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Abstract
We compute the mean first passage time (MFPT) for a Brownian particle inside a two-dimensional disk with

reflective boundaries and a small interior trap that is rotating at a constant angular velocity. The inherent symmetry
of the problem allows for a detailed analytic study of the situation. For a given angular velocity, we determine
the optimal radius of rotation that minimizes the average MFPT over the disk. Several distinct regimes are observed,
depending on the ratio between the angular velocity ω and the trap size ε, and several intricate transitions are analyzed
using the tools of asymptotic analysis and Fourier series. For ω ∼ O(1), we compute a critical value ωc > 0 such
that the optimal trap location is at the origin whenever ω < ωc, and is off the origin for ω > ωc. In the regime
1 � ω � O(ε−1) the optimal trap path approaches the boundary of the disk. However as ω is further increased to
O(ε−1), the optimal trap path “jumps” closer to the origin. Finally for ω � O(ε−1) the optimal trap path subdivides
the disk into two regions of equal area. This simple geometry provides a good test case for future studies of MFPT
with more complex trap motion.

Key words: mean first passage time, narrow escape, diffusion, moving trap, matched asymptotics, boundary
layer

1 Introduction

Numerous problems in nature can be formulated in terms of mean escape time of Brownian particles in the presence
of small traps. This is often referred to as the mean first passage time (MFPT) or the narrow escape problem, and there
is a large and growing literature on the subject; see for example reviews [1, 2, 3, 4, 5, 6, 7] and references therein.
Examples where first-passage problems arise include: oxygen transport in muscle tissue [8], cold atoms in optical traps
[9], molecular self-assembly [10], the protein target site location in DNAs [11, 12], signal transduction and immune
cell activation [13], search and rescue [14, 15, 5] and predator-prey interactions [16, 17, 15, 18, 19]. See a recent
review of the narrow escape problem ([20]) and references therein for more applications and associated methods.

Generally speaking, MFPT problems fall into two classes: either the trap is stationary or it is moving. In the
case of a stationary traps, very precise information can be obtained, in particular when the traps have small area
[7, 21, 22, 2, 23, 24, 25, 13]. A scenario involving moving traps was introduced in [26] in the context of an annihilation
process A + B → 0. While originally motivated by the annihilation of monopole-antimonopole pairs in the early
universe, the annihilation reaction may also serve as a model in chemical kinetics and collision-induced quenching of
excited-state particles [27, 28]. Subsequent studies [29, 30] have addressed the asymptotics of the long time survival
probability of a particle diffusing in a continuum distribution of traps. There is also an extensive literature on searching
strategies, where a moving trap represents a searcher (e.g. police) and Brownian particles are sought (e.g. drunken
robbers). See for example [16, 31, 17, 18, 32, 19]. In some of this literature, the seeker is assumed to follow some
kind of random strategy. For example, in [31] it was shown that an intermittent searching strategy consisting of large
jumps and random walks works best under many circumstances where the seeker does not know anything about the
target. Other works study pursuit problems where either the seeker or the target have some (or full) information about
the other party, and can adjust their strategy accordingly.
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Let us briefly review the derivation of the continuum equations for the MFPT as outlined in [1], page 31. We
first consider the simplified situation of a particle undergoing a discrete random walk moving in one dimension with a
stationary trap located at x = x0. Assume that within ∆t time, the particle jumps a distance ∆x with equal probability
to the left and to the right, and let v(x) denote the mean first passage time of a particle initially located at x. Then the
MFPT at location x may be expressed in terms of the MFPT of its two neighboring locations as

v(x) =
1

2
{v(x+ ∆x) + v(x−∆x)}+ ∆t ; v = 0 at x = x0 , (1.1)

where the condition v(x0) = 0 indicates that a particle whose starting location coincides with the trap location is
expected to survive for precisely zero units of time. Taking the limit ∆t,∆x→ 0 and expanding (1.1) in Taylor series,
we obtain the continuum equation

Dvxx + 1 = 0 , v(x0) = 0 ; D ≡ (∆x)2

2∆t
, (1.2)

subject to appropriate boundary conditions. Here, D is the diffusion rate, which can be non-dimensionalized to 1. In
Figure 1(a), we illustrate a scenario in which a trap is located at x = 1/2 on a domain with reflecting boundaries at
x = 0 and x = 1. The solid curve denotes the MFPT as obtained from a Monte Carlo simulation of 5000 individual
agents undergoing an unbiased random walk starting from location xi ∈ (0, 1). At each interval of time ∆t, each agent
takes one step of size ∆x to the left or right with equal probability. The quantities are such that (∆x)2/(2∆t) = 1.
An agent that steps outside the domain is reflected back into the domain. The time for each agent to hit the trap is
recorded, then averaged over all agents. Repeating the procedure for a set of points on the interval (0, 1), we obtain an
approximation for the MFPT as a function of starting location xi. The dashed curve represents the true MPFT obtained
by solving (1.2) with D = 1, trap location x0 = 1/2, and pure Neumann boundary conditions vx(0) = vx(1) = 0.
Excellent agreement is observed between the Monte Carlo simulation and the exact solution.
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Figure 1: (a) MFPT on a domain of unit length with reflecting boundaries. The dashed curve is an approximation of the MFPT
obtained from a Monte Carlo simulation with ∆x =

√
2/100 and ∆t = 1 × 10−4. The diffusion coefficient D defined in (1.2)

is then D = 1. For each grid point in x, an average of capture times of 5000 agents was used to generate the MFPT. The dashed
curve represents the true MPFT obtained by solving (1.2) with D = 1 and pure Neumann boundary conditions. (b) MFPT on
a one-dimensional circle with trap rotating clockwise at constant angular velocity ω > 0. The plot represents the MFPT for all
locations on the circle at the instant when the trap is located at θ = 0. For the Monte Carlo simulation (solid line), ∆θ = 0.01,
∆t = 1× 10−4, and ω = 2. The results are an average over 500 agents at each grid point. The dashed line is the solution of (1.4)
with D = 0.5 and ω = 2.

A similar derivation may be used to obtain an ODE describing MFPT on a one-dimensional circle θ ∈ [0, 2π) with
a moving trap traveling with constant velocity. Consider a trap rotating clockwise on the circle at constant angular
velocity ω > 0. At the instant when the trap is located at θ = θ0, the MFPT for a particle with initial location θ can be
expressed in terms of the MFPT of neighbors of the site equidistant from the trap at the previous time step. Since the
trap is displaced by an angle of −ω∆t each time step, we have
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v(θ) =
1

2
{v(θ + ω∆t−∆θ) + v(θ + ω∆t+ ∆θ)}+ ∆t; v = 0 at θ = θ0, (1.3)

where we have assumed a jump of ∆θ per time step with equal probability in each direction. Expanding (1.3) to
leading order, noting that O(∆θ) ∼ O(

√
∆t), we obtain the ODE for MFPT

Dvθθ + ωvθ + 1 = 0 v(θ0) = 0 ; D =
(∆θ)2

2∆t
, (1.4)

with periodic boundary conditions. The diffusion coefficient in (1.4) may be scaled to unity, leaving a non-dimensional
angular velocity in front of the advection term. The Monte Carlo simulation may be performed in the same way as in
the case of the stationary trap. On a periodic domain of length 2π, we initialize 500 agents at location θi ∈ [0, 2π)
with the trap located at θ0 = 0. For each time step ∆t, we allow each agent to move clockwise or counterclockwise
with equal probability, while also advancing the location of the trap by −ω∆t, where ω is the speed of the trap. The
time required for each agent to be captured is recorded, then averaged over all agents. Repeating the procedure for a
discrete set of points on the interval [0, 2π), we obtain Figure 1(b). The MFPT in Figure 1(b) therefore represents the
MFPT for a random walker starting at location θ at the instant in time when the trap is located at θ0 = 0. In Figure
1(b), we observe excellent agreement between the solution of (1.4) and a Monte Carlo simulation. The trap is located
at θ0 = 0, and is moving to the left, re-entering at θ = 2π by periodicity. Note that, as expected, the MFPT in front of
the rotating trap is lower than that behind the trap.

The mean-field equation (1.4) bears close relation to the parabolic PDE

ut = Duφφ + 1 , u(mod(ωt, 2π), t) = 0 , (1.5)

with periodic boundary boundary conditions and appropriate initial conditions. Applying the transformation θ =
φ − ωt and u(φ, t) = v(θ) to (1.5), one recovers (1.4) with θ0 = 0. Note, however, that with ω > 0 in both (1.4)
and (1.5), the trap in (1.4) rotates clockwise while it rotates counterclockwise in (1.5). The quantity u in (1.5) is thus
different from the MFPT interpretation of v in (1.4). We interpret u as the rescaled continuum limit of a quantity that
satisfies the discrete equation

u(φ, t+ ∆t) =
1

2
{u(φ+ ∆φ, t) + u(φ−∆φ, t)}+ r∆t ; u = 0 at φ = mod(ωt, 2π) . (1.6)

A simple interpretation for u in (1.6) is that of a concentration of particles that undergo an unbiased random walk with
a constant external feed rate r, which can be normalized to unity. The rotating Dirichlet trap acts to remove particles
from the domain. It may also be interpreted as a temperature, with the Dirichlet trap acting to cool a domain subject
to uniform external heat influx. For the same set of parameters, the solution for u at a specific instant when the trap is
located at φ = 2π is given by Figure 1(b). The trap, however, is to be assumed to be traveling to the right, re-entering
at φ = 0. As expected, the concentration or temperature behind the trap is lower than that in front.

In this paper, we examine the MFPT for a moving circular trap of small radius ε inside a unit disk. The trap is
assumed to rotate clockwise at a constant rate ω along a circle of radius r0 < 1 concentric with the unit disk. That is,
the location of the center of the trap is given by

(x0, y0) = (r0 cosωt,−r0 sinωt) . (1.7)

The derivation for the elliptic PDE describing the MFPT with this geometry follows closely to that leading to (1.3).
That is, for a trap of radius ε centered at (r0, θ0) in polar coordinates, the MFPT for a particle initially located at (r, θ)
may be expressed in terms of the MFPT of the neighbors of the point (r, θ + ωt) at the previous time step. As in
the case of the rotating trap on a one-dimensional circle, this equivalence may be attributed the dependence of MFPT
on only the relative starting location of the particle with respect to the trap. In Cartesian coordinates, this may be
expressed as

v(x, y) =
1

4
{v(xp + ∆x, yp) + v(xp −∆x, yp) + v(xp, yp + ∆y) + v(xp, yp −∆y)}+ ∆t ,

v = 0 when |(x, y)− (x0, y0)| ≤ ε ,
(1.8)

where we have assumed that, at each time step, the particle may move one step on a square lattice with equal probability
in all four directions. The condition v = 0 when |(x, y) − (x0, y0)| ≤ ε states that the MFPT of a particle starting
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inside or on the trap centered at (x, y) = (x0, y0) is exactly zero. Since the angular coordinate of the trap location
decreases by ω∆t each time step, the location (xp, yp) is

(xp, yp) = (r cos(θ + ω∆t), r sin(θ + ω∆t)) . (1.9)

Expanding (1.9) for small ∆t and using (x, y) = (r cos θ, r sin θ), we calculate

(xp, yp) = (x− ωy∆t, y + ωx∆t) . (1.10)

Substituting (1.10) into (1.8) and expanding to leading order, noting that O(∆x) ∼ O(∆y) ∼ O(
√

∆t), we obtain

(∆x)2

4∆t
vxx +

(∆y)2

4∆t
vyy + ω(xvy − yvx) + 1 = 0 ,

v = 0 when |(x, y)− (x0, y0)| ≤ ε .
(1.11)

Letting ∆x = ∆y = ∆` and D ≡ (∆`)2/(4∆t) in (1.11) we obtain in polar coordinates

D∆v + ωvθ + 1 = 0 ; vr(1) = 0 , v = 0 when |(x, y)− (x0, y0)| ≤ ε , (1.12)

where we have used in (1.12) that xvy − yvx = vθ. Both the radius of the disk and the diffusion coefficient D may
be scaled to unity without loss of generality. The pure Neumann boundary condition indicates a disk with a reflecting
wall. To illustrate the theory, we compare the MFPT obtained from a Monte Carlo simulation (Figure 2(a)) to that of
a numerical solution of (1.12) with D = 1, r0 = 0.6, ω = 200, and ε = 0.1 (Figure 2(b)). The simulations were
performed in the same way as that on the one-dimensional circle, with ∆` and ∆t set such that the diffusion coefficient
was unity. That is, with a trap of radius ε centered at (x, y) = (r0, 0), we initialize 1000 agents at a location (xi, yi)
in the unit disk. We then evolve each agent according to a nearest neighbor random walk, as well as the trap according
to (1.7). For each agent, we record the time elapsed before it comes within ε distance of the trap center. The MFPT at
point (xi, yi) is then approximated by the average capture time of the 1000 particles. Repeating over a grid of points
inside the unit disk, we generate Figure 2(a). We observe excellent qualitative agreement between the simulation
result and PDE solution. In both figures, the regions with the darkest shade of red have a value of approximately 0.13,
indicating also quantitative agreement. Observe that, similar to the case of a rotating trap on a one-dimensional circle,
the MFPT is lower in front of the clockwise-rotating trap than it is behind it.

(a) MFPT from Monte Carlo simulation (b) MFPT from solution of PDE

Figure 2: (a) Monte Carlo approximation of MFPT on a unit disk with trap located at (x, y) = (0.6, 0) rotating clockwise with
angular velocity of ω = 200. Red (blue) regions indicate large (small) values of MFPT. The parameters of the random walk are
such that D = 1. 1000 trials per grid point were used to obtain an average approximation. (b) Numerical solution of (1.12) with
D = 1 and ω = 200. In both figures, the regions shaded in dark red have a value of approximately 0.13. Observe that the MFPT
is lower in front of the trap than it is behind it.

In the same way that the time-independent problem (1.4) may be interpreted as a transformation of the time-
dependent problem (1.5) into a rotating frame, the time-dependent analog of (1.12) may be formulated as
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vt = ∆v + 1 , x ∈ Ω \ Ωε(x0(t)) ;

∂nv = 0 , x ∈ ∂Ω ; v = 0 , x ∈ ∂Ωε(x0(t)) ; x0(t) = (r0 cosωt, r0 sinωt) ,
(1.13)

supplemented by appropriate initial conditions. Here, x = (x, y) is a two-dimensional vector in Cartesian coordinates,
v = v(x, y, t), Ω denotes the unperturbed unit disk, Ωε(x0) the circular trap of radius ε centered at x = x0, and ∂nv
the normal derivative of v on ∂Ω. With ω > 0, the trap rotates counterclockwise. As in (1.6), v may be interpreted as
a concentration of particles or a temperature, with the trap acting to remove the quantity from the domain subject to a
constant uniform influx. In Figures 2(a) and 2(b), we thus observe the counterclockwise-rotating hole leaving a region
of low particle concentration or temperature in its trail.

Our goal is to describe the “optimal” radius r0 = ropt0 as a function of both ω and ε. For such a rotating trap,
we define the optimal radius as the one that minimizes the MFPT averaged over all points in the domain. MFPT
optimization problems with absorbing boundaries (stationary traps) were considered for particles in one dimension
under the presence of a time-oscillatory or randomly fluctuating field in [33, 34, 35, 36, 37, 38]. In these cases, it was
found that the average MFPT could be minimized by careful tuning of the characteristics of the field. In contrast, we
tune characteristics of the trap motion in order to minimize the average MFPT. In this formulation with the rotating
trap, by equivalence between (1.12) with (1.13), minimization of the average MFPT is equivalent to minimizing the
total mass

M(r0;ω) =

∫
Ω

v dΩ , (1.14)

of the steady state solution of (1.13). We do not consider any transient effects in our analysis. In the rest of this paper,
we adopt this interpretation instead of that of the MFPT, as it leads to results and calculations that are more easily
interpreted from a physical standpoint.

This is one of the few configurations that is amenable to a full mathematical analysis for a bounded domain in
two dimensions. By taking advantage of the radial symmetry, the problem becomes “stationary” in the co-rotating
coordinate frame, making it possible to apply a full range of techniques similar to those developed for small stationary
traps in [7, 21, 22, 2, 23, 24, 25]. See [20] for a review of asymptotic methods used to study narrow escape problems.

Our main results are summarized in Figure 3. For a range of ω, it shows the optimal radius of rotation ropt0 of the
trap that minimizes M(r0;ω) with respect to r0. The analysis shows four distinguished regimes, depending on the
relative sizes of ω and ε, as summarized in the following table.

Regime Main result
ω = O(1) “bifurcation” near ω = ωc (§3, §3.1)
1� ω � O(ε−1) ropt0 ∼ O(1) (§4)
ω = O(ε−1) transition region, optimal radius depends only on ω0 = εω (§5)
ω � O(ε−1). ropt0 ∼ 1/

√
2 (§2)

The left non-zero segment of the solid curve in Figure 3, independent of ε, was generated by calculating M(r0;ω)
in terms of an infinite series, which may be summed numerically to determine the optimal value of r0. The analysis,
which assumes ω � O(ε−1), is presented in §3. The circular points are the results of full numerically computed
steady state solutions of (1.13) with ε = 1× 10−3. A notable feature seen in Figure 3 is the presence of a bifurcation
near ωc ≈ 3.026, where for ω < ωc, the optimal radius of rotation is precisely 0. In §3.1, we calculate this value
exactly. A typical solution in the regime ω ∼ O(1) is shown in Figure 4(a) for ω = 10 and r0 = 0.6. Note that
solutions for ω ∼ O(1) lack radial symmetry.

The top dashed line of Figure 3 at ropt0 = 1 indicates the value of ropt0 as ω →∞ in the regime 1� ω � O(ε−1).
In §4 for large ω, we use boundary layers to construct a leading order steady state solution of (1.13). Whereas the
analysis of §3 leads to an expression for M(r0;ω) in terms of an infinite sum, the boundary layer analysis yields
an explicit leading order expression for M(r0;ω), from which we readily show that ropt0 → 1 as ω → ∞ with
ω � O(ε−1). A typical solution in this regime is shown in Figure 4(b). An internal layer develops in the tail behind
the trap, while away from this internal layer, the solution is nearly radially symmetric.

The right segment of the solid curve of Figure 3 is calculated from a boundary layer solution with ω = ω0/ε
and ω0 ∼ O(1). A very delicate analysis of the boundary layer is required to derive the asymptotic solution. This
calculation is presented in §5. Unlike the ω � O(ε−1) regimes, the results in this regime depend on ε through
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Figure 3: Asymptotic and numerical results for ropt0 in different regimes of ω. Note that the scale of the horizontal axis is
logarithmic. The left non-zero segment of the solid curve was obtained from a series solution for the steady state of (1.13) with
ω ∼ O(1). The top thin dashed line is the result ropt0 ∼ 1 obtained from a leading order analysis in the regime 1� ω � O(ε−1).
The circles were obtained from full numerical solutions of (1.13) with ε = 1 × 10−3. The right segment of the solid curve was
obtained from a leading order calculation with ω ∼ O(ε−1). The overlaying circles represent results from numerical solutions with
ε = 1 × 10−3. In this regime, the relevant quantity is εω, not ε and ω individually. As such, the stars, generated from the same
computations with ε = 5 × 10−3 and ω one-fifth of the value indicated on the horizontal axis, align closely with the circles. The
lower thin dashed line indicates the result ropt0 ∼ 1/

√
2 for ε→ 0 and ω →∞ with ω � O(ε−1).

the quantity ω0 = εω. Illustration of this dependence may be seen in Figure 3. While the overlaying circles were
determined from numerical solutions with ε = 1× 10−3 and ω given on the horizontal axis, the stars were computed
with ε = 5 × 10−3 with ω one-fifth the value on the horizontal axis. The dependence on the product εω and not
on ε and ω individually may be inferred from the close agreement between the circles and stars. A typical solution
in this regime is shown in Figure 4(c). Compared to Figure 4(b) with smaller ω, the internal layer in Figure 4(c) is
considerably thinner. Away from the layer, the solution also exhibits a high degree of radial symmetry.

Finally, for very large ω � O(ε−1), the trap is rotating so fast that from the point of view of a particle in the
domain, it appears simultaneously everywhere along the circle of radius r0. In this case the optimal radius asymptotes
to ropt0 ∼ 1/

√
2. This has a very nice geometric interpretation: the trap moving along such radius divides the unit disk

into two regions of equal area. This calculation is presented in §2.
The first step in the analysis is to transform (1.13) into the rotating frame of the trap to obtain a time-independent

problem. To do so, we first transform to the polar coordinate system (x, y) → (r, ϕ) so that x(r, ϕ) = r cosϕ,
y(r, ϕ) = r sinϕ and v(x, y, t) = ũ(r, ϕ, t). The center of the trap is then given by (r, ϕ) = (r0,mod(ωt, 2π)).
Making the transformation into the rotating frame θ = ϕ − mod(ωt, 2π) with 0 < θ < 2π, and ũ(r, ϕ, t) =
u(r, θ(t)), we obtain the stationary problem

∆u+ ωuθ + 1 = 0 , x ∈ Ω \ Ωε(r0) ; (1.15a)

ur = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωε(r0) . (1.15b)

Here, ∆u denotes the Laplacian of u(r, θ) in radial coordinates, uθ and ur denote differentiation of u with respect to
the angular and radial coordinates, respectively, and Ωε(r0) denotes a circular hole of radius ε centered at a distance
r0 from the origin located along the θ = 0 axis.
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(a) u(x, y) with ω = 10
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(c) u(x, y) with ω = 1× 104

Figure 4: Contour plots of u(x, y) obtained by numerically solving (1.15) with (a) ω = 10, (b) ω = 1000, and (c) ω = 1 × 104.
The trap is centered at r0 = 0.6. The figures depict the steady state solutions of (1.13) in the co-rotating frame of a trap rotating
counterclockwise at angular velocity ω on the ring r = r0. In (a), where ω ∼ O(1), the solution exhibits no radial symmetry. In
(b) for larger ω, an internal layer centered on the ring r = r0 develops behind the trap. The solution is nearly radially symmetric
in regions away from the layer. In (c), where ω ∼ O(ε−1), the layer becomes thinner and the solution exhibits greater radial
symmetry. Here, ε = 1× 10−4. FlexPDE [39] was used for numerical simulations.

2 The regime ω � O(ε−1)

This is the simplest regime to analyze. The increase in degree of radial symmetry with ω as shown in Figure 4
suggests that the solution of (1.15) reduces to a solution with u = 0 on a ring of width ε centered on r = r0 and
radially symmetric otherwise. That is, to leading order, (1.15) reduces to the radially symmetric problem

∆u+ 1 = 0 , x ∈ Ω \ {x : r0 − ε < |x| < r0 + ε} ; (2.1a)

ur = 0 , x ∈ ∂Ω ; u bounded as r → 0 , u = u0 , |x| = r0 − ε , r0 + ε , (2.1b)

with u0 = 0. The solution of (2.1) with u0 = 0 is

u(r) =
r2
0 + ε2 − r2

4
+

{
− εr02 , 0 < r < r0 − ε
εr0
2 + 1

2 log
(

r
r0+ε

)
, r0 + ε < r < 1

. (2.2)

In this case, with u given by (2.2), the total mass as defined by (1.14) is

M(r0;ω) = M(r0) = π

[
r2
0

2
− 3

8
− 1

2
log(r0 + ε) + εr0(1− r2

0) +
1

2
ε2 − ε3r0

]
. (2.3)

The optimal radius of rotation ropt0 that minimizes M satisfies dM/dr0 = 0, yielding

ropt0 =
1√
2
− ε

4
+O(ε2) . (2.4)

The approach to a value of ropt0 slightly less than 1/
√

2 as ω →∞with fixed εwas observed in obtaining the numerical
results presented in Figure 3.

For ε → 0, the optimal radius (2.4) is the same as that obtained in the limit of an analogous problem studied in
[25]. The objective of that work was to find configurations forN identical traps placed inside a unit disk that optimized
the fundamental Neumann eigenvalue of the Laplacian. For the special case where the traps were restricted to lie on a
ring of radius r, it can be seen from Proposition 4.4 of [25] that the optimal value of r tends to 1/

√
2 as N →∞.

In the following section, we solve (1.15) in the regime ω ∼ O(1) in terms of a series expansion. Calculating the
mass, we find that there exists a value ωc > 0 independent of ε for which ropt0 = 0 when ω < ωc and 0 < ropt0 < 1
when ω > ωc. In §3.1, we use the results of §3 to determine the exact value of ωc.
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3 Asymptotic solution for ω ∼ O(1)

For ω = O(1), we solve (1.15) using the method of matched asymptotics as in [25]. Near the trap, we make the
change to the inner variables

y =
x− x0

ε
, u(x) = U(y) ; x0 = (r0, 0) , (3.1)

so that the trap, in the inner region, is a circle of unit radius denoted Ω1. Here, x0 denotes the center of the trap in
Cartesian coordinates. The inner problem for U then becomes

∆yU = 0 , y /∈ Ω1 ; U = 0 , |y| = 1 , (3.2a)

U ∼ S log |y| as |y| → ∞ . (3.2b)

With y defined in (3.1), the behavior of u near the trap is determined by the far-field behavior in (3.2b) as

u ∼ S log |x− x0| − S log ε , as x→ x0 . (3.3)

The logarithmic behavior of u as x→ x0 suggests that

u = −πG(x;x0) +H , (3.4)

where G(x;x0) is the Neumann Green’s function satisfying

∆G+ ωGθ =
1

π
− δ(x− x0) , x ∈ Ω ; (3.5a)

∂rG = 0 , x ∈ ∂Ω ;

∫
Ω

G(x;x0) dΩ = 0 , (3.5b)

and H is a constant obtained from matching the inner and outer solutions.
The solution for G(x;x0) in (3.5a) can be written as

G(x;x0) = − 1

2π
log |x− x0|+R(x;x0) , (3.6)

where R(x;x0) remains finite as x → x0 and is referred to as the regular part of G(x;x0). By (3.4), the behavior of
u as x→ x0 is then

u ∼ 1

2
log |x− x0| − πR(x0;x0) +H , as x→ x0 . (3.7)

Comparing (3.7) to (3.3), we find that S = 1/2 and

H = πR(x0;x0)− 1

2
log ε . (3.8)

By (3.4) and (3.5a), we have that the mass of u in Ω is

M(r0;ω) = πH , (3.9)

with H given in (3.8) and r0 = |x0|. The minimization of M is thus equivalent to the minimization of R(x0;x0). We
now compute G(x;x0) in the form of a Fourier series expansion.

We first write (3.5a) in polar coordinates as

Grr +
1

r
Gr +

1

r2
Gθθ + ωGθ =

1

π
− 1

r
δ(r − r0)δ(θ) , (3.10)

where we have used that the location x0 of the trap is along the θ = 0 ray. We use separation of variables to write
G(x;x0) as

8
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G(x;x0) = G(r, θ; r0) = R0(r) +
∑
m>0

eimθRm(r) + c.c. , (3.11)

where c.c. refers to the complex conjugate of the term involving the summation. Substituting (3.11) into (3.10) and
recalling the insulating boundary conditions in (3.5b), we obtain

R′′0 +
1

r
R′0 =

1

π
− 1

2πr
δ(r − r0) , R0 bounded as r → 0 , R′0(1) = 0 , (3.12a)

R′′m+
1

r
R′m+

(
iωm− m2

r2

)
Rm = − 1

2πr
δ(r−r0) , m > 0 , Rm bounded as r → 0 , R′m(1) = 0 . (3.12b)

For m > 0, the homogeneous solution of (3.12b) may be written as

Rm(r;ω) = amIm(cmr) + bmKmm(cmr) ; cm ≡ −i
√
iωm , (3.13)

where Im(r) and Km(r) are m-th order modified Bessel functions of the first and second kind, respectively. Solving
(3.12b) separately for r < r0 and r > r0, and applying appropriate continuity and jump conditions at r = r0, we
obtain the solution for Rm,

Rm(r;ω) =


1

2π

[
−K

′
m(cm)
I′m(cm) Im(cmr0) +Km(cmr0)

]
Im(cmr) , 0 < r < r0

1
2π

[
−K

′
m(cm)
I′m(cm) Im(cmr) +Km(cmr)

]
Im(cmr0) , r0 < r < 1

, m > 0 , (3.14a)

where I ′m(cm) and K ′m(cm) denote the derivatives of Im and Km evaluated at cm, respectively. In a similar way, we
find that the solution to (3.12a) for R0(r) is

R0(r) =
r2

4π
+ a0 −

{
1

2π log r0 , 0 < r < r0
1

2π log r , r0 < r < 1
. (3.14b)

Note that the jump condition arising from the right-hand side of (3.12a) is automatically satisfied by (3.14b). The
constant a0 is determined by the zero-mean condition in (3.5b), yielding

a0 =
1

8π
[2r2

0 − 3] . (3.14c)

The solution for G(x;x0) is then given by (3.11) with (3.14).
To calculate R(x0;x0), we use (3.6) to write

R(x0;x0) = lim
x→x0

{
G(x;x0) +

1

2π
log |x− x0|

}
. (3.15)

We next write log |x− x0| in terms of its Fourier series as

log |x− x0| =
{

log r0 − 1
2

∑
m>0

1
m

(
r
r0

)m
eimθ + c.c. , r < r0

log r − 1
2

∑
m>0

1
m

(
r0
r

)m
eimθ + c.c. , r > r0

. (3.16)

Using the solution for G(x;x0) with θ → 0 and r → r0 as x→ x0, we then use (3.16) to write (3.15) as

R(x0;x0) =
r2
0

2π
− 3

8π
+
∑
m>0

(
Rm(r0)− 1

4πm

)
+ c.c. . (3.17)

Using (3.17), we may then calculate the constantH from (3.8). The solution for u is then given by (3.4) withG(x;x0)
given by (3.11) with (3.14) and H given by (3.8) and (3.17). A typical solution for u with ω = 10 and r0 = 0.6 is
shown in Figure 5(a). The corresponding regular part of u is shown in Figure 5(b). The contour plot of u is shown in
Figure 5(c) and agrees with Figure 4(a). Finally, we calculate the mass M in (3.9) as

9
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M(r0;ω) = π

[
r2
0

2
− 3

8
− 1

2
log ε

]
+ π2

∑
m>0

(
Rm(r0;ω)− 1

4πm

)
+ c.c. . (3.18)

Here, c.c. represents the complex conjugate of the term involving the summation, while the parametric dependence of
M on ω is through the dependence of Rm on cm, defined in (3.13).

(a) u(x, y) (b) regular part of u(x, y)

x

y

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) contour plot of u(x, y)

Figure 5: (a) Asymptotic solution u(x, y) of (1.15) with ω = 10, ε = 1× 10−4, and r0 = 0.6 as constructed from (3.4). (b) The
corresponding regular part of u(x, y). Red (blue) regions indicate large (small) values of u. (c) The contour plot of (a); compare
with Figure 4(a) for the numerical solution with the same parameters.

For a range of ω � O(ε−1), we use (3.18) to numerically determine the value of r0 that minimizesM . The results
are presented in Figure 6. The first main feature of Figure 6(a) is the bifurcation that occurs near ω = ωc ≈ 3 (closeup
in Figure 6(b)); for ω < ωc, the optimal radius of rotation remains zero. In §3.1 below, we expand (3.18) for small
r0 � 1 to locate the exact value of ωc at which the bifurcation occurs. The second main feature of Figure 6(a) is the
monotonic approach to ropt0 = 1 for large ω. In §4, we construct a solution of (1.15) for 1 � ω � O(ε−1) to show
that ropt0 → 1 as ω → ∞ with ω � O(ε−1). Note that this does not conflict with the result in (2.4), as the analysis
above is valid only when ω � O(ε−1). The regime ω = O(ε−1) is a distinguished limit and is discussed in §5.
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(a) ropt0 versus ω
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(b) ropt0 versus ω near bifurcation point

Figure 6: (a) Plot of ropt0 versus ω � O(ε−1) (solid, left vertical axis) and the corresponding mass M(ropt0 ;ω) (dashed, right
vertical axis). The optimal radius remains zero for ω sufficiently small. (b) Closeup of the bifurcation point near ω ≈ 3 past which
the optimal radius becomes non-zero.

3.1 Bifurcation of ropt0 versus ω

The presence of a bifurcation of ropt0 near ω = 3 may be confirmed by obtaining numerical solutions of (1.15). The
computations were performed using the FlexPDE finite element PDE solver [39]. In Figure 7, we compare the mass

10
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M(r0;ω) as given by (3.18) with that computed from numerical solutions of (1.15). In Figure 7(a), we show that
when ω = 2, the concavity at the point r0 = 0 is positive with M(r0;ω) increasing on the entire interval 0 < r0 < 1,
yielding ropt0 = 0. In Figures 7(b) and 7(c) with ω = 3.5, we show that the concavity at r0 = 0 has become negative,
thereby yielding ropt0 > 0. The bifurcation seen in Figure 6(b) must then occur when the quadratic behavior of
M(r0;ω) near r0 = 0 changes from concave up to concave down. We may thus determine the bifurcation point by
expanding M(r0;ω) in (3.18) in powers of r0 and calculating the value of ω at which the coefficient of r2

0 changes
sign. In the following analysis, we assume that r0 � O(ε).

0 0.2 0.4 0.6 0.8 1
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(a) M(r0) for ω = 2
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(b) M(r0) for ω = 3.5

0 0.2 0.4 0.6 0.8
9.6

9.65
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r0

M
(r

0
;3
.5
)

(c) M(r0) for ω = 3.5 closeup

Figure 7: Plots of M(r;ω) for (a) ω = 2 and (b),(c) ω = 3.5. The solid curves are calculated from (3.18), while the circles are
obtained from numerical solutions of (1.15). In (a) with ω = 2, the point r0 = 0 is a global minimum so that ropt0 = 0, while in
(b) with ω = 3.5, it is a local maximum (closeup in (c)), yielding ropt0 > 0. Here, ε = 1× 10−3.

To simplify calculations, we equivalently seek the leading order term of the expansion in r0 of the quantity

S =
r2
0

2
− 2<

{∑
m>0

(
−πRm(r0;ω) +

1

4m

)}
, (3.1)

where Rm(r;ω) is given in (3.14a). To do so, we write the ascending series representation of Iν(z) and Kν(z) for
ν > 0 given in [40] as

Iν(z) =
(z

2

)ν ∞∑
k=0

(z2/4)k

k!Γ(ν + k + 1)
, (3.2a)

Kν(z) =
1

2

(z
2

)−ν ν−1∑
k=0

(n− k − 1)!

k!

(
−z

2

4

)k
+ (−1)ν+1 log

(z
2

)
Iν(z)

+ (−1)ν
1

2

(z
2

)ν ∞∑
k=0

[ψ(k + 1) + ψ(ν + k + 1)]
(z2/4)k

k!(n+ k)!
, (3.2b)

where γ is Euler’s constant, and ψ(n) is given by

ψ(n) =

{ −γ , n = 1

−γ +
∑n−1
k=1

1
k , n > 1

. (3.2c)

With (3.2) and (3.14a), we find that

−πR1(r0;ω) ∼ −1

4
+
c21
8

[
−1

4
− log

(c1r0

2

)
+
K ′1(c1)

I ′1(c1)
+

1

2
(1− 2γ)

]
r2
0 ; c1 ≡ −i

√
iω (3.3a)

11
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−πRm(r0;ω) ∼ − 1

4m
+

c2m
8m(m2 − 1)

r2
0 ; m > 1 , cm ≡ −i

√
iωm . (3.3b)

The (4m)−1 term in (3.1) cancels the leading order constant term in (3.3a) and (3.3b). Further, since c2m is pure
imaginary, only the m = 1 term contributes to the leading order quadratic behavior of S. We therefore have, for
ε� r0 � 1,

S ∼ a2(ω)r2
0; a2(ω) ≡ 1

2
− 2<

{
c21
8

[
−1

4
− log

(c1r0

2

)
+
K ′1(c1)

I ′1(c1)
+

1

2
(1− 2γ)

]}
, (3.4)

where the dependence of a2(ω) on ω is through c1 defined in (3.3a). The value ω = ωc at which the concavity of S at
r0 = 0 changes sign is the value at which the optimality of r0 = 0 is lost. The bifurcation point therefore must satisfy

a2(ωc) = 0 , (3.5)

where a2(ω) is defined in (3.4). Solving (3.5) numerically for ωc, we find that the bifurcation in Figure 6(b) occurs at
ωc ≈ 3.026.

4 Leading order solution for large ω with ω � O(ε−1)

As ω in (1.15a) becomes large with ω � O(ε−1), an internal layer of width O(ω−1/2) develops in a trail behind the
rotating trap. An example of this is shown in Figure 4(b), obtained by numerically solving (1.15) with ω = 1000 and
ε = 1× 10−4. An asymptotic solution with the same parameters is shown in Figure 8(a). The internal layer centered
on the ring r = r0 may be clearly seen in the corresponding contour plot in Figure 8(b). Away from the internal layer,
the solution is nearly radially symmetric. We now construct this solution and derive an approximation to the mass
M(r0;ω) in (3.18) for large ω. We then show that as ω → ∞ with ω � O(ε−1), the optimal radius ropt0 → 1. The
analysis below assumes that 1− r0 ∼ O(1).

(a) u(x, y)

x

y

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) contour plot of u(x, y)

Figure 8: (a) Asymptotic solution u(x, y) of (1.15) with ω = 1000� 1, ε = 1× 10−4, and r0 = 0.6 as constructed from (3.4).
Red (blue) regions indicate large (small) values of u. (b) The corresponding contour plot of u(x, y). An internal layer of width
O(ω−1/2) centered on the ring r = r0 is clearly seen. The solution is nearly radially symmetric away from the internal layer.
Compare with Figure 4(b) for the numerical solution with the same parameters.

To construct a solution of (1.15a), we first identify three distinct regions of the solution of (3.5a). In addition to the
O(ε) region identified in (3.2) and the O(ω−1/2) internal parabolic layer seen in Figure 8(b), there is an elliptic layer
of extent O(ω−1) surrounding the O(ε) region. The solution will be constructed by matching the elliptic layer to the
O(ε) inner region, and then the parabolic layer to the elliptic layer.
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For the elliptic layer, the Cartesian coordinate system is convenient. In the O(ω−1) vicinity of the trap, we make
the change of variables

ξ = ω(x− r0) , η = ωy ; G(r, θ) = Ĝ(ξ, η) . (4.1)

Substituting (4.1) into (3.10) with Gθ = xGy − yGx and using the scaling property of the delta function δ(ax) =
δ(x)/|a|, the leading order equation for ω � 1 becomes

Ĝξξ + Ĝηη + r0Ĝη = −δ(ξ)δ(η) ; −∞ < ξ , η <∞ , Ĝ bounded as |ξ| , |η| → ∞ . (4.2)

The condition at infinity in (4.2) is required to match the elliptic intermediate layer to the parabolic internal layer. To
solve (4.2), we proceed as in [41] and write

Ĝ(ξ, η) = G(ρ)e−
r0
2 η + Ĥ ; ρ2 = ξ2 + η2 , −∞ < η <∞ , 0 < ρ <∞ , (4.3)

where Ĥ is a constant to be determined from the zero mean-condition in (3.5b). Substituting (4.3) into (4.2), we
calculate

Gρρ +
1

ρ
Gρ −

(r0

2

)2

G = − 1

2πρ
δ(ρ) ; 0 < ρ <∞ , (4.4a)

G bounded as ρ→∞ . (4.4b)

The homogeneous solution of (4.4a) is given by a linear combination of modified Bessel functions

G(ρ) = c1I0

(r0ρ

2

)
+ c2K0

(r0ρ

2

)
. (4.5)

In (4.5), c1 = 0 by the boundedness condition in (4.4b), while c2 is determined by integrating (4.4a) over a circle of
radius δ → 0,

lim
δ→0

2πδc2
d

dρ
K0

(r0ρ

2

)∣∣∣∣
ρ=δ

= −1 . (4.6)

Using the small argument asymptotics for K0(z),

K0(z) ∼ − log
z

2
− γ , (4.7)

we calculate from (4.6) that c2 = (2π)−1 in (4.5). The solution of (4.2) for the elliptic layer is then given by

Ĝ(ξ, η) =
1

2π
K0

(r0

2

√
ξ2 + η2

)
e−

r0
2 η + Ĥ , (4.8)

where Ĥ is a constant to be computed, while ξ and η are defined in (4.1).
For the parabolic layer of thickness O(ω−1/2), we introduce the scaled variables

θ̃ = 2π − θ , r̃ =
√
ω(r − r0) ; G(r, θ) = G̃(r̃, θ̃) . (4.9)

Substituting (4.9) into (3.10) and collecting terms of O(ω), we obtain the parabolic equation

G̃θ̃ = G̃r̃r̃ ; 0 < θ̃ < 2π , −∞ < r̃ <∞ . (4.10)

We require boundedness of G̃ as |r̃| → ∞ in order to match to the outer region. We now compute a solution of (4.10)
that matches the behavior of the elliptic layer (4.8) as η → −∞. To do so, we first use the large argument asymptotic
form K0(z) ∼

√
π
2z e
−z as z →∞, to calculate

Ĝ(ξ, η) ∼ 1√
4πr0|η|

e−
r0ξ

2

4|η| + Ĥ , η → −∞ . (4.11)
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To write ξ and η in terms of r̃ and θ̃, we first note that, near r = r0 and θ̃ = 0+, we have that x ∼ r0 + r̃ and y ∼ −r0θ̃.
With ξ and η defined in (4.1), we obtain

ξ ∼ √ωr̃ , η ∼ −ωr0θ̃ ; θ̃ > 0 . (4.12)

Substituting (4.12) into (4.11), we obtain the solution for the parabolic layer

G̃(r̃, θ̃) =
1

2r0

√
πωθ̃

e−
r̃2

4θ̃ + Ĥ . (4.13)

The solution (4.13) may also be obtained in a similar way by explicitly calculating the initial condition for (4.10) in
terms of a weighted delta function

G̃(r̃, 0) =
1

r0
√
ω
δ(r̃) + Ĥ . (4.14)

The solution to (4.10) with initial conditions given by (4.14) may then be written in terms of the fundamental solution
of the diffusion equation, yielding (4.13).

With (4.8) and (4.13), the inner solution forG in (3.10) near the ring r = r0 is then given by the composite solution
Gi(r, θ) = Ĝ+ G̃− cp, where cp is the common part given by (4.11). We thus calculate

Gi(r, θ) =
1

2π
K0

(r0

2

√
ξ2 + η2

)
e−

r0
2 η +

1

2r0

√
πω(2π − θ)

e−
ω(r−r0)2

4(2π−θ) − 1

2
√
πr0|η|

e−
r0ξ

2

4|η| Θ(−η) + Ĥ , (4.15)

where ξ = ξ(r, θ) and η = η(r, θ) are defined in (4.1). For the outer solution G0 of (3.10), we note that, to leading
order in ω, G0θ = 0. For G0 = G0(r) radially symmetric, we integrate both sides of (3.10) from θ : 0→ 2π to obtain

G0rr +
1

r
G0r =

1

π
− 1

2πr
δ(r − r0) ; 0 < r < 1 , G0r(1) = 0 . (4.16a)

A unique solution of (4.16a) may be obtained by imposing the matching condition

G0(r0) = Ĥ , (4.16b)

obtained from letting ω →∞ in (4.15) with |r − r0| remaining of O(1). The solution of (4.16) is then

G0(r) =
r2 − r2

0

4π
− 1

2π
Θ(r − r0) log

(
r

r0

)
+ Ĥ , (4.17)

where Θ(r) is the Heaviside step function. The leading order composite solution of (3.10) for ω � 1 is then given by
G = G0 +Gi − Ĥ , yielding

G(r, θ) =
r2 − r2

0

4π
− 1

2π
Θ(r − r0) log

(
r

r0

)
+

1

2π
K0

(r0

2

√
ξ2 + η2

)
e−

r0
2 η+

+
1

2r0

√
πω(2π − θ)

e−
ω(r−r0)2

4(2π−θ) − 1

2
√
πr0|η|

e−
r0ξ

2

4|η| + Ĥ +O(ω−1) , (4.18a)

where we have used (4.15) and (4.17) for Gi and G0. The constant Ĥ is determined by the zero-mean condition in
(3.5b). Since the solution in (4.18a) omits terms of order O(ω−1), and with inner layer terms contributing a mean of
O(ω−1), we need only account for the mean of the first term in (4.18a). That is,

Ĥ = − 1

π

[
−r

2
0

2
+

3

8
+

1

2
log r0

]
+O(ω−1) . (4.18b)

The solution to u is then given by (3.4) with G and Ĥ defined in (4.18).
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We now calculate the constant H in (3.4) by the matching condition given in (3.3) with S = 1/2. To determine the
asymptotic behavior of G as x → x0, we first note that the second and third terms in (4.15), by construction, cancel
near the trap, while G0(r) → Ĥ . Therefore, using the small argument asymptotics for K0(z) in (4.7), we calculate
that

G ∼ 1

2π

[
− log |x− x0| − log

(r0ω

4

)
− γ
]

+ Ĥ , as x→ x0 , (4.19)

where we have used (4.1) to write ξ and η in terms of x and y. With the asymptotics for G in (4.19), (3.3) and (3.4)
yield the matching condition at the trap

1

2

[
log |x− x0|+ log

(r0ω

4

)
+ γ
]
− πĤ +H ∼ 1

2
log |x− x0| −

1

2
log ε . (4.20)

Solving for H in (4.20), we obtain

H = πĤ − 1

2

[
log
(r0ωε

4

)
+ γ
]
. (4.21)

In Figures 9(a) and 9(b), we show a solution constructed with G and H as given in (4.18) and (4.21). The parameters
are the same as those used in Figures 4(b) and 8. In Figure 9(c), we show the corresponding value of u along the ring
r = r0. The solid curve is computed numerically from the series expansion of §2, while the dashed curve is computed
from the asymptotic construction (4.18) and (4.21). The figure indicates excellent agreement between the two results.

(a) u(x, y)
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(b) contour plot of u(x, y)
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Figure 9: (a) Leading order asymptotic solution u(x, y) of (1.15) with ω = 1000, ε = 1 × 10−4, and r0 = 0.6 as constructed
from (4.18) and (4.21). The parameters are the same as those used in Figures 4(b) and 8. Red (blue) regions indicate large (small)
values of u. (b) The corresponding contour plot of u(x, y). (c) The value of u along the ring r = r0. The solid curve is computed
numerically from the series expansion, while the dashed curve is computed from (4.18) and (4.21).

Finally, with H given in (4.21) and Ĥ defined by (4.18b), we use (3.9) to calculate the mass

M(r0;ω) = π

[
r2
0

2
− log r0 −

3

8
− 1

2
log
(εω

4

)
− γ

2

]
+O(ω−1) . (4.22)

Differentiating (4.22) by r0, we find that ropt0 = 1 as ω →∞ with ω � O(ε−1), consistent with the results of Figure
3. In Figure 10 for ω = 1000 and ε = 1 × 10−4, we show a plot of the total mass as computed by (3.18) (solid) and
(4.22) (dashed). The circles are data from full numerical solutions of (1.15). In the case of the former, the optimal
value of r0 is slightly less than one, while the latter case indicates that r0 = 1 is optimal. The discrepancy is likely
due to the O(ω−1) terms neglected in (4.22), and violation of the assumption 1− r0 ∼ O(1).
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Figure 10: Total mass versus r0 as computed from (3.18) (solid), (4.22) (dashed), and the full numerical solution of (1.15) (circles).
The discrepancy near r0 = 1 is likely due to theO(ω−1) terms neglected in (4.22) and violation of the assumption 1− r0 ∼ O(1).
Here, ω = 1000.

5 The regime ω ∼ O(ε−1)

We now discuss briefly results obtained for ω = ε−1ω0 with ω0 = O(1). Unlike in the previous sections where u was
computed in terms of a Green’s function, we construct a solution for u directly. The analysis is similar to that of §4,
so we omit many of the details. We first note from §4 that the elliptic layer of extent O(ω−1) coincides with the inner
layer of extent O(ε) when ω ∼ O(ε−1). The regime ω ∼ O(ε−1) is thus a distinguished regime not covered by the
analysis of §§3 or 4.

In the regime 1 � ω � O(ε−1), the equation in the inner region (3.2) yielded a radially symmetric solution,
which led to the boundary conditions on the circular trap being easily satisfied. In that case, the geometry of the
trap was well-suited to the geometry of a simple solution of the PDE, and together yielded a simple solution of the
boundary value problem. For the regime ω ∼ O(ε−1), the inner equation does not yield a radially symmetric solution.
Indeed, with ω = ε−1ω0 and the scaling ξ = ε−1(x− r0) and η = ε−1y, the inner equation for (1.15) becomes

uξξ + uηη + ω0r0uη = 0 , (ξ, η) /∈ Ω̃1 , u = 0 , (ξ, η) ∈ ∂Ω̃1 . (5.1)

To best approximate the unit circle Ω1 in the inner region considered in §§3 and 4, we specify Ω̃1 ≡ ε−1Ω̃ε so as to
have an area of π. In the outer region, Ω̃ε then becomes a non-circular trap of characteristic length ε. As was the case
for the circular trap centered at x = x0 = (r0, 0), we assume that Ω̃ε → x0 as ε→ 0. We now choose Ω̃1 so that (5.1)
has a simple explicit solution. As suggested by (4.8), an explicit solution to the PDE in (5.1) is

u = µ(ξ, η) + u0(s0) ; µ(ξ, η) ≡ −1

2
K0

(s
2

√
ξ2 + η2

)
e−

s
2η , s0 ≡ ω0r0 , (5.2)

where the factor of −1/2 in front of K0 in µ(ξ, η) is determined by imposing the (1/2) log |x− x0| behavior near the
trap consistent with solutions in the previous regimes. The constant u0(s0) is then fixed by the boundary condition
u = 0 on Ω̃1. The solution (5.2) suggests that, instead of a circle, ∂Ω̃1 be the contour of µ(ξ, η) that encloses an area
of π. Typical contours of µ(ξ, η) for s0 = 10 are shown in Figure 11(a). To determine the value of u0, we numerically
determine the value µ = µ0 on the contour that encloses an area of π. We then set u0 = −µ0 so that u = 0 on the
contour. The numerically computed values of u0(s0) and u′0(s0) for a range of s0 ≡ ω0r0 are shown in Figures 11(b)
and 11(c), respectively. The solution to (5.1) is then given by (5.2) with u0(s0) determined from Figure 11(b).

For the internal layer, we follow (4.9) of §4 and introduce the rescaled variables r̂ =
√
ω0(r − r0)/

√
ε and

θ̂ = 2π − θ to obtain from (1.15a)

ur̂r̂ − uθ̂ = 0 , u(r̂, 0) = − π
√
ε

r0
√
ω0
δ(r̂) + u0 . (5.3)
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Figure 11: (a) Typical contours of µ(ξ, η) for s0 = 10. To determine u0, we numerically compute the value µ = µ0 on the contour
that encloses an area of π. We then set u0 = −µ0 so that u = 0 on the contour. (b) Numerically computed values of u0(s0) for a
range of s0. (c) Numerically computed values of u′0(s0) for a range of s0. Here, s0 is defined in (5.2).

The initial conditions for (5.3) may be obtained using the same matching procedure as that described in obtaining
(4.14), replacing ω by ω0/ε. The additional factor of −π in (5.3) arises from the relationship between u and the
Green’s function G given in (3.4). The solution in the internal layer then follows directly from (4.13). As discussed in
§4, the only term in the inner and internal layers relevant to the leading order expression for M(r0;ω) is the constant
term, which is required to uniquely determine the leading order outer solution.

For the outer equation with ω = ω0/ε in (1.15a), the leading order behavior of the solution must be radially
symmetric. We therefore solve the radially symmetric problem

urr +
1

r
ur + 1 = 0 , x ∈ Ω \ {x : |x| = r0} ; (5.4a)

ur = 0 , x ∈ ∂Ω ; u bounded as r → 0 ; u = u0 , |x| = r0 , (5.4b)

with u0 determined empirically from Figure 11(b). The solution to (5.4) is

u(r) =
r2
0 − r2

4
+ u0(s0) +

1

2
Θ(r − r0) log

(
r

r0

)
, (5.5)

where Θ(r) is the Heaviside step function. Integrating u in (5.5) over the domain Ω, the leading order expression for
the mass M(r;ω) may then be written

M(r0;ω) = M(r0;ω0) = π

[
r2
0

2
− 3

8
− 1

2
log(r0) + u0(r0ω0)

]
; ω0 ≡ εω . (5.6)

Setting to zero the derivative of M in (5.6) with respect to r0, we find that the optimal radius ropt0 satisfies

ropt0 − 1

2ropt0

+ ω0u
′(s0) = 0 . (5.7)

Solving (5.7) numerically for various ω0, we obtain the solid curve in Figure 12(a). The irregular appearance of
ropt0 for large ω0 is most likely due to inaccuracies associated with the numerical procedure for computing u0(s0) and
its derivative. The circles and stars indicate results obtained from numerical solutions of (1.15) with ε = 1 × 10−3

(circles) and ε = 5× 10−3 (stars) and ω = ω0/ε. We make several remarks. First, the agreement between the circles
and the stars indicates that ropt0 is a function only of the product εω ≡ ω0, not ε or ω individually. The size of the trap
and the frequency of rotation may then be said to be in balance, as doubling one parameter has the same effect on the
optimal radius as halving the other. This is in contrast to the ω ∼ O(1) regime in which ropt0 depends only on ω and
not ε.

Second, we note that the asymptotic results assuming a non-circular trap agree rather well with those of numerical
computations with a circular trap. We conjecture that this is because the leading order contribution of the shape of the
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Figure 12: (a) Comparison of the asymptotic prediction of ropt0 obtained by solving (5.7) (solid curve), and results from numerical
solutions of (1.15) with ε = 1 × 10−3 (circles) and ε = 5 × 10−3 (stars). Here, ω0 = εω. The irregular appearance of ropt0 for
large ω0 is most likely due to inaccuracies associated with the numerical procedure for computing u0(s0) and its derivative. (b)
Comparison of M(r0;ω) as given by (5.6) with ω0 = 4 (solid curve) and the numerical solution of (1.15) with ε = 2.5 × 10−3,
ω = 1600 (circles) and ε = 5 × 10−3, ω = 800 (stars). The asymptotic result assumes a non-circular trap while the numerical
results are for a circular trap. The discrepancy appears to result in only an additive constant in M(r0;ω) so that ropt0 may be well
predicted asymptotically.

trap is only an O(1) constant referred to as its logarithmic capacitance. The constant is a function of a characteristic
length dimension of the trap, and is independent of its location in the domain (see, e.g., [42], [25] and references
therein). As such, while the leading order estimate for M(r0;ω) in (5.6) may disagree with numerical results, the
optimal radius ropt0 , which only depends on dM/dr0, may agree. We illustrate this conjecture in Figure 12(b). The
asymptotic prediction for M(r;ω0) with ω0 = 4 is represented by the solid curve while numerical results are repre-
sented by the circles (ε = 2.5 × 10−3, ω = 1600) and stars (ε = 5 × 10−3, ω = 800). Note that in both numerical
experiments, εω ≡ ω0 = 4. As expected, the asymptotic value for M obtained for the non-circular trap appears to
differ only by a constant from numerical results for a circular trap.

Third, the numerics appear to diverge from the asymptotics for large ω0. This may be due to the fact that the
analysis assumes ω ∼ O(ε−1); for ω0 � 1, we observe numerically that ropt0 asymptotes to a value slightly below
the line ropt0 = 1/

√
2, as predicted by (2.4). Lastly, we illustrate in Figure 13 the transition from ropt0 ≈ 1 in the

1 � ω � O(ε−1) regime to that shown in Figure 12(a) for the ω ∼ O(ε−1) regime. Figures 13(a) and 13(b),
generated from numerical solutions of (1.15) with ω0 = 1 (left) and ω0 = 1.5 (right), each show two local minima in
the relationship M(r0;ω0). The minimum located near r0 = 1 is that which has persisted from the 1� ω � O(ε−1)
regime, while the one located away from r0 = 1 is formed as ω enters the ω ∼ O(ε−1) regime. The results in
Figure 13 then suggest that the transition occurs at some ω(c)

0 ∈ (1, 1.5) at which the value of M at the left local
minimum dips below that of M at the right minimum. The location of the left minimum continues to decrease in r0

for increasing ω0, as illustrated by Figure 12(a). The leading order expression for M(r0;ω) in (5.6) does not capture
the right minimum, as its derivation relies on an O(1) distance between the boundaries of the trap and domain.
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Figure 13: The relationship M(r0;ω0), generated from numerical solutions of (1.15) with (a) ω0 = 1 and (b) ω0 = 1.5. Here,
ε = 1 × 10−3. In (a), the local minimum away from r0 = 1 is less optimal than that near r0 = 1. In (b), the situation reverses
whereby the left local minimum dips below that at the right. The location of the left minimum continues to decrease in r0 for
increasing ω0, as illustrated by Figure 12(a).

6 Discussion

We have studied the average MFPT over a unit disk domain with a small rotating trap. By taking advantage of the
radial geometry, we were able to extend the asymptotic techniques that were developed for stationary traps to the
problem of a moving trap. With this radial symmetry, we showed that minimizing the average MFPT was equivalent
to minimizing the steady-state mass of a simple diffusive system with uniform feed and a rotating Dirichlet trap.

Several surprising “bifurcations” emerge. For small angular velocities (0 ≤ ω < ωc ≈ 3.026) , the trap should be
located at the center of the disk in order to minimize the average MFPT. When ω is large but fixed with ε → 0 (that
is, 1 � ω � O(ε−1)), the trap should be located very close to the boundary of the disk. On the other hand when
ε is small but fixed with ω → ∞ (that is, ω � O(ε−1)), the optimal trap radius approaches 1/

√
2. In this case, the

path taken by the trap subdivides the unit disk into two regions of equal area. Because ω is so large, such a regime is
equivalent to having a trapping boundary all along the length of the path: that is, from the particle point of view, the
trap appears to be simultaneously present all along its path. Most interestingly, there is a discontinuous “jump” in the
optimal radius (at around ω ≈ 103 in Figure 3) as ω is increased. This ”jump” occurs due to the presence of two local
minima, one of which overtakes the other as ω is increased; see also Figure 13.

The most intricate regime is precisely the transition regime ω = O(ε−1) where the ”jump” occurs. In §5 we used
a heuristic argument (not yet justified even formally!) to compute the asymptotics of the optimal radius in the regime
ω = O(ε−1). By doing careful numerics, we have demonstrated that this can be fully determined simply by computing
the area inside the contour K0

(
s
2

√
ξ2 + η2

)
e−

s
2η = C. An outstanding open problem is to put these heuristics on a

firmer footing.
The moving trap is very closely related to problems involving moving sources for the diffusion equation; see for

example [43] and references therein. Some applications include welding [44], calculation of heat flux generated by
friction in a pin-on-disc tribometer [45], and welding with CO2 lasers [43].

Throughout the paper, we considered the problem of computing the optimal radius as a function of angular velocity
ω. Equally, it is interesting to see how the optimal radius depends on the speed s = r0ω. This dependence is shown in
Figure 14. As with Figure 3, note that the optimal radius approaches r0 ∼ 1/

√
2 for large ω, as well as the presence of

the “jump” near ω ≈ 40 independent of ε. Two notable differences are that ropt0 does not make an asymptotic approach
to 1 for large speed, and there is also no “bifurcation” near the origin: the optimal r0 is strictly positive regardless of
how small s is. Note that the ropt0 ∼ 1/

√
2 result in both the 1 � ω � O(ε−1) and ω ∼ O(ε−1) regimes may be

inferred from (4.22) and (5.6) by replacing ω and ω0 by s/r0 and εs/r0, respectively, and differentiating the resulting
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Figure 14: (a) Asymptotic (solid) and numerical (circles) results for ropt0 for a range of speed r0ω. Unlike the case with constant
ω, no bifurcation is observed so that ropt0 > 0 for any r0ω > 0. The optimal radius reaches a maximum of ropt0 ≈ 0.85 when
r0ω ≈ 39 before a transition occurs to a smaller optimal radius. The transition is illustrated in the mass versus r0 plots shown in
(b) and (c) for r0ω = 39 and r0ω = 40, respectively. Two local minima are present. As r0ω increases, the left minimum dips
below that at the right. The results were obtained from numerical solutions of (1.15) with ε = 1× 10−3. The same transition may
also be observed from asymptotic results.

expression with s held constant. The same result for the ω � O(ε−1) regime is immediate from (2.3).
Of course, the problem we studied has a very special geometry and it is an open question to consider the obvious

generalizations: a non-circular domain, more complex trap motion (with or without a stochastic component), multiple
traps, etc. On the other hand, this simple setting allows for a detailed analysis which shows that even a very simple
situation has a surprisingly rich structure, with several different transitions depending on the relative strengths of the
trap radius ε and its rotation rate ω. As such, it provides a good test case for future studies of MFPT with moving
traps.
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