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The mean first passage time (MFPT) is calculated for a Brownian particle in a bounded two-dimensional domain that

contains N small non-overlapping absorbing windows on its boundary. The reciprocal of the MFPT of this narrow

escape problem has wide applications in cellular biology where it may be used as an effective first order rate constant to

describe, for example, the nuclear export of messenger RNA molecules through nuclear pores. In the asymptotic limit

where the absorbing patches have small measure, the method of matched asymptotic expansions is used to calculate the

MFPT in an arbitrary two dimensional domain with smooth boundary. The theory is extended to treat the case where

the boundary of the domain is piecewise smooth. The asymptotic results for the MFPT depend on the surface Neumann

Green’s function of the corresponding domain and its associated regular part. The known analytical formulae for the

surface Neumann Green’s function for the unit disk and the unit square provide explicit asymptotic approximations to

the MFPT for these special domains. For an arbitrary two-dimensional domain with a smooth boundary, the asymptotic

MFPT is evaluated by developing a novel boundary integral method to numerically calculate the required surface

Neumann Green’s function.
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1 Introduction

Narrow escape problems have recently gained increasing scientific interest (cf. [1], [9], [10], [17]), especially in

biological modeling, since they arise naturally in the description of Brownian particles that attempt to escape from

a bounded domain through small absorbing windows on an otherwise reflecting boundary. In the biological context,

the Brownian particles could be diffusing ions, globular proteins or cell-surface receptors. It is then of interest to

determine, for example, the mean time that an ion requires to find an open ion channel located in the cell membrane

or the mean time of a receptor to hit a certain target binding site (cf. [10], [17]).

The narrow escape problem in a two-dimensional domain is described as the motion of a Brownian particle confined

in a bounded domain Ω ∈ R2 whose boundary ∂Ω = ∂Ωr ∪ ∂Ωa is almost entirely reflecting (∂Ωr), except for small

absorbing windows, labeled collectively by ∂Ωa, through which the particle can escape (see Fig. 1). Denoting the

trajectory of the Brownian particle by X(t), the mean first passage time (MFPT) v(x) is defined as the expectation

value of the time τ taken for the Brownian particle to become absorbed somewhere in ∂Ωa starting initially from

X(0) = x ∈ Ω, so that v(x) = E[τ |X(0) = x]. The calculation of v(x) becomes a narrow escape problem in the

limit when the measure of the absorbing set |∂Ωa| = O(ε) is asymptotically small, where 0 < ε � 1 measures the

dimensionless radius of an absorbing window.
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It is well-known (cf. [10], [15], [16]) that the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet-Neumann

boundary conditions, formulated as

4v = −
1

D
, x ∈ Ω , (1.1 a)

v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj

, j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr , (1.1 b)

where D is the diffusion coefficient associated with the underlying Brownian motion. In (1.1), the absorbing set

consists of N small disjoint absorbing windows ∂Ωεj
centered at xj ∈ ∂Ω (see Fig. 1). In our two-dimensional

setting, we assume that the length of each absorbing arc is |∂Ω| = εlj , where lj = O(1). It is further assumed that

the windows are well-separated in the sense that |xi − xj | = O(1) for all i 6= j. With respect to a uniform distribution

of initial points x ∈ Ω, the average MFPT, denoted by v̄, is defined by

v̄ = χ ≡
1

|Ω|

∫

Ω

v(x) dx , (1.2)

where |Ω| denotes the area of Ω.

Figure 1. Sketch of a Brownian trajectory in the two-dimensional unit disk with absorbing windows on the boundary

Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x), and that of the average MFPT v̄, constitutes

a singular perturbation problem. It is the goal of this paper to systematically use the method of matched asymptotic

expansions to extend previous results on two-dimensional narrow escape problems in three main directions; (i) to the

case of multiple absorbing windows on the boundary, (ii) to provide both a two-term and infinite-order logarithmic

asymptotic expansion for the solution v to (1.1) for arbitrary two-dimensional domains with smooth boundary, (iii)

to develop and implement a numerical method to compute the surface Neumann Green’s function, which is required

for evaluating certain terms in the asymptotic results.

For a two-dimensional domain with smooth boundary with one small window of length O(ε) on its boundary, the

analysis in [10] and [18] showed that, for ε → 0, v(x) has the leading order expansion

v(x) =
|Ω|

πD
[− log ε + O(1)] . (1.3)

This leading order result is independent of x and the location of the window on ∂Ω. A related leading-order asymptotic

result for v(x) was obtained in [19] for the case where an absorbing window is centered at a cusp or corner point of

a non-smooth boundary, and an explicit two-term result for this case was obtained for a rectangular domain. The

O(1) term in (1.3), which depends on x and on the arrangements of the absorbing windows on the domain boundary,
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has been determined previously in only a few special situations. In particular, for the unit disk with one absorbing

window on the boundary, the O(1) term in (1.3) was calculated explicitly in [18] by using Collins method to solve

certain dual integral equations. The only previous work on the interaction effect of multiple absorbing windows was

given in [11] for the case of two absorbing windows on the boundary of the unit disk with either an O(1) or an O(ε)

separation between the windows. For this two-window case, the result in [11] determined the average MFPT v̄ up

to an unspecified O(1) term, which was fit through Brownian particle numerical simulations.

One specific goal of this paper is to use the method of matched asymptotic expansions to derive an analytical

expression for the O(1) term in (1.3) for an arbitrary domain with smooth boundary that has N well-separated

absorbing windows on the boundary. In addition, further terms in the asymptotic expansion of v(x), of higher order

than in (1.3), are obtained by summing a certain infinite order logarithmic expansion. In our analysis, the average

MFPT v̄, defined in (1.2), is also readily calculated. Our asymptotic results for the MFPT involve, in a rather

essential way, the surface Neumann Green’s function for the Laplacian together with the regular part of this Green’s

function. Our asymptotic results for v(x) in an arbitrary domain are given below in Principal Results 2.1 and 2.2, and

show clearly the nontrivial interaction effect of well-separated absorbing windows. We then show how our analysis

is very easily adapted to treat the case where a finite number of non-overlapping windows are clustered in an O(ε)

neighborhood around some point on the domain boundary. Specializing to a two-window cluster on the unit disk,

our result for this case agrees with that in [11] and determines analytically the missing O(1) term not given in [11].

In §3 we implement and illustrate the analytical theory of §2 for some specific domains. In §3.1 and §3.2, simple

analytical results for v(x) and v̄ are obtained for various arrangements of the small absorbing windows on the

boundary of the unit disk and unit square. For such special domains the surface Neumann Green’s function can be

determined analytically. For the case of one absorbing window on the boundary of the unit disk, our results readily

reduce to those of [18]. For the case of N asymptotically small, equally spaced, windows of a common length 2ε on

the boundary of the unit disk, our analysis for the average MFPT yields the explicit asymptotic result

v̄ ∼
1

DN

[

− log

(

εN

2

)

+
N

8

]

. (1.4)

Other results for v(x) and v̄ are given in §3.1 and §3.2. In §3.2 we extend the analysis in §2 to allow for an absorbing

window at a corner of the square, representing a non-smooth point on ∂Ω. Our result for this case agrees with

that derived in [19]. In §3.3, we develop and implement a novel boundary integral numerical scheme to numerically

compute the surface Neumann Green’s function and its regular part for an arbitrary bounded two-dimensional domain

with smooth boundary. The numerical method is then used to calculate v(x) and v̄ for an ellipse.

The problem for the MFPT is very closely related to the problem of determining the principal eigenvalue λ∗ for

the Laplacian in a domain where the reflecting boundary is perturbed by N asymptotically small absorbing windows

of length O(ε). For a two-dimensional domain with smooth boundary, in §4 we show that

v̄ = χ =
1

Dλ∗(ε)
+ O

(

|µ|2
)

, (1.5)

where |µ|2 indicates terms of order O
[

(−1/ log ε)
2
]

. The specific order of this error estimate is a new result. In addi-

tion, the method of matched asymptotic expansions is used to obtain both a two-term and infinite-order asymptotic

result for λ∗ in powers of O(−1/ log ε). These results for λ∗ in Principal Results 4.1 and 4.2 extend the leading-order

asymptotic theory of [23] where it was shown for the case of one absorbing window of length 2ε that λ∗ ∼ πµ/|Ω|,

where µ = −1/ log(ε/2). Some related results for this problem, obtained using a different approach, are given in [7].
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The analysis in §4 is an extension of the work of [22] and [13] for the related problem of calculating a high order

asymptotic expansion for the principal eigenvalue of the Laplacian corresponding to a two-dimensional domain with

reflecting boundary that is punctured by N asymptotically small disks of a common radius ε.

For the case of one small absorbing arc of a fixed length εl1 centered at x1 ∈ ∂Ω, the results of §4 show that

λ∗ ∼
πµ1

|Ω|
−

π2µ2
1

|Ω|
R(x1; x1) + O(µ3

1) , µ1 ≡ −
1

log[εd1]
, d1 =

l1
4

, (1.6)

where R(x1; x1) is the regular part of the surface Neumann Green’s function. In §4 we seek to determine the location

of the center x1 ∈ ∂Ω of the absorbing arc that minimizes the second term for λ∗ in (1.6) involving R(x1; x1). For a

heat conduction problem, this optimal absorbing arc is the one that minimizes the rate of heat loss across the domain

boundary. Similar eigenvalue optimization problems have been studied in [8] and [3] as a function of the location of

an absorbing boundary segment, and in [13] for the related problem of asymptotically small disks that are interior

to a two-dimensional domain. When Ω is a square it was proved in [3] that, for one small (but not asymptotically

small) absorbing segment, the principal eigenvalue is minimized when this segment is centered at a corner of the

square. Based on the results of [3] for the square it was conjectured in §1 of [3] that, for a general convex domain

with smooth boundary, an optimal absorbing arc must lie in a region of ∂Ω with large curvature. This conjecture

is investigated in §4 by first deriving a perturbation result in Principal Result 4.3 for R(x1; x1) for domains that

are smooth perturbations of the unit disk. In Principal Result 4.4 we construct a counterexample to show that local

minima of λ∗ with respect to x1 do not necessarily correspond to local maxima of the boundary curvature.

Related problems, with biophysical applications, involving the asymptotic calculation of either steady-state dif-

fusion, Laplacian eigenvalues, or the MFPT, on specific Riemannian manifolds with a collection of localized traps,

include [2] and [20] for the surface of a long cylinder, and [4], [24], [19], and [6] for the surface of a sphere.

In the companion paper [5] we asymptotically calculate the MFPT for narrow escape from a spherical domain.

2 Narrow Escape in Two-Dimensional Domains

We construct the asymptotic solution to (1.1) in the limit ε → 0 using the method of matched asymptotic expansions.

The solution in the inner, or local, region near each absorbing arc is determined and then matched to an outer, or

global, solution, valid away from O(ε) neighborhoods of each arc.

To construct the inner solution near the jth absorbing arc, we write (1.1) in terms of a local orthogonal coordinate

system where η denotes the distance from ∂Ω to x ∈ Ω, and s denotes arclength on ∂Ω. In terms of these coordinates,

the problem (1.1 a) for v(x) transforms to the following problem for w(η, s):

∂ηηw −
κ

1 − κη
∂ηw +

1

1 − κη
∂s

(

1

1 − κη
∂sw

)

= −
1

D
. (2.1)

Here κ is the curvature of ∂Ω and the center xj ∈ ∂Ω of the jth absorbing arc transforms to s = sj and η = 0.

Next, we introduce the local variables η̂ = η/ε and ŝ = (s − sj)/ε near the jth absorbing arc. Then, from (2.1)

and (1.1 b), we neglect O(ε) terms to obtain the inner problem

w0η̂η̂ + w0ŝŝ = 0 , 0 < η̂ < ∞ , −∞ < ŝ < ∞ , (2.2 a)

∂η̂w0 = 0 , on |ŝ| > lj/2 , η̂ = 0 ; w0 = 0 , on |ŝ| < lj/2 , η̂ = 0 . (2.2 b)

We specify that w0 has logarithmic growth at infinity, i.e. w0 ∼ Aj log |y| as |y| → ∞ where Aj is an arbitrary
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constant and |y| ≡ ε−1|x − xj | =
(

η̂2 + ŝ2
)1/2

. The solution w0, unique up to the constant Aj , is readily calculated

by introducing elliptic cylinder coordinates in (2.2). It has the far-field behavior

w0 ∼ Aj [log |y| − log dj + o(1)] , as |y| → ∞ , dj = lj/4 . (2.3)

From the divergence theorem, Aj = 2π−1
∫ lj/2

0 ∂η̂w0|η̂=0 ds, which gives the flux of w0 across the jth absorbing arc.

In the outer region, the jth absorbing arc shrinks to the point xj ∈ ∂Ω as ε → 0. With regards to the outer

solution, the influence of each absorbing arc is, in effect, determined by a certain singularity behavior at each xj that

results from the asymptotic matching of the outer solution to the far-field behavior (2.3) of the inner solution. In

this way, we obtain that the outer solution for v satisfies

4v = −
1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω\{x1, . . . , xN} , (2.4 a)

v ∼
Aj

µj
+ Aj log |x − xj | , as x → xj , j = 1, . . . , N ; µj ≡ −

1

log(εdj)
, dj =

lj
4

. (2.4 b)

Each singularity behavior in (2.4 b) specifies both the regular and singular part of a Coulomb singularity. As such, it

provides one constraint for the determination of a linear system for the source strengths Aj for j = 1, . . . , N .

To solve (2.4), we introduce the surface Green’s function G(x; xj ) defined as the unique solution of

4G =
1

|Ω|
, x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω\{xj} , (2.5 a)

G(x; xj ) ∼ −
1

π
log |x − xj | + R(xj ; xj) , as x → xj ∈ ∂Ω , (2.5 b)

∫

Ω

G(x; xj) dx = 0 , (2.5 c)

where |Ω| is the area of Ω. Then, the solution to (2.4) is written in terms of G(x; xj ) and an unknown constant χ,

denoting the spatial average of v, by

v = −π

N
∑

i=1

AiG(x; xi) + χ , χ = v̄ ≡
1

|Ω|

∫

Ω

v dx . (2.6)

To determine a linear algebraic system for Aj , for j = 1, . . . , N , and for χ, we expand (2.6) as x → xj and compare

it with the required singularity behavior (2.4 b). This yields that

Aj log |x − xj | − πAjRj − π
N
∑

i=1

i6=j

AiGji + χ = Aj log |x − xj | +
Aj

µj
, j = 1, . . . , N . (2.7)

Here Gji ≡ G(xj ; xi), while Rj ≡ R(xj ; xj) is the regular part of G given in (2.5 b) at x = xj . Equation (2.7)

yields N linear equations for χ and Aj , for j = 1, . . . , N . The remaining equation is obtained by noting that

4v = −π
∑N

i=1 Ai4G = −π|Ω|−1
∑N

i=1 Ai = −D−1. Thus, the N + 1 constants χ and Aj , for j = 1, . . . , N , satisfy

Aj

µj
+ πAjRj + π

N
∑

i=1

i6=j

AiGji = χ , j = 1, . . . , N ;

N
∑

i=1

Ai =
|Ω|

Dπ
. (2.8)

This linear system of N + 1 equations can be written in matrix form as

(I + πUG)A = χUe , eTA =
|Ω|

Dπ
. (2.9)

Here eT ≡ (1, . . . , 1), AT ≡ (A1, . . . , AN ), I is the N×N identity matrix, while the diagonal matrix U and symmetric
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Green’s function matrix G are defined by

U ≡













µ1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · µN













, G ≡











R1 G12 · · · G1N

G21 R2 · · · G2N

...
...

. . .
...

GN1 · · · GN,N−1 RN











. (2.10)

We can then decouple A and χ in (2.9) to obtain the following main result:

Principal Result 2.1: Consider N well-separated absorbing arcs for (1.1) of length εlj for j = 1, . . . , N centered at

xj ∈ ∂Ω. Then, the asymptotic solution to (1.1) is given in the outer region |x − xj | � O(ε) for j = 1, . . . , N by

v ∼ −π
N
∑

i=1

AiG(x; xi) + χ . (2.11 a)

Here G is the surface Green’s function satisfying (2.5), and AT = (A1, . . . , AN ) is the solution of the linear system
(

I + πU

(

I −
1

µ̄
EU

)

G

)

A =
|Ω|

DπNµ̄
Ue , E ≡

1

N
eeT . (2.11 b)

In addition, the constant χ, representing the spatial average of v, is determined in terms of A and µj of (2.4 b) by

v̄ ≡ χ =
|Ω|

DπNµ̄
+

π

Nµ̄
eTUGA , µ̄ ≡

1

N

N
∑

j=1

µj . (2.11 c)

We first remark that our asymptotic solution to (1.1) in Principal Result 2.1 has in effect “summed” all of the

logarithmic correction terms in the expansion of the solution, leaving an error that is transcendentally small in ε.

Secondly, the constant χ in (2.11 a), as given in (2.11 c), has the immediate interpretation as the MFPT averaged

with respect to an initial uniform distribution of starting points in Ω for the random walk.

For µj � 1 we can solve (2.11 b) and (2.11 c) asymptotically by calculating the approximate inverse of the matrix

multiplying A in (2.11 b). This yields that

A ∼
|Ω|

NDπµ̄

[

Ue − πUGUe +
π

µ̄
UEUGUe

]

+ O(|µ|2) , χ ∼
|Ω|

NDπµ̄
+

|Ω|

N2Dµ̄2
eTUGUe + O(|µ|) .

Here O(|µ|p) indicates terms that are proportional to µp
j . In this way, we obtain the following two-term result:

Principal Result 2.2: For ε � 1, a two-term expansion for the solution of (1.1) is provided by (2.11 a), where Aj

and χ are given explicitly by

Aj ∼
|Ω|µj

NDπµ̄

(

1 − π

N
∑

i=1

µiGij +
π

Nµ̄
pw(x1, . . . , xN )

)

+ O(|µ|2) , (2.12 a)

v̄ ≡ χ ∼
|Ω|

NDπµ̄
+

|Ω|

N2Dµ̄2
pw(x1, . . . , xN ) + O(|µ|) . (2.12 b)

Here pw(x1, . . . , xN ) is the following weighted discrete sum defined in terms of the entries Gij of the Green’s function

matrix of (2.10):

pw(x1, . . . , xN ) ≡

N
∑

i=1

N
∑

j=1

µiµjGij , µj = −
1

log(εdj)
, dj =

lj
4

. (2.13)

Hence, the average MFPT χ is minimized for an arrangement of arcs that minimize the discrete sum pw(x1, . . . , xN ).

Consider the case of exactly one absorbing arc with length |∂Ωε1
| = 2ε for which d = 1/2. Then, (2.11a) and
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(2.12 b) for v(x) and the average MFPT χ, respectively, reduce to

v(x) ∼
|Ω|

Dπ

[

− log
(ε

2

)

+ π (R(x1; x1) − G(x; x1))
]

, v̄ = χ ∼
|Ω|

Dπ

[

− log
(ε

2

)

+ πR(x1; x1)
]

. (2.14)

Here G(x; x1) is the Green’s function satisfying (2.5) with regular part R(x1; x1). These results are the generalizations

to an arbitrary domain Ω with smooth boundary ∂Ω of the results given in [18] for the case of the unit disk.

Another relevant special case of Principal Result 2.2 is when there are N well-separated absorbing arcs of a common

length εl with the arcs arranged on ∂Ω in such a way that G is a cyclic matrix. For instance, this situation occurs

when there are exactly two arcs of the same length on the boundary of the unit disk, or when N arcs of a common

length are arranged with equidistant spacing on the boundary of the unit disk. When G is cyclic, then

Ge =
p

N
e , p ≡ p(x1, . . . , xN ) ≡

N
∑

i=1

N
∑

j=1

Gij , (2.15)

where eT = (1, . . . , 1). For this special case, the exact solution to (2.11 b) and (2.11 c) is simply

Aj =
|Ω|

NDπ
, j = 1, . . . , N ; v̄ ≡ χ =

|Ω|

NDπµ
+

|Ω|

N2D
p(x1, . . . , xN ) , µ =

−1

log[(εl/4)]
. (2.16)

This result for χ effectively sums all of the logarithmic terms in powers of µ. In addition, (2.11a) for v becomes

v(x) ∼
|Ω|

NDπ



− log

(

εl

4

)

+
π

N
p(x1, . . . , xN ) − π

N
∑

j=1

G(x; xj )



 . (2.17)

We remark that the analysis leading to Principal Results 2.1 and 2.2 has assumed that the absorbing windows on

the boundary are well-separated in the sense that |xi −xj | = O(1) for i 6= j. Next, we briefly consider the case where

there are Mj non-overlapping absorbing arcs clustered in an O(ε) ball near some point x∗
j ∈ ∂Ω, for j = 1, . . . , N ,

where N now denotes the number of clusters and M1 + . . . MN = n is the total number of absorbing windows. To

allow for the effect of the clustering of absorbing windows, we need only replace µj in Principal Result 2.1 and 2.2

with −1/ log(εdj) where dj to be determined from the far-field behavior of the following inner problem:

vηη + vss = 0 , η ≥ 0 , −∞ < s < ∞ , (2.18 a)

v = 0 , η = 0 , s ∈ Sjk ; ∂ηv = 0 , η = 0 , s /∈ Sjk , k = 1, . . .Mj , (2.18 b)

v ∼ log |y| − log dj + o(1), as |y| =
(

η2 + s2
)1/2

→ ∞ . (2.18 c)

Here, for each j = 1, . . . , N , Sjk are a collection of Mj non-overlapping finite intervals of lengths ljk for k =

1 . . . , Mj . Although the constant dj is determined uniquely by the solution to (2.18) it must, in general, be computed

numerically. However, dj can be determined analytically for the special case of a cluster of exactly two absorbing

windows of a common length lj , with edge separation 2aj , so that Sj1 = {s | − aj − lj < s < −aj} and Sj2 =

{s |aj < s < aj + lj}. For this symmetric two-window cluster, (2.18) is readily solved analytically by first using

symmetry to reduce the problem to the quarter plane η, s > 0 and then using the simple analytic mapping Z = z2,

where z = s + iη. This leads to an explicitly solvable half-plane problem Im(Z) > 0 with one absorbing window. In

this way, we obtain for the symmetric two-window cluster that dj is given explicitly by

dj =
lj
2

[

1 +
2aj

lj

]1/2

. (2.19)

For aj = 0, then dj = lj/2, which corresponds to the value of dj in (2.2) for an absorbing window of length 2lj .



8 S. Pillay, M. J. Ward, A. Peirce, T. Kolokolnikov

We conclude that the results in Principal Result 2.1 and 2.2 still hold provided that whenever we have a two-

window cluster of a common length we replace µj = −1/ log (εlj/4) in those results with µj = −1/ log (εdj), where

dj is given in (2.19). Therefore, Principal Results 2.1 and 2.2 are readily modified to explicitly treat any combination

of well-separated windows and symmetric two-window clusters on the domain boundary.

Finally, we show that our result for the average MFPT v̄ for a symmetric two-window cluster makes a smooth

transition to the corresponding result for v̄ for the case of two well-separated windows. For simplicity, we assume

that there are exactly two absorbing windows each of length l on the boundary. Then, from (2.12 b), we obtain that

v̄ ∼
|Ω|

Dπ
[− log(εd1) + πR∗] , (a two-window cluster) , (2.20 a)

v̄ ∼
|Ω|

Dπ

[

−
1

2
log

(

εl

4

)

+
π

4
(R(x1; x1) + R(x2; x2) + 2G(x1; x2))

]

, (two well-separated windows) . (2.20 b)

Here x∗
1 ∈ ∂Ω is the center of the two-window cluster, R∗ ≡ R(x∗

1, x
∗
1) is the regular part of the Green’s function at

x∗
1, and d1 is given in (2.19). In the overlap region O(ε) � |x2 − x1| � 1, the well-separated result (2.20 b) can be

simplified using R11 ≈ R22 ≈ R∗ and G(x1; x2) ∼ −π−1 log |x1 − x2| + R∗. In this same overlap region, we simplify

the cluster result (2.20a) by using d1 ∼ l
2 (2a/l)

1/2
for a/l � 1 where 2a+ l ≈ |x2 −x1|/ε. Since both limiting results

lead to the common expression

v̄ ∼
|Ω|

Dπ

[

−
1

2
log

(

εl

4

)

−
π

2
log |x2 − x1| + πR∗

]

, for O(ε) � |x2 − x1| � O(1) , (2.21)

we conclude that there is a smooth transition between the two results in (2.20). As a remark, for the special case

of the unit disk, where the regular part R has the uniform value R = 1/(8π) (see (3.2) below) everywhere on the

domain boundary, the results (2.20) are readily seen to agree asymptotically with the result in equation (29) of [11]

and provide the missing O(1) terms not given in this latter result of [11].

3 Numerical Realizations

In §3.1 and §3.2 we apply the results of §2 to the unit disk and the unit square, respectively. For these domains,

G(x; ξ) and R(ξ; ξ) can be calculated analytically from (2.5). For other more general domains, in §3.3 we present and

implement a boundary integral numerical method to numerically calculate G(x; ξ) and R(ξ; ξ). In this section we

will assume throughout that the absorbing windows are well-separated in the sense that |xi − xj | = O(1) for i 6= j.

3.1 The Unit Disk

Let Ω be the unit disk, Ω ≡ {x || |x| ≤ 1}. When ξ ∈ Ω, so that the singularity is in the interior of the domain, the

Neumann Green’s function G(x; ξ) with
∫

Ω G(x; ξ) dx = 0 is well-known (see equation (4.3a) of [13])

G(x; ξ) =
1

2π

(

− log |x − ξ| − log

∣

∣

∣

∣

x|ξ| −
ξ

|ξ|

∣

∣

∣

∣

+
1

2
(|x|2 + |ξ|2) −

3

4

)

. (3.1)

By letting ξ approach a point on ∂Ω in (3.1), we obtain that the surface Green’s function solution of (2.5) is

G(x; ξ) = −
1

π
log |x − ξ| +

|x|2

4π
−

1

8π
, R(ξ; ξ) =

1

8π
. (3.2)

We now apply the results of §2 to the unit disk. We first assume that there is one absorbing patch of length
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|∂Ωε1
| = 2ε on ∂Ω. Then, with G and R as given in (3.2) and using |Ω| = π, (2.14) becomes

v(x) = E [τ |X(0) = x] ∼
1

D

[

− log ε + log 2 +
1

4
+ log |x − x1| −

|x|2

4

]

, χ ∼
1

D

[

− log ε + log 2 +
1

8

]

. (3.3)

The formula for v̄ = χ in (3.3) agrees with that in equation (1.3) of [18]. If we fix the center of the absorbing arc at

x1 = (1, 0), and let x = (ξ, 0) be the initial point for the random walk, then a simple calculation from (3.3) shows

that v is maximized when ξ = −1; i.e. at farthest point in Ω to the absorbing arc centered at (1, 0). In Fig. 2(a) we

use (3.3) to plot v versus ξ, where x = (ξ, 0). Finally, to compare our results with those in [18], we let x1 = (1, 0)

and take x = (0, 0) and x = (−1, 0) as two choices for the initial point x for the random walk. Then, (3.3) yield

E [τ |X(0) = (0, 0)] ∼
1

D

[

− log ε + log 2 +
1

4

]

, E [τ |X(0) = (−1, 0)] ∼
1

D
[− log ε + 2 log 2] , (3.4)

which agree with the results given in equations (1.2) and (1.4) of [18].

5.0

4.0

3.0

2.0

1.0

0.0

1.000.750.500.250.00−0.25−0.50−0.75−1.00

v(ξ)

ξ

(a) One trap: v(ξ)

4.0

3.0

2.0

1.0

0.0

3.02.52.01.51.00.50.0

v(0)

θ

(b) Two traps: v(0)

Figure 2. Left figure: plot of v given in (3.3) versus the horizontal coordinate x = (ξ, 0) for the case of one absorbing arc
centered at x1 = (1, 0). Right figure: plot of v(0) versus θ given in (3.5) for the case of two absorbing arcs centered at x1 = (1, 0)
and x2 = (cos θ, sin θ). For both figures ε = 0.05 and D = 1.

Next, we assume that there are exactly two well-separated absorbing arcs on the boundary of the unit disk, each

with length |∂Ωεj
| = 2ε. We fix the location of one of the arcs at x1 = (1, 0) and we let the other arc be centered

at some x2 = (cos θ, sin θ), where 0 < θ < π is a parameter. For this special case the matrix G is cyclic. Therefore,

the average MFPT can be calculated from (2.16) and (3.2). In addition, for an initial starting point at the origin,

i.e. x(0) = 0, then (2.17) with G(0; xj) = −1/(8π) determines v(0). In this way, we get

χ ∼
1

2D

(

− log ε +
1

4
+

1

2
log 2 −

1

2
log (1 − cos θ)

)

, v(0) ∼ χ +
1

8D
. (3.5)

For ε = 0.05, in Fig. 2(b) we plot v(0) versus the polar angle θ for the location of the second absorbing arc. This plot

shows that the specific MFPT v(0) is minimized when the two absorbing arcs are antipodal, as expected intuitively.

It also shows that v(0) varies rather significantly as a function of the relative locations of the two absorbing arcs.

Next, we consider the case of N absorbing arcs centered at x1, . . . , xN on the boundary of the unit disk having a
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common length |∂Ωεj
| = 2ε for j = 1, . . . , N . Then, from (3.2) and (2.12 b), the average MFPT is

v̄ = χ ∼
1

DN



− log
(ε

2

)

+
N

8
−

1

N

N
∑

i=1

N
∑

j 6=i

log |xi − xj |



 . (3.6)

The sum in (3.6) is minimized when xj = e2πij/N , for j = 1, . . . , N , are the N th roots of unity. For this choice of xj ,

the Green’s function matrix G is cyclic and the results in (2.15), (2.16), and (2.17), apply. We obtain G(xi; xj) and

R(xj ; xj) from (3.2), and then calculate p(x1, . . . , xN ) as

p(x1, . . . , xN ) =

N
∑

i=1

N
∑

j=1

Gij =
N2

8π
−

1

π

N
∑

k=1

N
∑

j 6=k

log |xj − xk| ,

=
N2

8π
−

1

π

N
∑

k=1

log







N
∏

j=1

j 6=k

(

1 − e2πi(j−k)/N
)






=

1

π

(

N2

8
− N log N

)

, (3.7)

where we have used the simple identity
∏N

j=1

j 6=k

(

x − ye2πi(j−k)/N
)

= |xN−1
(

1 + y
x + · · · +

(

y
x

)N−1
)

| .

Therefore, for the special case xj = e2πij/N for j = 1, . . . , N we obtain from (3.7), (2.16), and (2.17), that

v(x) ∼
1

DN



− log

(

εN

2

)

+
N

8
− π

N
∑

j=1

G(x; xj)



 , χ ∼
1

DN

[

− log

(

εN

2

)

+
N

8

]

, (3.8)

where G(x; ξ) is given in (3.2). Note that χ in (3.8) agrees with (3.3) when N = 1 and (3.5) when N = 2 and θ = π.

As remarked following (2.16), the error associated with the asymptotic result (3.8) is smaller than any power of µ.

We now show that the result (3.8) for a periodic arrangement of boundary traps agrees with the corresponding

result that can be obtained from the dilute fraction limit of homogenization theory, whereby the mixed Dirichlet-

Neumann boundary condition on the boundary of the unit disk is replaced by an effective Robin boundary condition,

as was studied in [14]. From equations (2.6) and (4.3) of [14], the homogenized problem for the MFPT is to find

vh(x) satisfying

4vh = −
1

D
, r = |x| ≤ 1 ; ε∂rvh + κvh = 0 , r = 1 , (3.9 a)

where κ is defined in terms of the length fraction σ of traps by (see equation (4.3) of [14])

κ ≡ −
πσ

2

(

log
[

sin
(πσ

2

)])−1

. (3.9 b)

The homogenization result vh(0) for the MFPT for escape starting from the center of the unit disk is readily calculated

from (3.9) as

vh(0) =
1

D

[

1

4
−

ε

πσ
log
(

sin
[πσ

2

])

]

. (3.10)

In contrast, we obtain from (3.8), upon using G(0; xj) = −1/(8π) from (3.2), that

v(0) ∼
1

D

[

1

4
−

1

N
log

(

εN

2

)]

. (3.11)

Since the trap length fraction on the boundary of the unit disk is σ = 2εN/(2π) = εN/π, we observe that the dilute

fraction limit εN � 1 of the homogenization result (3.10) agrees with (3.11).

Finally, we illustrate the significant effect on χ resulting from different placements of the absorbing arcs on

the boundary of the unit disk. We consider either three or four absorbing arcs, each of length 2ε, so that µ =
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3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.300.250.200.150.100.050.00

χ

ε

(a) Three traps: χ versus ε

2.0

1.5

1.0

0.5

0.0

0.300.250.200.150.100.050.00

χ

ε

(b) Four traps: χ versus ε

Figure 3. Comparison of the two-term result for χ given in (3.6) (dotted curves) with the log-summed result (3.12) (solid
curves) versus ε for D = 1 and for traps on the boundary of the unit disk. Left figure: N = 3 traps at x1 = eπi/3, x2 = eπi/2,
x3 = e2πi/3 (top curves); x1 = eπi/6, x2 = eπi/2, x3 = e5πi/6 (middle curves); x1 = e−πi/3, x2 = eπi/2, x3 = e4πi/3 (bottom
curves). Right figure: N = 4 traps at x1 = eπi/6, x2 = eπi/3, x3 = e2πi/3, x4 = e5πi/6 (top curves); x1 = (1, 0), x2 = eπi/3,
x3 = e2πi/3, x4 = (−1, 0) (middle curves); x1 = eπi/4, x2 = e3πi/4, x3 = e5πi/4, x4 = e7πi/4 (bottom curves). When the traps
are centered at the roots of unity (bottom curves in both figures), the results (3.6) and (3.12) are identical.

(− log[ε/2])−1. For an arbitrary arrangement of the centers xj , for j = 1, . . . , N of the arcs, the two-term asymptotic

expansion for the average MFPT χ is given in (3.6), which has an error of O(µ). When the xj are chosen to be at

the roots of unity, the simple result (3.8) for χ holds, which has an error of O(µk) for any k > 0. Finally, for an

arbitrary arrangement of xj , the asymptotic result for χ that has an error O(µk) for any k > 0 is given in (2.11 c) of

Principal Result 2.1. Upon using (3.2) for G(xi; xj) and R, we can readily show that (2.11 b) and (2.11 c) reduce to

χ ∼
1

DN

(

− log
(ε

2

)

+
N

8
−

1

N
eTG1 [I − µ (I − E) G1]

−1
e

)

. (3.12)

Here E = N−1eeT , eT = (1, . . . , 1), I is the N × N identity matrix, and G1 is defined as the N × N symmetric

matrix with G1jj = 0 for j = 1, . . . , N and G1ij = log |xi − xj | for i 6= j. For N = 3, in Fig. 3(a) we compare the

two-term asymptotic result (3.6) with the more accurate result (3.12) as a function of ε for three different placements

of absorbing arcs on the boundary of the unit disk (see the caption of Fig. 3(a)). A similar comparison for N = 4 is

made in Fig. 3(b). These results show that the two-term approximation (3.6) is rather accurate for small ε, and that

the effect on χ of the locations of the absorbing arcs is rather significant even for rather small values of ε.

3.2 The Unit Square

For the unit square Ω, we must calculate the surface Green’s function satisfying (2.5) with a singularity ξ ∈ ∂Ω. To

do so, we proceed by first calculating the Neumann Green’s function G(x; ξ) for ξ ∈ Ω and we then take the limit as

ξ approaches a boundary point. The Green’s function with an interior singularity satisfies

4G =
1

|Ω|
− δ(x − ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫

Ω

G(x; ξ) dx = 0 . (3.13)

In this subsection we label x = (x1, x2) as the observation point in Ω ≡ {(x1, x2) | 0 < x1 < 1 , 0 < x2 < 1}, while

the singular point has coordinates ξ = (ξ1, ξ2).



12 S. Pillay, M. J. Ward, A. Peirce, T. Kolokolnikov

The function G(x; ξ) can be readily represented in terms of an eigenfunction expansion. Then, certain infinite

series can be summed analytically to extract the slowly converging part of the series resulting from the logarithmic

singularity. In this way, in equation (4.13) of [12] it was found that

G(x; ξ) = −
1

2π
log |x − ξ| + R(x; ξ) , (3.14 a)

where the regular part R(x; ξ) is given explicitly by

R(x; ξ) = −
1

2π

∞
∑

n=0

log (|1 − qnz+,+||1 − qnz+,−||1 − qnz−,+||1 − qnζ+,+||1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

−
1

2π
log

|1 − z−,−|

|r−,−|
+ H(x1, ξ1) −

1

2π

∞
∑

n=1

log |1 − qnz−,−| . (3.14 b)

Here the eight complex constants z±,± and ζ±,± are defined in terms of additional complex constants r±,±, ρ±,± by

z±,± ≡ eπr±,± , ζ±,± ≡ eπρ±,± , q ≡ e−2π < 1 , (3.15 a)

r+,± ≡ −|x1 + ξ1| + i(x2 ± ξ2) , r−,± ≡ −|x1 − ξ1| + i(x2 ± ξ2) , (3.15 b)

ρ+,± ≡ |x1 + ξ1| − 2 + i(x2 ± ξ2) , ρ−,± ≡ |x1 − ξ1| − 2 + i(x2 ± ξ2) . (3.15 c)

In (3.14) and (3.15), |ω| is the modulus of the complex number ω. In (3.14 b), H(x1, ξ1) is defined by

H(x1, ξ1) ≡
1

12
[h(x1 − ξ1) + h(x1 + ξ1)] , h(θ) ≡ 2 − 6|θ| + 3θ2 . (3.16)

Now suppose that the singular point is located on the bottom side of the square so that ξ = (ξ1, 0) with 0 < ξ1 < 1.

Then, the term log |1 − z−,+| in (3.14 b) also has a singularity at x = (ξ1, 0), and must be extracted from the sum.

In this case, the explicit solution to (2.5) is obtained by re-writing (3.14) as

G(x; ξ) = −
1

π
log |x − ξ| + R(x; ξ) , (3.17 a)

where the regular part R(x; ξ) is given explicitly by

R(x; ξ) = −
1

2π

∞
∑

n=0

log (|1 − qnz+,+||1 − qnz+,−||1 − qnζ+,+||1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

−
1

2π
log

|1 − z−,−|

|r−,−|
−

1

2π
log

|1 − z−,+|

|r−,+|
+ H(x1, ξ1) −

1

2π

∞
∑

n=1

log (|1 − qnz−,−||1 − qnz−,+|) . (3.17 b)

The self-interaction term R(ξ; ξ) is obtained by taking the limit x → ξ in (3.17 b). By using L’Hopital’s rule to

calculate the terms log |1 − z−,±|/|r−,±|, we obtain with q = e−2π that

R(ξ; ξ) = −
1

π

∞
∑

n=0

log
[

(

1 − qne−2ξ1π
)

(

1 − qne−2π(1−ξ1)
)]

−
2

π

∞
∑

n=0

log (1 − qn) −
log π

π
+

(

ξ1 −
1

2

)2

+
1

12
. (3.18)

Similarly, G(x; ξ) and R(ξ; ξ) can be found when the singular point is on any of the other three sides of the square.

We now calculate the MFPT for a few special cases. We first suppose that there is one absorbing window of length

2ε centered at the midpoint ξ = (0.5, 0) of the bottom side of the square. We consider initial points for a random

walk that are located on the vertical line x = (0.5, x2) where 0 < x2 < 1. For this configuration, (2.14) yields

v(x) ∼
1

Dπ

[

− log
(ε

2

)

+ π (R(ξ; ξ) − G(x; ξ))
]

, (3.19)

where G(x; ξ) and R(ξ; ξ) is given in (3.17) and (3.18), respectively. In Fig. 4(a) we plot v versus x2, where we show
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that v increases as the initial point tends to the top boundary of the square, i.e. x2 → 1. Next, suppose that the

initial point is at the center of the unit square, i.e. x = (0.5, 0.5), but that the center ξ = (ξ1, 0) of the absorbing

window slides along the bottom of the unit square with 0 < ξ1 < 1. Upon using (3.19), in Fig. 4(b) we plot v versus

ξ1 on 0 < ξ1 < 1, which shows that v is minimized at ξ1 = 0.5, as expected intuitively.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

v

x2

(a) v(0.5, x2) versus x2

2.5

2.0

1.5

1.0

1.00.80.60.40.20.0

v

ξ1

(b) v(0.5, 0.5) versus ξ1

Figure 4. Left figure: Plot of the MFPT v(0.5, x2) on 0 < x2 < 1 given in (3.19) when there is one trap located at ξ = (0.5, 0.0)
at the midpoint of the bottom side of the unit square. Right figure: Plot of the MFPT v(0.5, 0.5), with initial point at the
center of the unit square, versus the x-coordinate of a trap location that slides along the bottom of the square at position
ξ = (ξ1, 0) with 0 < ξ1 < 1. For both figures, D = 1, ε = 0.02 and the trap has length 2ε.

Next, we suppose that the initial point is at the center x = (0.5, 0.5) of the unit square, but that there are two

traps, each of length 2ε, on the boundary of the square. We fix the center of one of the traps at the midpoint

ξ1 = (0.0, 0.5) of the left boundary, and we let the center ξ2 of the other trap slide along the boundary of the square

in a counterclockwise direction starting from ξ1. From (2.12) and (2.11 a), the MFPT is given asymptotically by

v(x) ∼
1

2Dπ

[

− log
(ε

2

)

+
π

2
(R(ξ1; ξ1) + R(ξ2, ξ2) + 2G(ξ1; ξ2)) − π (G(x; ξ1) + G(x; ξ2))

]

. (3.20)

In Fig. 5 we plot v(x) versus the distance s along the boundary of the location of the second trap relative to the

first trap. Although the analysis in §2 leading to (3.20) is not valid for trap locations that are O(ε) close to the

corner points of the square, we observe in Fig. 5 that v has peaks as ξ2 approaches these corner points, corresponding

to s = 0.5, s = 1.5, and s = 2.5. In addition, as seen from Fig. 5, v has a global minimum when ξ2 = (1.0, 0.5)

(i.e. s = 2.0), corresponding to a configuration of two traps that are equally spaced on the boundary of the square.

Finally, we consider the special case with one absorbing window centered at the corner of the unit square. Since

the window is centered at a non-smooth part of the boundary, we must modify the analysis for the MFPT in §2.

Choosing ξ = (0, 0) as the corner point, we first calculate G(x; ξ) from (3.14) as

G(x; ξ) = −
2

π
log |x| + R(x; 0) , (3.21 a)
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1.4

1.2

1.0

0.8

0.6

0.4

2.52.01.51.00.50.0

v

s

Figure 5. Plot of the MFPT v(0.5, 0.5), with initial point at the center of the unit square, when there are two traps on the
boundary of the unit square. The first trap is fixed at ξ1 = (0.0, 0.5) on the left side of the square, while the second trap starts
from ξ1 and then slides around the boundary of the square in a counterclockwise direction. The plot shows v(0.5, 0.5) as a
function of the distance s along the boundary of the second trap relative to ξ1 for 0 < s < 2.5. When s = 2, then the second
trap is at (1.0, 0.5). At this antipodal point, v(0.5, 0.5) has a global minimum. The local maxima at s = 0.5, s = 1.5, and
s = 2.5 occur when the second trap is close to a corner of the square. We took ε = 0.02, D = 1, and each trap has length 2ε.

where the regular part R(x; 0) is given explicitly by

R(x; 0) = −
1

2π

∞
∑

n=1

log (|1 − qnz+,+||1 − qnz+,−||1 − qnz−,+||1 − qnz−,−|)

−
1

2π

∞
∑

n=0

log (|1 − qnζ+,+||1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

−
1

2π
log

(

|1 − z+,+|

|r+,+|

|1 − z+,−|

|r+,−|

|1 − z−,+|

|r−,+|

|1 − z−,−|

|r−,−|

)

+ H(x1, 0) . (3.21 b)

Moreover, the self-interaction term R(0; 0) is given by

R(0; 0) = −
4

π

∞
∑

n=1

log (1 − qn) −
2 logπ

π
+

1

3
, q = e−2π . (3.22)

The analysis in §2 is easily modified to treat an absorbing arc centered at a corner of the square. We obtain that

4v = −
1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω\{0} ; v ∼

A1

µ
+ A1 log |x| , as x → 0 . (3.23)

Since ∂Ω has a π/2 corner at x = 0, the divergence theorem yields A1 = 2|Ω|/(Dπ), and hence

v = −
|Ω|

D
G(x; 0) + χ . (3.24)

The constant χ is obtained by expanding v as x → 0. We use G(x; 0) ∼ −2π−1 log |x| + R(0; 0), and then compare

the resulting expression with the singularity behavior in (3.23). In this way, in place of (2.14), we get

v ∼
2|Ω|

Dπ

[

− log(εd) +
π

2
(R(0; 0) − G(x; 0))

]

, v̄ ∼
2|Ω|

Dπ

[

− log(εd) +
π

2
R(0; 0)

]

. (3.25)

Here |Ω| = π, while R(0; 0) and G(x; 0) are given in (3.22) and (3.21), respectively. Finally, the constant d in (3.25),

inherited from the far-field behavior of the inner problem, depends on the details of how the absorbing arc of length

2ε is placed near the corner. If the arc is on only one side so that v = 0 on 0 < x1 < 2ε with x2 = 0, then d = 1. If

v = 0 on the two sides x2 = 0, 0 < x1 < ε and x1 = 0, 0 < x2 < ε, then d = 1/4.

By solving certain integral equations asymptotically, a result for v̄ was obtained in [19] for the unit square when
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an absorbing arc of length ε is placed on x2 = 0, 0 < x1 < ε near the corner at the origin. For this configuration,

d = 1/2 in (3.25). Upon approximating R(0; 0) in (3.22) by taking only the first term in the infinite sum, (3.25)

reduces approximately to v̄ ∼ 2D−1
[

log 2 − log(πε) + 2e−2π + π/6
]

, in agreement with equation (2.8) of [19].

3.3 More General Domains: A Boundary Integral Method

For an arbitrary bounded domain with smooth boundary ∂Ω, we now describe a boundary integral scheme to compute

the surface Neumann Green’s function G(x; x0) satisfying

4G(x; x0) =
1

|Ω|
, x ∈ Ω , x0 ∈ ∂Ω , (3.26 a)

∂nG(x; x0) = δ(x − x0) , x ∈ ∂Ω ;

∫

Ω

G(x; x0) dx = 0 . (3.26 b)

In terms of G(x; x0) we then define the regular part, or self-interaction term, R(x0; x0) by

lim
x→x0

(

G(x; x0) +
1

π
log |x − x0|

)

= R(x0; x0) . (3.26 c)

Requiring only the discretization of the domain boundary, the boundary element method (BEM) is well-suited to

numerically solving problems with singular boundary terms. However, the need to impose the uniqueness condition
∫

Ω G(x; x0) dx = 0 negates the benefit of the BEM derived from restricting the discretization to the boundary. Since

(3.26) for G without this integral constraint only defines G up to an arbitrary constant, one approach would be to

compute any specific solution for G and then determine the constant to add to G by an a posteriori area integration.

We choose to adopt an alternative numerical approach, which is based on a regularization of (3.26). To this end,

we consider the following reduced wave equation in which β is taken to be a small parameter and x0 ∈ ∂Ω:

LβGβ(x; x0) ≡ 4Gβ(x; x0) − β2Gβ(x; x0) = 0 , x ∈ Ω ; ∂nGβ(x; x0) = δ(x − x0) , x ∈ ∂Ω . (3.27)

To determine the relationship between (3.26) and (3.27), we expand the solution to (3.27) for β � 1 as

Gβ(x; x0) =
1

β2
G0(x; x0) + G1(x; x0) + β2G2(x; x0) + . . . . (3.28)

Substituting (3.28) into (3.27), and collecting powers of β2, we get that G0 is a constant and that G1 and G2 satisfy

4G1(x; x0) = G0(x; x0) , x ∈ Ω ; ∂nG1(x; x0) = δ(x − x0) , x ∈ ∂Ω , (3.29 a)

4G2(x; x0) = G1(x; x0) , x ∈ Ω ; ∂nG2(x; x0) = 0 , x ∈ ∂Ω . (3.29 b)

Upon applying the divergence theorem to (3.29 a) we obtain that G0(x; x0) = |Ω|
−1

. A similar application of the

divergence theorem to (3.29 b) shows that G1 must satisfy the solvability condition
∫

Ω G1(x; x0) dx = 0. Therefore,

G1(x; x0) is precisely the surface Neumann Green’s function satisfying (3.26). Since G0(x; x0) = |Ω|−1 is known, our

strategy is to use Richardson extrapolation in which we solve (3.27) numerically for two distinct values of β � 1 and

then eliminate the O
(

β2
)

term to yield an approximation of G1(x; x0) which is accurate up to O
(

β4
)

terms.

The starting point for the boundary integral equation for (3.27) is the Green’s identity associated with the operator

Lβ in (3.27), given by
∫

Ω (u1Lβu2 − u2Lβu1) dx =
∫

∂Ω (u1∂nu2 − u2∂nu1) ds. We choose u1 = Gβ(x; x0) and u2 =

gβ(x; ξ) ≡ 1
2π K0(β |x − ξ|) as the free space Green’s function satisfying Lβgβ(x; ξ) = −δ(x − ξ) with ξ ∈ Ω, where

K0(z) is the modified Bessel function of the second kind of order zero. Then, Green’s identity reduces to

Gβ(ξ; x0) +

∫

∂Ω

Gβ(x; x0) ∂ngβ(x; ξ) ds(x) =
1

2π
K0(β |x0 − ξ|) . (3.30)
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Next, we decompose Gβ(x; x0) into the sum of a singular part and a regular part Rβ(x; x0) as

Gβ(x; x0) = −
1

π
log |x − x0| + Rβ(x; x0) . (3.31)

Upon substituting (3.31) into (3.30), we obtain the following integral relation for ξ in the interior of Ω, i.e. ξ ∈ Ω;

Rβ(ξ; x0) +

∫

∂Ω

Rβ(x; x0)∂ngβ(x; ξ) ds(x) =
1

2π
K0(β |x0 − ξ|) +

1

π
log |x0 − ξ| +

1

π

∫

∂Ω

log |x − x0| ∂ngβ(x; ξ) ds(x) .

(3.32)

To derive an integral equation from (3.32) that involves only unknown quantities on the boundary we consider the

local behavior of the integrals in (3.32) in the limit as ξ → ∂Ω. Let ξ be located on the smooth boundary ∂Ω and

consider the integral
∫

∂Ωε(ξ) f(x)∂ngβ(x; ξ) ds(x). Here ∂Ωε(ξ) represents the boundary ∂Ω of the domain in which

the boundary points in the vicinity of ξ have been deformed to form a semi-circular arc of radius ε which is centered at

ξ and which is such that ξ is incorporated within the boundary of ∂Ωε(ξ). Under the assumption that f is continuous

at ξ, the contribution to the integral on the semi-circular arc can be calculated for ε → 0 as

lim
ε→0

∫ π/2

−π/2

f(ξ1 + ε cos θ, ξ2 + ε sin θ)
β

2π
K ′

0(βε)ε dθ = −
1

2
f(ξ1, ξ2) .

Therefore, for boundary points where ξ ∈ ∂Ω, we have

lim
ε→0

∫

∂Ωε(ξ)

f(x)∂ngβ(x; ξ) ds(x) = −
1

2
f(ξ) +

∫

∂Ω

−f(x)∂ngβ(x; ξ) ds(x) . (3.33)

Here
∫

∂Ω− represents the exclusion of a small symmetric region from the boundary in the neighborhood of the point

ξ upon taking the limit to zero, as is customary in the definition of Cauchy principal value integrals. Making use of

the limiting behavior (3.33) in (3.32), we obtain the following boundary integral equation for Rβ(ξ; x0):

1

2
Rβ(ξ; x0) +

∫

∂Ω

−Rβ(x; x0)∂ngβ(x; ξ) ds(x) =
1

2π
K0(β |x0 − ξ|) +

1

2π
log |x0 − ξ| +

1

π

∫

∂Ω

− log |x − x0| ∂ngβ(x; ξ) ds(x) .

(3.34)

For the special case ξ → x0 the first two singular terms on the right side of (3.34) have the asymptotic behavior

lim
ξ→x0

(

1

2π
K0(β |x0 − ξ|) +

1

2π
log |x0 − ξ|

)

=
1

2π

[

−γ + log

(

2

β

)]

+ O
(

|x0 − ξ|
2
log |x0 − ξ|

)

,

where γ is Euler’s constant.

Next, we discretize the boundary integral equation (3.34). We approximate the boundary by N circular arcs and

on each arc we assume a piecewise quadratic representation of the unknown function

Rβ(x(t); x0) =

3
∑

j=1

Rj(x0)Nj(t) , Nj(t) =

3
∏

k=1
k 6=j

(t − tk)

(tj − tk)
.

Here t is the standard parameterization of the arc, and Nj(t) are the quadratic Lagrange basis functions associated

with the collocation points tj , which are chosen to be the zeros of the third degree Legendre polynomial. The boundary

integral equation (3.34) then assumes the discrete form

1

2
Rm

k (x0) +
N
∑

n=1

3
∑

j=1

Rn
j (x0)

∫

∂Ωn

− Nj(t)∂ngβ(x(t), ξk) ds(t) =
1

2π
K0(β |x0 − ξk|) +

1

2π
log |x0 − ξk|+

1

π

N
∑

n=1

∫

∂Ωn

− log |x(t) − x0| ∂ngβ(x(t), ξk) ds(t) .



An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems 17

This dense linear system can be written compactly in index form as

1

2
Rm

k (x0) +

N
∑

n=1

3
∑

j=1

Kmn
kj Rn

j (x0) = bm
k + Lm

k , (3.35)

where

Kmn
kj =







−aβ
2π

∫ αn

−αn
− Nn

j (t)K1

(

2aβ sin
(

|t−tm
k |

2

))

sin
(

|t−tm
k |

2

)

dt , m = n

−aβ
2π

∫ αn

−αn
Nn

j (t)
K1(βrmn

k (t))
rmn

k
(t)

(

a − ξ̄mn
1,k cos t − ξ̄mn

2,k sin t
)

dt , m 6= n
,

bm
k =

1

2π

{

−γ + log 2
β , ξk = x0

K0(β |x0 − ξk |) + log |x0 − ξk| , ξk 6= x0
,

and K1(z) is the modified Bessel function of the second kind of order one. In addition,

Lm
k = −

aβ

2π2

N
∑

n=1































∫ αn

−αn
− log

(

2a sin( |t|2 )
)

K1

(

2aβ sin
(

|t−tm
k |

2

))

sin
(

|t−tm
k |

2

)

dt , m = n , n = n0
∫ αn

−αn
log
(

2a sin( |t|2 )
)

K1(βrmn
k (t))

rmn
k

(t)

(

a − ξ̄mn
1,k cos t − ξ̄mn

2,k sin t
)

dt , m 6= n , n = n0
∫ αn

−αn
− log (rn

0 (t)) K1

(

2aβ sin
(

|t−tm
k |

2

))

sin
(

|t−tm
k |

2

)

dt , m = n , n 6= n0
∫ αn

−αn
log (rn

0 (t))
K1(βrmn

k (t))
rmn

k
(t)

(

a − ξ̄mn
1,k cos t − ξ̄mn

2,k sin t
)

dt , m 6= n , n 6= n0 .

Here, a represents the local radius of curvature of the nth element, ξ̄mn
j,k represents the jth component of the kth

collocation point in the mth receiving element relative to the local coordinate system centered on the nth element,

rmn
k (t) represents the distance between the current integration point t in the nth element and the kth collocation

point in the mth receiving element, rn
0 (t) is the distance between the current integration point t in the nth sending

element and the source point x0, and n0 represents the element number in which the source point x0 is located at

the middle collocation point. The integrals in (3.35) are performed using adaptive Gauss-Konrod integration.

The numerical solution to the linear system (3.35) yields approximate numerical values for Rβ(x; x0) for x ∈ ∂Ω and

for Rβ(x0; x0). The function Rβ(x; x0) for an interior point with x ∈ Ω is obtained from (3.32), which then determines

Gβ(x; x0) from (3.31). A Richardson extrapolation applied to (3.28) then determines the surface Neumann Green’s

function G(x; x0). Our final step in our BEM scheme is to use Richardson extrapolation to extract the regular part

R(x0; x0) of the surface Neumann Green’s function, defined in (3.26 c) from the small β expansion

Rβ(x0; x0) =
1

|Ω|β2
+ R(x0; x0) + O(β2) . (3.36)

Some numerical results computed from the BEM are given below and in §4.

The Unit Disk: In order to establish the convergence rate of the BEM we first consider the unit disk for which

R(x0; x0) = 1/(8π) = 0.039789, as obtained from the analytical result (3.2). In Table 1 we give numerical BEM

results showing that the convergence rate of our numerical scheme is O
(

N−3
)

.

A Perturbation of the Unit Disk: We consider a perturbation of the unit disk with boundary defined by

r = 1 + δ cos(2θ) where δ > 0 is small. For a source point at position x0(θ) = (r cos θ, r sin θ) on the boundary, we

define the self-interaction term ρ(θ) by ρ(θ) ≡ R(x0(θ), x0(θ)). From Principal Result 4.3 given below in §4, which is

proved in Appendix A, we obtain for δ � 1 that

ρ′(θ) ∼ −
4δ

π
sin(2θ) + O(δ2) . (3.37)

In Fig. 6 we show a very favorable comparison between the asymptotic result (3.37) for δ = 0.05 and δ = 0.1 and
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Rβ(x0; x0) R(x0; x0)

N β = 0.025 β = 0.0125 extrapolated value exact value

32 0.037515 0.039091 0.040666 0.039789
64 0.037243 0.038576 0.039908 0.039789
128 0.037203 0.038501 0.039799 0.039789
256 0.037198 0.038491 0.039783 0.039789

Table 1. Numerical BEM results approximating the regular part R(x0; x0) = 1/8π of the surface Neumann Green’s

function for the unit disk with N boundary elements. The convergence rate of the numerical scheme is O
(

N−3
)

.

0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

 θ/π

  d
ρ(

θ)
/d

θ 

Figure 6. Comparison of ρ
′

(θ) ≡ d
dθ

R(x0(θ), x0(θ)) versus θ/π from the analytical perturbation result (3.37) (dashed curves)
and the numerical BEM results (solid curves) for a near unit disk with boundary r = 1+δ cos(2θ) with δ = 0.1 (large amplitude
curves) and δ = 0.05 (small amplitude curves). In the BEM scheme N = 128 elements were used.

the corresponding full numerical BEM results for ρ′(θ) computed with N = 128 elements. In computing ρ′(θ) from

the BEM scheme, we used a not-a-knot cubic spline to perform the numerical differentiation. Fig. 6 gives further

supporting evidence that the BEM scheme is able to compute ρ(θ) accurately.

An Ellipse: Next, we let Ω be the ellipse with boundary x(θ) = 2 cos θ and y(θ) = sin θ. By allowing the source point

x0(θ) = (cos θ, sin θ) to move around the boundary, in Fig. 7(a) we plot the BEM result for ρ(θ) ≡ R(x0(θ), x0(θ))

versus θ/π with N = 128 elements. The curvature κ(θ) of the boundary is also shown in this figure. For this example,

the local maxima of ρ(θ) and κ(θ) coincide. Next, we compute the MFPT for the case of one absorbing window of

length 2ε on the boundary of the ellipse centered at x0(θ). Upon setting |Ω| = 2π in (2.14), and with a minor change

in notation from (2.14), the average MFPT v̄(θ) and the MFPT v(θ; x) for a starting position x ∈ Ω are given by

v̄(θ) ∼ 2
[

− log
(ε

2

)

+ πρ(θ)
]

; v(θ; x) ∼ 2
[

− log
(ε

2

)

+ π (ρ(θ) − G(x; x0(θ)))
]

. (3.38)

We define v1(θ) ≡ v(θ; x) for an initial point at the origin x = (0, 0), and v2(θ) = v(θ; x) for the initial point x = (1, 0).

In Fig. 7(b) we plot v̄, v1 and v2 versus θ/π when ε = 0.05. From this figure it is seen that the MFPT depends

significantly on both the location θ of the absorbing window on the boundary of the ellipse and on the chosen initial

point inside the ellipse for the random walk.
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(a) ρ(θ) ≡ R (x(θ); x(θ)) and κ(θ)
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(b) v̄(θ), v1(θ), and v2(θ)

Figure 7. Left figure: plot of ρ(θ) ≡ R(x0(θ), x0(θ)) (solid curve) versus θ/π and the boundary curvature κ(θ) (dashed curve)
for an elliptical region with boundary x = 2 cos θ, y = sin θ. Right figure: plot of the average MFPT v̄(θ) versus θ/π (solid
curve) together with the mean first passage time v1(θ) (dashed curve) and v2(θ) (dash-dotted curve), as defined in (3.38),
for a random walk with initial starting point x = (0, 0) and x = (1, 0), respectively. The absorbing window of length 2ε with
ε = 0.05 is centered at polar angle θ on ∂Ω.

4 Optimization of the Principal Eigenvalue

In this section we asymptotically calculate the principal eigenvalue for

4u + λu = 0 , x ∈ Ω ,

∫

Ω

u2 dx = 1 , (4.1 a)

∂nu = 0 , x ∈ ∂Ωr ; u = 0 , x ∈ ∂Ωa ≡ ∪N
j=1∂Ωεj

. (4.1 b)

Here ∂Ω = ∂Ωr ∪ ∂Ωa is a smooth boundary. We assume that there are N small well-separated absorbing arcs ∂Ωεj

each with length |∂Ωεj
| = εlj � 1, for which ∂Ωεj

→ xj for j = 1, . . . , N . We let λ(ε) denote the first eigenvalue of

(4.1), with corresponding eigenfunction u(x, ε). Clearly, λ(ε) → 0 as ε → 0 with u → u0 = |Ω|−1/2.

To calculate λ(ε) for ε � 1 we proceed as in §2. In the inner region near the jth absorbing arc, we again obtain

(2.2) as the inner problem. The far-field behavior of the solution to (2.2) is written as

w0 ∼ µjBj [log |y| − log dj + o(1)] , as |y| → ∞ , dj = lj/4 , (4.2)

where y = ε−1(x − xj), µj = −1/ log[εdj ], and Bj is some unknown constant. This leads to a singularity behavior

for the outer solution given by u ∼ Bj + µjBj log |x − xj | as x → xj for j = 1, . . . , N . In this way, we obtain that

λ(ε) = λ∗ + O(ε), where λ∗ and u∗ satisfy

4u∗ + λ∗u∗ = 0 , x ∈ Ω ; ∂nu∗ = 0 , x ∈ ∂Ω\{x1, . . . , xN} , (4.3 a)

u∗ ∼ Bj + µjBj log |x − xj | , as x → xj , j = 1, . . . , N , (4.3 b)

where µj is defined in (2.4 b). The solution to (4.3) is written as

u∗ = −π

N
∑

i=1

µiBiGh(x; xi) , (4.4)
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where Gh(x; xj) is the surface Helmholtz Green’s function, which depends on λ∗, and satisfies

4Gh + λ∗Gh = 0 , x ∈ Ω ; ∂nGh = 0 , x ∈ ∂Ω\{xj} , (4.5 a)

Gh(x; xj) ∼ −
1

π
log |x − xj | + Rh(xj ; xj) , as x → xj ∈ ∂Ω . (4.5 b)

We then expand (4.4) as x → xj and compare the resulting expression with the required singularity behavior (4.3 b).

This yields the following homogeneous linear system for the Bj for j = 1, . . . , N :

Bj + πµjBjRhj + π

N
∑

i=1

i6=j

µiBiGhji = 0 , j = 1, . . . , N . (4.6)

Here we have defined Ghji ≡ Gh(xj ; xi), while Rhj ≡ Rh(xj ; xj) is the regular part of Gh given in (4.5). Upon writing

this system in matrix form, we obtain the following main result:

Principal Result 4.1: Consider (4.1) for N well-separated absorbing arcs of length |∂Ωεj
| = εlj centered at xj ∈ ∂Ω

for j = 1, . . . , N . Then, the principal eigenvalue λ(ε) of (4.1) satisfies λ(ε) = λ∗ + O(ε), where λ∗ is the smallest

root of the transcendental equation

Det (I + πGhU) = 0 . (4.7)

Here U is the diagonal matrix as given in (2.10), and Gh is the Helmholtz Green’s function matrix with entries

Ghjj = Rh(xj ; xj) , j = 1, . . . , N ; Ghij = Gh(xi; xj) , i 6= j , (4.8)

which are defined in terms of the solution Gh(x; ξ) and Rh(ξ; ξ) to (4.5). The corresponding outer approximation to

the principal eigenfunction is given in (4.4), where BT ≡ (B1, . . . , BN ) is the eigenvector of (I + πGhU)B = 0.

The transcendental equation (4.7) has in effect summed all of the logarithmic terms in powers of µj for λ(ε). To

explicitly determine the first two terms in the logarithmic series, we let λ∗ � 1 and obtain from (2.5) and (4.5) that

Gh(x; xj) ∼ −
1

λ∗|Ω|
+ G(x; xj ) + O(λ∗) , Rh(x; xj) ∼ −

1

λ∗|Ω|
+ R(x; xj) + O(λ∗) . (4.9)

Upon substituting (4.9) into (4.6), we obtain the approximating matrix eigenvalue problem

CB ∼
λ∗|Ω|

πN
B , C ≡ (I + πGU)

−1
EU , E ≡

1

N
eeT , eT = (1, . . . , 1) , (4.10)

where G is the matrix in (2.10) involving the Green’s function of (2.5). Since C is a rank one matrix, then for µj � 1

λ∗|Ω|

πN
∼ Trace

[

(I + πGU)
−1

EU
]

∼ Trace (EU) − πTrace [GUEU ] = µ̄ −
π

N

N
∑

i=1

N
∑

j=1

µiµjGij .

The principal eigenfunction is found by substituting (4.9) for Gh into (4.4). We summarize the result as follows:

Principal Result 4.2: Let λ(ε) be the principal eigenvalue of (4.1) with N well-separated absorbing arcs. Then, a

two-term expansion for λ(ε) is given by

λ(ε) ∼ λ∗ ∼
πµ̄N

|Ω|
−

π2

|Ω|
pw(x1, . . . , xN ) + O(|µ|3) , (4.11)

where µ̄ ≡ N−1(µ1 + · · · + µN ), µj = −1/ log[εdj ] with dj = lj/4, and pw(x1, . . . , xN ) is the weighted discrete sum

defined in (2.13). The corresponding two-term outer approximation to the principal eigenfunction is given by

u ∼
π

λ∗|Ω|

N
∑

i=1

µiBi − π
∑

i=1

µiBiG(x; xi) + O(|µ|2) , (4.12)
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where G(x; xi) is the surface Green’s function satisfying (2.5). For the special case N = 1, then

λ(ε) ∼ λ∗ ∼
πµ1

|Ω|
−

π2µ2
1

|Ω|
R(x1; x1) + O(µ3

1) , µ1 ≡ −
1

log[εd1]
, d1 =

l1
4

. (4.13)

As a special case of the result (4.11) for λ(ε), suppose that Ω is the unit disk with N identical small absorbing

arcs placed symmetrically around the boundary of the unit disk at the N th roots of unity, i.e. xj = e2πij/N . Then,

with |Ω| = π and pw(x1, . . . , xN ) = µ2p(x1, . . . , xN ), where p(x1, . . . , xN ) is given in (3.7), (4.11) becomes

λ(ε) ∼ µN − µ2

(

N2

8
− N log N

)

+ O(µ3) , µ ≡ −

(

log

[

εl

4

])−1

. (4.14)

As a further special case of (4.13), suppose that an absorbing arc of length 2ε is centered at x1 = (ξ1, 0) on the

bottom side of the unit square, for which R(x1; x1) is given explicitly from §3.2 by the right-hand side of (3.18).

Then, (4.13) with d = 1/2 and |Ω| = 1, becomes

λ(ε) ∼ πµ − π2µ2R(x1; x1) , µ ≡ −
1

log (ε/2)
. (4.15)

In Fig. 8(a) we plot R(x1; x1) showing that it has a minimum when ξ1 is at the midpoint of a side of the square.

Fig. 8(b) we plot (4.15) versus ε for ξ1 = 0.5, ξ1 = 0.3, and ξ1 = 0.9. The eigenvalue is largest when ξ1 = 0.5.
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(a) R1 ≡ R(x1; x1) with x1 = (ξ1, 0)
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Figure 8. Left figure: plot of the regular part R(x1; x1) of the Neumann Green’s function for a square, as given in (3.18),
with the trap centered on the bottom side of the square at x1 = (ξ1, 0). Right figure: two-term expansion for λ(ε) in (4.15)
for ξ1 = 0.5 (top curve), ξ1 = 0.3 (middle curve), and ξ1 = 0.9 (bottom curve). The eigenvalue is largest when ξ1 = 1/2.

The result (4.15) is not valid near a corner of the square, i.e. when ξ1 = O(ε). For this case, where the arc is

located at a corner of angle π/2, a modification of the analysis given in §2.3 shows that

λ ∼
πµ

2
−

π2µ2

4
R(0; 0) , µ ≡ −

1

log(εd)
, R(0; 0) ≡ −

4

π

∞
∑

n=1

log (1 − qn) −
2

π
log π +

1

3
, (4.16)

where q = e−2π. The constant d, inherited from the inner problem, depends on the details of how the absorbing arc

of length 2ε is placed near the corner. If the arc is on only one side so that u = 0 on 0 < x1 < 2ε with x2 = 0, then

d = 1. If u = 0 on the two sides x2 = 0, 0 < x1 < ε and x1 = 0, 0 < x2 < ε, then d = 1/4. In any case, it is clear by

comparing (4.15) with (4.16) that λ is minimized when the absorbing arc is located at a corner of the square.
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Next, we show that a few terms in the expansion for λ∗ given in (4.11) of Principal Result 4.2 can be transformed

directly into a few terms in the expansion for χ given in (2.12 b) of Principal Result 2.2, in the sense that

v̄ = χ =
1

Dλ∗(ε)
+ O

(

|µ|2
)

. (4.17)

To establish (4.17) we first expand the solution to (1.1) in terms of all of the eigenfunctions uj(x, ε) and λj(ε) for

j ≥ 1 of (4.1). In this notation the principal eigenpair λ1(ε) and u1(x, ε) are given asymptotically in (4.11) and

(4.12), respectively. In the usual way, the eigenfunction expansion representation for v, and consequently v̄ = χ, is

v =
1

D





(u1, 1) u1

λ1 (u1, u1)
+

∞
∑

j=2

(uj , 1)uj

λj (uj , uj)



 , χ = v̄ =
1

|Ω|D





(u1, 1)
2

λ1 (u1, u1)
+

∞
∑

j=2

(uj , 1)
2

λj (uj , uj)



 . (4.18)

Here (u, v) ≡
∫

Ω
uv dx. For j ≥ 2, we use the divergence theorem to calculate (φj , 1) over the absorbing windows

∂Ωa as λj(φj , 1) = −
∫

∂Ωa
∂nφj ds where λj = O(1) as ε → 0. Then, introducing the local coordinates η̂ = ε−1η,

ŝ = ε−1(s − sj), and noting that uj = O(|µ|) in the inner region, as shown in (4.2), we estimate for j ≥ 2 that

(uj , 1) = −
1

λj

N
∑

j=1

∫

∂Ωj

(

ε−1∂η̂uj

)

εdŝ ∼
1

λj

N
∑

j=1

∫

∂Ωj

O(|µ|) dŝ = O(|µ|) .

Therefore, (4.18) reduces to

v =
1

Dλ1

(u1, 1) u1

(u1, u1)
+ O(|µ|) , χ = v̄ ∼

1

|Ω|Dλ1

(u1, 1)
2

(u1, u1)
+ O(|µ|2) . (4.19)

Next, we use (4.12) to calculate

(u1, 1) ∼
π

λ∗

N
∑

i=1

µiBi , (u1, u1) ∼
π2

(λ∗)2|Ω|

N
∑

i=1

N
∑

j=1

µiµjBiBj . (4.20)

Upon substituting (4.20) and (4.12) into (4.19), and then using (4.11) for λ∗, we obtain that

v ∼
1

λ∗D
−

|Ω|

D

∑N
j=1 µjBjG(x; xj)
∑N

j=1 µjBj

+ O(|µ|) , χ = v̄ ∼
1

Dλ∗
+ O(|µ|2) ,

v ∼
|Ω|

πµ̄ND
+

|Ω|

Dµ̄2N2
pw(x1, . . . , xN ) −

|Ω|

D

∑N
j=1 µjBjG(x; xj)
∑N

j=1 µjBj

+ O(|µ|) , (4.21)

where µ̄ ≡ N−1 (µ1 + · · · + µN ) and pw(x1, . . . , xN ) is defined in (2.13). This establishes the claim in (4.17). Finally,

with regards to v, we use (4.10) to calculate BT = (B1, . . . , BN ). To leading order for µj � 1, (4.10) reduces to

EUB ≈ µ̄B, which yields BT ∼ (1, . . . , 1). Therefore, upon setting Bj ∼ 1 for j = 1, . . . , N in (4.21), we readily

obtain that (4.21) agrees asymptotically with the result for the MFPT given in Principal Result 2.2.

4.1 An Eigenvalue Optimization Problem

For the case of exactly one small (connected) absorbing arc of a fixed length εl, we now seek to determine the location

of the center x0 ∈ ∂Ω of this arc that minimizes the principal eigenvalue of (4.1). As stated in §1, it was conjectured

in §1 of [3] that, for a general convex domain with smooth boundary, an optimal absorbing arc must lie in a region

of ∂Ω with large curvature. We first note that (4.13) shows that, up to O(µ2) terms, λ(ε) is minimized at the global

maximum of R(x0, x0) for x0 ∈ ∂Ω. From (2.5) we introduce R(x; x0) by

G(x; x0) = −
1

π
log |x − x0| + R(x; x0), x0 ∈ ∂Ω . (4.22)
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When Ω is a smooth perturbation of the unit disk, we will examine below whether maxima of R(x0; x0) coincide

with maxima of the curvature of the boundary. To do so, we require the following perturbation result determining

the critical points of R(x0; x0) for domains that are close to the unit disk.

Principal Result 4.3: Let Ω be a perturbation of the unit disk with boundary given in terms of polar coordinates by

r = r(θ) = 1 + δσ(θ) , σ(θ) =

∞
∑

n=1

(an cos(nθ) + bn sin(nθ)) , δ � 1 . (4.23)

Let x0 = x0(θ0) = (r0 cos θ0, r0 sin θ0) be a point on the boundary where r0 = 1 + δσ(θ0). For x ∈ ∂Ω we define

ρ(θ) = R(x; x0) and ρ(θ0) ≡ R(x0; x0) , (4.24)

where R(x; x0) is the regular part of the Green’s function in (4.22). Then, for δ � 1, ρ′(θ0) satisfies

ρ′(θ0) =
δ

π

∞
∑

n=1

(

n2 + n − 2
)

(bn cosnθ0 − an sin nθ0) + O(δ2) . (4.25)

The proof of this result is given in Appendix A. We now use Principal Result 4.3 to obtain the following result:

Principal Result 4.4: The maxima of R(x0, x0) do not necessarily coincide with the maxima of the curvature κ(θ)

of the boundary of a smooth perturbation of the unit disk. Consequently, for ε → 0, λ(ε) from (4.13) does not

necessarily have a local minimum at the location of a local maximum of the curvature of a smooth boundary.

To establish this result we take a2 = 1, a3 = µ, with an = 0 for n 6= 2, 3 and bn = 0 for n ≥ 1 in (4.23), so that

σ(θ) = cos(2θ) + µ cos(3θ) . (4.26)

For δ � 1, the curvature κ of the boundary r = 1 + δσ(θ) is given by

κ(θ) =
r2 + 2r2

θ − rrθθ

(r2 + r2
θ)

3/2
∼ 1 − δ (σ + σθθ) + O(δ2) . (4.27)

Upon substituting (4.26) into (4.25) for ρ′(θ) and (4.27) for κ(θ), we obtain that

κ′(θ) = −6δ [sin(2θ) + 4µ sin(3θ)] , ρ′(θ) = −
4δ

π

[

sin(2θ) +
5µ

2
sin(3θ)

]

. (4.28)

We calculate that κ′(π) = ρ′(π) = 0 and

κ′′(π) = −6δ [2 − 12µ] , ρ′′(π) = −
4δ

π

[

2 −
15µ

2

]

. (4.29)

Thus, at θ = π, κ has a maximum when µ < 1/6 while ρ has a maximum when µ < 4/15. Hence, for µ ∈ ( 1
6 , 4

15 ),

there is a point on ∂Ω where ρ has a local maximum at which κ has a local minimum. As a consequence, the principal

eigenvalue of (4.1), given asymptotically in (4.13), does not in general have a local minimum when a small absorbing

window is centered at a local maximum of the boundary curvature. This establishes Principal Result 4.4.

In Fig. 9(a) we plot the domain when µ = 0.2 and δ = 0.1. For µ = 0.2 and δ = 0.1, in Fig. 9(b) we plot κ(θ) − 1,

r(θ)−1, and the integral of the asymptotic result (4.28) for ρ(θ)−C, where C is a constant of integration. For µ = 0.2

and δ = 0.1, in Fig. 10 we show a very favorable comparison between the asymptotic result (4.28) for ρ′(θ) and the

full numerical result for ρ′(θ) computed from the BEM scheme of §3.3. The asymptotic and numerical results for

ρ′(θ) are essentially indistinguishable in this plot. These numerical BEM results confirm the asymptotic prediction

that for µ = 0.2 and δ � 1, ρ has a local maximum while κ has a local minimum at θ = π.
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Figure 9. Left figure: plot of the perturbed unit disk with boundary r = 1+ δ (cos(2θ) + µ cos(3θ)) with δ = 0.1 and µ = 0.2.
Right figure: plot of κ(θ) − 1 (heavy solid line), δσ(θ) (solid line), and ρ(θ) − C (dotted line), where κ, σ, and ρ′ are given in
(4.27), (4.26), and (4.28), respectively. At θ = π, the curvature has a local minimum and ρ has a local maximum.
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Figure 10. Plot of the derivative κ′(θ) (dash-dotted curve) of the near unit disk r = 1 + δ (cos(2θ) + µ cos(3θ)) with δ = 0.1
and µ = 0.2 together with the asymptotic result (4.28) for ρ′(θ) (dashed curve) and the full numerical BEM result for ρ′(θ)
(solid curve) with N = 128 elements. The asymptotic and numerical results for ρ′(θ) are very close.

5 Conclusion

The method of matched asymptotic expansions was used to calculate the MFPT in an arbitrary two-dimensional

domain with N asymptotically small absorbing windows on the domain boundary. Analytical results are given for

the disk and the square for various arrangements of the small absorbing windows on the domain boundary. Similar

results for the MFPT for more general domains were obtained by using a boundary element method to compute the

surface Neumann Green’s function.

An open problem is to calculate the dwell time (cf. [21]) in a two-dimensional domain with both asymptotically

small absorbing windows on its boundary and traps of asymptotically small radii located inside the domain. An

example of such a problem in the unit disk for the case of one concentric trap is considered in [21].

In the companion paper [5] we asymptotically calculate the MFPT for narrow escape from a spherical domain.
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Appendix A The Regular Part of the Surface Neumann Green’s Function for a Perturbed Disk

In this appendix we prove Principal Result 4.3. From (2.5) and (4.22), we obtain that R(x; x0) satisfies

4R(x; x0) =
1

|Ω|
, x ∈ Ω ; ∇R(x; x0) · n̂ =

1

π

(x − x0) · n̂

|x − x0|
2 , x ∈ ∂Ω . (A.1)

In polar coordinates we write x0 = (r0 cos θ0, r0 sin θ0), x = (r cos θ, r sin θ), and r0 = r0(θ0). We then calculate that

|x − x0|
2 = r2 + r2

0 − 2rr0 cos(θ − θ0), and

n̂ =
1

√

(r′)2 + r2

(

r′ sin θ + r cos θ

−r′ cos θ + r sin θ

)

, (x − x0) · n̂ =
1

√

(r′)2 + r2

[

r2 − r0r
′ sin(θ − θ0) − r0r cos(θ − θ0)

]

.

By writing r = 1 + δσ and r0 = 1 + δσ0, the right-hand side of the boundary condition in (A.1) becomes

1

π

(x − x0) · n̂

|x − x0|
2 =

1

2π

(

1 + δ

[

σ cos(θ − θ0) − σ0 − σ′ sin(θ − θ0)

1 − cos(θ − θ0)

])

+ O(δ2) . (A.2)

The expression in the square brackets above is bounded for θ → θ0. Therefore, (A.2) is uniformly valid for all

θ ∈ [0, 2π). Next, we let f(θ) denote the term in the square brackets in (A.2) and we expand it in a Fourier series as

f(θ) ≡
σ cos(θ − θ0) − σ0 − σ′ sin(θ − θ0)

1 − cos(θ − θ0)
=

∞
∑

m=1

[Am cosm(θ − θ0) + Bm sin m(θ − θ0)] , (A.3)

where Am and Bm for m ≥ 1 are defined in terms of integrals I1 and I2, which must be calculated, by

I1 ≡ πAm =

∫ 2π

0

f(θ) cosm(θ − θ0) dθ , I2 ≡ πBm

∫ 2π

0

f(θ) sin m(θ − θ0) dθ . (A.4)

Firstly, we consider the case where σ = cosnθ = Re
(

einθ
)

. We write I1 in (A.4) as

I1 = Re

∫ 2π

0

(

cos(θ − θ0)e
inθ − einθ0 − ineinθ sin(θ − θ0)

1 − cos(θ − θ0)

)

cosm(θ − θ0) dθ .

Let z = eiθ, z0 = eiθ0 , and w = z
z0

. Then, I1 = Re(I), where I is the following contour integral over the unit disk:

I = izn
0

∫

|w|=1

G(w)
(

wm + w−m
)

dw , G(w) ≡

(

(1 − n)

2
wn+1 +

(1 + n)

2
wn−1 − 1

)

(1 − w)−2 .

Since (1 − w)2 = d
dw

∑∞
n=0 wn, then G(w) = −

(

1 + 2w + 3w2 + · · · + (n − 1)wn−2 + (n−1)
2 wn−1 + · · ·

)

. From the

residue theorem we calculate

I = zn
0

{ 2πm , 1 ≤ m < n

π(n − 1) , m = n

0 , m > n

, (A.5)

so that I1 = Re(I). Similarly, we can obtain I2 when σ = cos(nθ0). In this way, we obtain

I1 = cos(nθ0)

{ 2πm , 1 ≤ m < n

π(n − 1) , m = n

0 , m > n

, I2 = − sin(nθ0)

{ 2πm , 1 ≤ m < n

π(n − 1) , m = n

0 , m > n

.
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Alternatively, for σ = sin(nθ0), we get

I1 = sin(nθ0)

{ 2πm , 1 ≤ m < n

π(n − 1) , m = n

0 , m > n

, I2 = cos(nθ0)

{ 2πm , 1 ≤ m < n

π(n − 1) , m = n

0 , m > n

.

This determines An and Bn as An = 1
π I1 and Bn = 1

π I2. Therefore, for σ = cos(nθ0), (A.3) becomes

f(θ) = (n − 1) (cosnθ0 cosn(θ − θ0) − sin nθ0 sin n(θ − θ0)) +

n−1
∑

m=1

2m [cosnθ0 cosm(θ − θ0) − sinnθ0 sin m(θ − θ0)] .

(A.6 a)

Alternatively, for σ = sin(nθ0), (A.3) becomes

f(θ) = (n − 1) (cosnθ0 sin n(θ − θ0) + sin nθ0 cosn(θ − θ0)) +

n−1
∑

m=1

2m [cosnθ0 sinm(θ − θ0) + sin nθ0 cosm(θ − θ0)] .

(A.6 b)

Since σ =
∑∞

n=1 (an cosnθ + bn sin nθ) from (4.23), we determine f(θ) by summing (A.6) over n. We then inter-

change the order of summation by using
∑∞

n=1

∑n−1
m=1 χmn =

∑∞
m=1

∑∞
n>m χmn =

∑∞
n=1

∑∞
m>n χnm to obtain

f(θ) =

∞
∑

n=1

(An cosn(θ − θ0) + Bn sin n(θ − θ0)) ,

An = (n − 1) (an cosnθ0 + bn sin nθ0) + 2n

∞
∑

m>n

(am cosmθ0 + bm sinmθ0) , (A.7)

Bn = (n − 1) (bn cosnθ0 − an sin nθ0) + 2n

∞
∑

m>n

(bm cosmθ0 − am sinmθ0) .

Next, we introduce S(x; x0) by

R(x; x0) = S(x; x0) +
|x|

2

4|Ω|
. (A.8)

By combining (A.8) and (A.1), we obtain that S(x; x0) satisfies

4S(x; x0) = 0 , x ∈ Ω ; ∂nS(x; x0) = ∂n

[

R(x; x0) −
|x|2

4|Ω|

]

∼
δ

2π
(f(θ) − σ(θ)) + O(δ2) , x ∈ ∂Ω . (A.9)

In deriving the boundary condition in (A.9) we used (A.2), (A.3), |Ω| ≈ π, and ∂n

(

|x|2
)

= 2r
(

1 + (r′)2/r2
)−1/2

.

The O(δ) term in the boundary condition for S in (A.9) suggests that we introduce S0(x; x0) by

S(x; x0) =
δ

2π
S0(x; x0) . (A.10)

To leading order we get ∂nS0 = ∂rS0|r=1 + O(δ). From (A.9) and (A.10), we obtain that S0 satisfies

4S0(x; x0) = 0 , 0 ≤ r ≤ 1 , 0 ≤ θ < 2π ; ∂rS0(x; x0)|r=1 = f(θ) − σ(θ) , r = 1 . (A.11)

The solution to (A.11) is written as

S0 = D0 +

∞
∑

n=1

rn [Dn cosn(θ − θ0) + En sin n(θ − θ0)] . (A.12)

To determine the coefficients Dn and En we must use the boundary condition in (A.11). To this end, we must re-write
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σ, given by equation (4.23), in terms of cosn(θ − θ0) and sin n(θ − θ0). This yields,

σ =

∞
∑

n=1

([an cosnθ0 + bn sin nθ0] cosn(θ − θ0) + [bn cosnθ0 − an sin nθ0] sin n(θ − θ0)) . (A.13)

Then, we differentiate (A.12) at r = 1, and use (A.7), (A.11), and (A.13), to determine Dn and En for n ≥ 1 as

nDn = An − [an cosnθ0 + bn sin nθ0] , nEn = Bn − [bn cosnθ0 − an sin nθ0] . (A.14)

We remark that the constant D0 in (A.12) can be chosen to ensure that
∫

Ω
G(x; x0) dx = 0.

In summary, it follows from (A.8) and (A.10) that for x ∈ ∂Ω,

R(x; x0) = S(x; x0) +
|x|

2

4π
=

δ

2π
S0(x; x0) +

1

4π
+

δσ

2π
+ O(δ2) , x ∈ ∂Ω .

By using the definition (4.24), and the reciprocity property of R, we calculate ρ′(θ0) as

ρ′(θ0) =
d

dθ0
R(x0(θ0), x0(θ0)) = 2

d

dθ
R(x(θ), x0(θ0))|θ=θ0

∼
δ

π

[

d

dθ
S0(x(θ), x0(θ0))|θ=θ0

+ σ′(θ0)

]

+ O(δ2) .

Then, by using (A.12) and (A.13), we obtain

ρ′(θ0) =
δ

π

∞
∑

n=1

(nEn + n [bn cosnθ0 − an sin nθ0]) .

Finally, we use (A.14) to relate Dn to Bn, and then recall (A.7) for Bn. This yields that

ρ′(θ0) =
δ

π

∞
∑

n=1

(

2(n − 1)γn + 2n

∞
∑

m>n

γm

)

, γm = bm cosmθ0 − am sin mθ0 . (A.15)

To simplify (A.15) we use the identity
∑∞

n=1

∑∞
m>n 2nγm =

∑∞
m=2 γm

∑m−1
n=1 2n =

∑∞
n=1 n(n−1)γn. This yields the

final result (4.25), and completes the proof of Principal Result 4.3. �
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