c2H

λ
z2

)

, µ � r � 1.

where

g(r, ω) = −1

r
+

ω2

4
(2r (− ln r + a0 − lnω)− r)

Similarly for µ � r � 1 we have

ux1
∼ 8π

[

cos θ

2π
g(r, ω0) +Hx1

]

, ω0 =
1

d
;

ux2
∼ 8π

[

sin θ

2π
g(r, ω0) +Hx2

]

Next we compute

∂nφ ∼ −8π

(

c1
(

Hλ
z1x1

cos θ +Hλ
z1x2

sin θ
)

+ c2
(

Hλ
z2x1

cos θ +Hλ
z2x2

sin θ
)

−
(

c1
cos θ
2π + c2

sin θ
2π

)

gr(r, ω)

)
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∂nux1
∼ 8π

[

cos θ

2π
gr(r, ω0) + (Hx1x1

cos θ +Hx1x2
sin θ)

]

∂nux2
∼ 8π

[

sin θ

2π
gr(r, ω0) + (Hx2x1

cos θ +Hx2x2
sin θ)

]

Now note that

g(r, w) ∼ −1

r
− ω2

2
r ln r +O(r)

gr(r, w) =
1

r2
− ω2

2
ln r +O(1)

It will be evident later on that λ = O(1/ lnµ−1) � 1. Therefore we have ω2 − ω2
0 ∼ λ

d2 ;

g(r, ω0)gr(r, ω)− g(r, ω)gr(r, ω0) ∼
1

r

[

λ

d2
ln r +O (λ) +O(r)

]

, λ, r → 0.

Keeping in mind that λ is small we then obtain,
∫

∂Bδ(x0)

(ux1
∂nφ− φ∂nux1

) dx ∼ (8π)2
(

c1 (Hz1x1
+Hx1x1

) + c2
(

Hz2x1
+Hx2x1

))

+ 16πc1
λ

d2
ln δ

(93)
∫

∂Bδ(x0)

(ux2
∂nφ− φ∂nux2) dx ∼ (8π)2

(

c1 (Hz1x2
+Hx2x1

) + c2
(

Hz2x2
+Hx2x2

))

+ 16πc2
λ

d2
ln δ

(94)

Next we evaluate
∫

Bδ(x0)
λ
d2φuxjdx. The dominant contribution for this integral comes from the inner

region. Therefore, using (63) we obtain

λ

d2

∫

Bδ(x0)

φuxjdx ∼ λ

d2

∫

Bδ/µ(0)

cjU
2
yj
dy ∼ cjπ

λ

d2

∫ δ/µ

0

( −4R

1 +R2

)2

RdR ∼ 16πcj
λ

d2
(ln δ − lnµ)+O(1).

(95)

Note that the ln δ term in (95) cancels precisely with the ln δ term in (93, 94) so that the left hand

side of (90) is indeed independent of δ. Next we evaluate
∫

Ω φαfxj e
udx. Using (60) and (84) we obtain

∫

Ω

φαeufxjdx ∼ 1

µ2

∫

Ω

2
∑

i=1

ci (V )xi

(

fxj

f

)

dx

∼ − 1

µ2

∫

Ω

2
∑

i=1

ci

(

fxj

f

)

xi

V dx (96)

∼ −8π

2
∑

i=1

ci

(

fxj

f

)

xi

∣

∣

∣

∣

∣

x=x0

Substituting (93,94), (95) and (96) into (90) we obtain the following equation for λ :

(8πM + F )

(

c1
c2

)

= λ

(

2

d2
lnµ−1

)(

c1
c2

)

(97)

where

M =

[

Hz1x1
+Hx1x1

Hz2x1
+Hx2x1

Hz1x2
+Hx2x1

+Hz2x2
+Hx2x2

]∣

∣

∣

∣

x=x0

; F =





(

fx1

f

)

x1

(

fx1

f

)

x2
(

fx2

f

)

x1

(

fx2

f

)

x2





∣

∣

∣

∣

∣

∣

x=x0

(98)
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Figure 3: Comparison of numeric and asymptotic computations of the small eigenvalue λ for a two

dimensional disk domain of radius L. (a) The graph of λ vs. a, where f(x) = exp(−a|x|2/2) and

other parameters are α = 0.00125, L = 1.5, d = 1. The solid curve is the asymptotic approximation

given by (100). The dots are obtained by numerically solving the eignevalue problem (83) using

boundary value problem solver. (b) The threshold of stability λ = 0 in two dimensions with d = 1,

f(x) = exp(−a|x|2/2) and α = 0.005. The solid curve is the asymptotic threshold given by a =

2K ′′
0 (L)/I

′′
0 (L)−2K ′

0(L)/I
′
0(L). The dotted points are obtained by numerically solving the eignevalue

problem (83) for λ = λ(a), then using a root finder to solve for λ = 0. The hot spot is unstable for

parameter values below the curve and is stable for parameter values above the curve.

In particular, assuming that matrix 4πM + F is O(1), it follows that λ = O
(

d2/ ln(µ−1
)

) � 1 since

µ � 1. Note that there are in general two small eigenvalues, corresponding to the two eigenvalues of

the matrix 4πM + F. This concludes the derivation.

Disk domain. Next specialize the results of Principal Result 3.2 to a disk of of radius L, with

a radially symmetric electric field strength f(x) = f(|x|). The goal is derive the explicit instability

threshold given in (4). We assume that the hot-spot is radially symmetric and is located at the center

of the disk. In this case, the expressions in (98) can be significantly simplified as follows. First note

that when z = 0, the solution G to (66) can be explicitly written as

G(x, z)|z=0 =
1

2π

(

K0(ωr) −
K ′

0(ωL)

I ′0(ωL)
I0(ωr)

)

, r = |x| ; ω =
1

d
.

H(x, z)|z=0 = − 1

2π

(

K ′
0(ωL)

I ′0(ωL)

)

.

On the other hand, let v(x) = Gz1(x, z)|z=0 . Now we have 2πG ∼ − ln(|x− z|) as x → z so that
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2πGz1 |z=0 ∼ cos θ
r , r = |x| → 0. It follows that v solves

∆v − ω2v = 0, x ∈ BL(0)

v ∼ cos θ

2πr
, r = |x| → 0

∂nv = 0, r = L.

Thus we obtain that v(x) = (cos θ)J(r) where J (r) solves the ODE

Jrr +
1

r
Jr −

1

r2
J − ω2J = 0 (99)

subject to boundary conditions

J ′(L) = 0; J(r) ∼ 1

2πr
as r → 0.

The particular solutions to (99) are given by K ′
0(rω), I ′0(rω), with K ′

0(rω) ∼ −1
ωr so that we get

J(r) = − ω

2π

(

K ′
0(rω) −

K ′′
0 (ωL)

I ′′0 (ωL)
I ′0(rω)

)

.

Therefore we obtain

Hx1
= − ω

2π

K ′
0(ωL)

I ′0(ωL)
(I ′0(ωr)) (cos θ)

Hz1 =
ω

2π

K ′′
0 (ωL)

I ′′0 (ωL)
(I ′0(rω)) (cos θ)

We compute further,

(Hx1x1
)r=0 =

(

(Hx1
)r cos θ −

1

r
(Hx1

)θ sin θ

)

r=0

= − ω

2π

K ′
0(ωL)

I ′0(ωL)

(

ωI ′′0 (ωr) cos
2 θ +

1

r
I ′0(ωr) sin

2 θ

)

r=0

= −ω2

4π

K ′
0(ωL)

I ′0(ωL)
;

(where we have used the Taylor series expansion I0(t) ∼ 1 + t2/4, t → 0) and in the same way,

(Hz1x1
)r=0 =

ω2

4π

K ′′
0 (ωL)

I ′′0 (ωL)
.

Similarly,

(Hz1x1
)r=0 =

(

(Hz1)r sin θ +
1

r
(Hz1)θ cos θ

)

r=0

= 0;

(Hz1x1
)r=0 = 0.

so that

Hz1x1
+Hx1x1

=
ω2
0

4π

(

K ′′
0 (ω0L)

I ′′0 (ω0L)
− K ′

0(ω0L)

I ′0(ω0L)

)

.
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The expressions involving z2 in (98) are evaluated in the same way. Finally, for a radially symmetric

function f(x) = f(r) we obtain:

[

(

fx1

f

)

x1

]

x=0

=

[

(

fx2

f

)

x2

]

x=0

=

(

f ′(r)

f(r)

)′

r=0

=
f ′′(0)

f(0)
;

[

(

fx2

f

)

x1

]

x=0

=

[

(

fx2

f

)

x1

]

x=0

= 0

Thus we obtain

λ ∼ 1

lnµ−1

{(

K ′′
0 (L/d)

I ′′0 (L/d)
− K ′

0(L/d)

I ′0(L/d)

)

+
d2

2

f ′′(0)

f(0)

}

(100)

Using Van-Dyke matching, we obtain the following simple uniform solution on a disk of radius L,

uunif ∼ 4

(

K0(r/d) −
K ′

0(L/d)

I ′0(L/d)
I0(r/d)

)

− 2 ln
(

1 + (r/µ)2
)

(101)

where µ is given by Principal Result 3.1.

4 Large eigenvalues, single spot

To conclude the stability analysis of a single hot spot, we now prove the stability with respect to the

large eigenvalues in one and two dimensions. The proof for one dimension has appeared elsewhere, see

for example [11] or [4]. We include it here for completeness. Here, we follow [11]. In two dimensions,

the situation is slightly more complicated because of the presence of a scaling invariance, which yields

an extra zero eigenvalue.

We start by studying the local operator

L0Φ = ∆Φ+ V0Φ (102)

where V0 is given by (20) in one dimension or by (62) in two dimensions. We have the following

characterization of the non-negative spectrum of (102):

Lemma 4.1. Consider the local eigenvalue problem on all of Rn,

L0Φ = ΛΦ; |Φ(y)| is bounded as |y| → ∞ (103)

with n = 1 or n = 2. It admits a single strictly positive eigenvalue Λ = Λ0 > 0 corresponding to a

positive eigenfunction. In R
1, (103) admits one zero eigenvalue; the corresponding eigenfunction is

due to translation invariance and is given by

Z1 =

(

∂

∂y
V0(y)

)

/V0.

In R
2, (103) admits three zero eigenvalues given by

Z1 = cos θ

(

∂

∂R
V0

)

/V0, Z2 = sin θ

(

∂

∂R
V0

)

/V0, Z3 = 2 +R

(

∂

∂R
V0

)

/V0. (104)

where R = |y| . The first two are due to translation invariance and the third is due to the scaling

invariance. All other eigenvalues are strictly negative.
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Proof. We first note that Z3 satisfies L0Φ = 0 in both one and two dimensions. To see this, let

U = ln(V0) so that U satisfies

∆U + eU = 0. (105)

This equation has a symmetry: if we write U(R) = w(eβ/2R) + β then w(z) also satisfies (105).

Therefore differentiating (105) with respect to β and then setting β = 0, we obtain that Z3 = ∂U/∂β

satisfies L0Φ = 0. In the same way, it is also easy to see that Z1 and Z2 correspond to translational

invariance of (105). Now in one dimension, note that Z3 ∼ O(R) for large R, so it is not bounded at

infinity. On the other hand, in two dimensions we have Z3 = O(1) for large R, so Z3 satisfies (103) in

two dimensions but not in one dimension.

Next note that Z1 has one root in one dimension. Therefore by oscillation theorem, there must be

an eigenfunction that has no roots, and whose eigenvalue is positive. Moreover such an eigenfunction

is unique, again by oscillation theorem. Similarly, in two dimensions, the eigenfunctions corresponding

to the zero eigenvalue, Z1, Z2, Z3 all have a single nodal line, which implies the existence of a unique

strictly positive eigenvalue. It remains to prove that there are no other zero eigenvalues. In one

dimension, this is true because the second order ODE L0Φ = 0 has only two solutions (Z1 and Z3) so

by uniqueness of solution of an ODE, no other zero eigenfunctions can exist. In two dimensions, we

decompose in polar coordinates, Φ(r, θ) = Φ(r) (A cosmθ +B sinmθ) where m is an integer. When

m = 0 or m = 1, there are exactly three solutions to L0Φ = 0, given by Z1, Z2, Z3, each having one

nodal line. If m > 1 then Φ has at least two nodal lines which correspond to roots of A cosmθ +

B sinmθ = 0. But this implies that the corresponding eigenvalue λ < 0 by the Oscillation theorem –

see for example [17], exercise 10 in §11.6.�
Remark 1: Note that the inner eigenvalue problem (103) is somewhat nonstandard, as there is no

linear decay-type term on the right hand side. As such, it has a continuous spectrum up to Re(Λ) ≤ 0.

However the outer problem (16) or (83) does have a decay since the outer region away from the spike

is of the form λφ ∼ d2∆φ− φ. Therefore any continuous spectrum must satisfy Re(λ) ≤ −1. As such,

the presence of continuous spectrum does not affect the stability of the hot spot.

Remark 2: In one dimension, the unique positive eigenvalue of (103) is Λ0 = 1/4; the correspond-

ing eigenfunction is sech(y/2). (see [11]). In two dimensions, we do not know an explicit formula but

numerically we obtain Λ0 ≈ 2.545.

Next consider the nonlocal problem

L0Φ− γV0

∫

Rn

V0Φdy = ΛΦ; Φ (y) → 0 as |y| → ∞. (106)

Note that L01 = V0 so that Φ = 1 is an eigenfunction of (106) corresponding to the zero eigenvalue

whenever γ = γ0 where

γ0 =
1

∫

Rn V0dy
. (107)

Next we show the following

Principal Result 4.1. Consider the nonlocal eigenvalue problem (106). Suppose that γ > γ0. Then

the problem (106) has no strictly positive eigenvalues. The zero eigenspace is the same as that of a

local problem (103) and is given in Lemma 4.1. On the other hand, if γ < γ0 then there is a strictly

positive eigenvalue of (106).

Proof. Given an eigenfunction Φ of (106), there are two cases to consider. Either
∫

V0Φ is zero

or not. In the former case, by Lemma 4.1, Λ ≤ 0. In the latter case, by scaling Φ appropriately, (106)

becomes

γV0 = (L0 − Λ)Φ;

∫

Rn

V0Φdy = 1
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Define

f(Λ) =

∫

Rn

V0(L0 − Λ)−1V0dy

so that Λ corresponds to the solution of f(Λ) = 1/γ. We now study the graph of f(Λ). Using

integration by parts we have

f ′(Λ) =

∫

Rn

((L0 − Λ)−1V0)
2dy > 0.

Also note that f(0) = 1/γ and f → 0 as as Λ → ∞. Moreover f(Λ) has a vertical asymptote near

Λ = Λ0, the positive eigenvalue of the local operator L0. Since Λ0 is the only strictly positive eigenvalue

of L0, f(Λ) has no other singularities for Λ > 0. This shows that f(Λ) > 1
γ on (0,Λ0) and f(Λ) < 0

on (Λ0,∞). So if γ > γ0 then there are no solutions to f(Λ) = 1
γ ; on the other hand there is a solution

Λ ∈ (0,Λ0) to f(Λ) = 1
γ if γ < γ0.

Finally, it is easy to verify that
∫

Rn V0Zidy = 0 for i = 1 (in R
1) or i = 1, 2, 3 (in R

2). This shows

that the null space of L0 is also in the zero eigenspace of (106). On other hand if Φ an eigenfunction

corresponding to a zero eigenvalue, then either
∫

Rn V0Φdy = 0 – in which case Φ is a linear combination

of Zi – or else by choosing an appropriate rescaling we have

L0Φ = V0, γ

∫

Rn

V0Φdy = 1.

But then Φ = 1 and γ = γ0. This completes the proof. �

Principal Result 4.1 shows that the stability of the full problem (16 or 83) depends only on the

stability of the small eigenvalues whose eigenfunctions in the inner region correspond to the kernel

of L0 as given in Lemma 4.1. Now in one dimension, this kernel consists of translational mode Z1,

whose instability was classified in Principal Result 2.2. In two dimensions, the kernel consists of two

translation modes Z1, Z2 which were classified in Principal Result 3.2, and of a scaling eigenfunction

Z3. Now we note that Z3 ∼ const. as R = |x− x0| /µ → ∞. On the other hand, in the outer region

we have:

d2∆φ − φ ∼ λφ, |x− x0| � O(µ)

with Neumann condition at the boundaries. To match with the inner region, φ must be bounded as

|x−x0| → 0. But then we must have λ ∼ −1, since φ 6= 0. This shows that the eigenvalue corresponding

to the scaling mode Z3 is stable.

5 Non-singular solutions; two hot spots.

For some values of p, it is possible to construct non-singular perturbation solutions. To leading order,

such solutions satisfy the differential equation (3) with d set to 0. In this case the leading order

behaviour of the solution must satisfy the implicit relation

u = d2αf(x)eu. (108)

To determine the critical value of p when such solutions exist, we consider the relation u = βeu. This

relation will have no solutions for β > 1
e , one solution for β = 1

e and two solutions otherwise. Thus, to

find the critical value of p, we solve for u = f(x)
M eu−1, where M = maxΩ |f(x)|. We may then evaluate

α as,

α =
p

(

d
∫

Ω MeW
(

− f(x)
Me

)

dx
)2 ,
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Figure 4: Comparison of solution to (108) and the full numerical simulation of (3) on a unit disk. The

electric field f(x) is taken to be (110), p = 1.3 and d = 0.05. (a) Solution given by (108). (b) Full

numerical simulation of (3) using FlexPDE. Initial conditions were taken to be a constant and the

simulation quickly reached a steady state which is shown here.

where W (x) is the principle branch of the Lambert W function. At the critical value of p, α = 1
d2Me .

We can then solve for the critical value of p as

pc = Me

(
∫

Ω

W

(

−f(x)

Me

)

dx

)2

, (109)

For p < pc, there will be two non-singular perturbation solutions. Since to leading order, the partial

differential equation is reduced to an ordinary differential equation at each point x, it is evident that

the smaller solution is stable and the larger unstable.

To illustrate the existence of such solutions, consider the two-dimensional unit disk with

f(x) = cos(θ)2 J1(z1r)
2 (110)

where z1 is the first root of J1(z) the Bessel function of the first kind of order 1. Such an electric

field results from using a TM111 wave guide with the wafer placed near the bottom of the cavity on

pegs[14]. Using (110) we then compute from (109) that pc ∼ 1.35. Next we take p = 1.3. Solving
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Figure 5: A simulation of (3) with p = 0.14. We use the f and initial conditions as in (4).

(108) we then obtain 4(a). On the other hand, we used FlexPDE software [3] to simulate the full PDE

(3). Using d = 0.01 and a constant initial condition u(x, 0) = 0.1, the solution quickly settles to a

steady state which is shown in Figure 4(b). It is seen to be in good agreement with the steady state

given by (108).

If p > pc, then the non-singular solutions will not exist. To illustrate this, we again consider

f(x) given by (110) but take p = 1.4 > pc = 1.35. We also took d = 0.01 and the initial condition

u(x, 0) = 0.1. The resulting solution is shown on Figure 5. Since p is close to pc, numerical simulation

shows that initially, the solution resembles the non-singular solution of Figure 4. Such transient state

then evolves into a solution that consists of two hot spots located near the maxima of f(x). However

this two hot-spot solution itself is unstable; one of the spots is quickly destroyed. Finally the resulting

solution containing only one hot-spot appears to settle to a stable equilibrium.

The instability of two-spot solutions can be seen as follows. As discussed in §4 the spectrum of

the local problem (103) contains an O(1) positive eigenvalue Λ0 with a strictly positive eigenfunction

Z0. Now consider φ = 1
f(x0)

Z0

(

|x−x0|
ε

)

− 1
f(x1)

Z0

(

|x−x1|
ε

)

. Due to the symmetry of the solution

and the localized nature of Z0, the integral term of the nonlocal eigenvalue problem (106) will vanish,

reducing it to the local eigenvalue problem (103). It follows that λ > 0 is an eigenvalue of the two-spot

configuration. This unstable eigenvalue is responsible for the competition-type instability observed in
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Figure 5.

6 Discussion

For a homogeneous electric field (f(x) =const.), it was shown in [9] that the hot spot exhibits a

metastable behaviour, and slowly moves to the boundary of the domain [9]. On the other hand, for

the case where the nonlinearity in (1) is G(u) = u2, it was also shown in [9] that in the limit of

small diffusivity, the one-dimensional hot-spot will concentrate at the maximum of f(x). This is more

complicated when the nonlinearity is exponential and the power p is sufficiently large. In such a case,

the position of the hot spot is determined by a combination of f(x), the power p and the domain

geometry (see Principal Result 2.1). As Formula (6) shows, the hot-spot can lose its instability in the

one-dimensional case even with d � 1, when p is increased sufficiently so that

p > d2 exp

( |f ′′(0)|d2
4f(0)

exp(2L/d)

)

.

The two dimensional case is more difficult to analyse, due to the appearnce of the logarithmic

singularity in the free-space Green’s function. Unlike the one-dimensional case, the stability is inde-

pendent of the power p, and the hot-spot will be stable provided that the diffusion d � 1 and f(x)

has an interior maximum. Moreover, two-dimensional hot-spot can be stable even when d = O(1),

provided that the relationship (4) holds. By contrast, the one dimensional hot-spot is unstable when

d = O(1), regardless of the shape of f(x).

It is well known that scalar local reaction diffusion systems cannot give rise to stable hot-spot

type solutions [2]. On the other hand, the addition of a nonlocal term has a stabilizing effect [4],

[18], citeiw-metastable. Even then, two or more hot-spot solutions are found to be unstable – similar

phenomenon was discussed in [8] in the context of reaction-diffusion systems. It is an open question

as to whether several hot-spot solutions can be stabilized.

The instability of the small eigenvalue typically induce a motion of the hot spot. In the case when

d is small, the equations of motion of the spot in 1D was derived in [9]; such motion was shown to

be metastable (exponentially slow in d). Presumably, an extension to two dimensions should be along

similar lines. However when d is of O(1), the expression for small eigenvalues is implicit in 1D (see

(49)). This complicates the derivation of the equations of motion of the spot.

Another open problem is to extend the modelling and analysis to the three dimensional case. For

the exponential nonlinearity, the inner problem leads to the Bratu equation,

Urr +
2

r
U + λ exp(U) = 0, U ′(0) = 0.

The hot-spot solutions have the property that U(0) → ∞ with λ → 2 [10]. This makes it difficult to

match the inner and outer solution properly.

Finally, it would be interesting to study the stability and dynamics of a hot spot along the bound-

ary; this is of interest for example if f(x) has no interior maximum, in which case the interior spot is

unstable. Presumably, it will then move towards the boundary, and its eventual equilibrium location

would depend on the balance between the magnitude of the electric field f(x) and the geometry of

the domain.
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