Exact solutions and dynamics for the
aggregation model with singular repulsion and
long-range attraction
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Introduction

We consider a simple model of particle interaction,

dz; 1 ri— T .
k=1..N
=

e Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

e Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

e Mathematically F'(r) is positive for small 7, but negative for large 7.

e Commonly, a Morse interaction force is used:

F(r)=exp(—r) — Gexp(—r/L); G<1,L>1 2)
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e Under certain conditions on repulsion/attraction, the steady state typically consists
of a bounded “particle cloud” whose diameter and is independent of NV in the limit
N — 00. Then the continuum limit becomes

b+ V- (pu) = 0 v(w)—/n (o — o) 2 Y p(y)dy.

z—y|”

e Questions

1. Describe the equilibrium cloud shape in the limit ¢ — oo

2. What about dynamics?



Morse force, h-stable vs. catastrophic

o IfGL" > 1, the system is catastrophic: doubling /V doubles the density but cloud
volume is unchanged:

F(r)=e" —0.5e"?

r=1.43535 r=1.44716
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o If GL"! < 1, the system is h-stable: doubling N doubles the cloud volume: but
density is unchanged:

F(r)y=¢e¢"— 0.5¢"/12

r=9.56367 r=13.3742 r=19.3298
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Morse force, explicit results

e Bernoff-Topaz, 2010: In one dimension, the steady states for the Morse force F(r) =
exp(—r) — Gexp(—r/L) have the form

(z) = acos(bx)+1, |z| <R
L) = 0, |z| >0

where a, b, c are related to GG, L.
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(taken from Topaz+Bernoff, 2010 preprint)

e \What about stability? Dynamics? 2D?



Bounded states of constant density

Claim. Suppose that

F(r)= — 1, where n = dimension

Then the aggregation model

o+ - (pv) = 0 v(x)—/n (o — o)) 2=V piy)dy.

z—y|”

admits a steady state of the form
(z) = L, || <R o(z) = 0, |z|<1
PY =0, |z >R | —az, |z|>1"

where R = 1forn = 1,2 and a = 2 in one dimension and a = 27 in two dimensions.
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Constant density-state in 2D, F(r)=1/r-r; N=200 particles.




Proof for two dimensions

Define )
T
G(x) —bel-%; M= [ ply)dy
Rn
Then we have: -
VG:F(\:EDH and AG(z) = 216(z) — 2.
so that
o) = [ V.Gl y)oludy
Thus we get:

Vv [ (ersle - y) - 2pludy

= 2mp(x) — 2M
B 0, |z|] <R
| —2M, |x| > R

The steady state satisfies V - v = () inside some ball of radius R with p = 0 outside such
a ball but then p = M/ inside this ball and M = [, p(y)dy = MR* — R =1.



Dynamics in 1D with F(r)=1—7+

[orms = [

v(as)—/oo (o — ) ==Y o)y

_ /OO (1 = |z —y|)sign(z — y)p(y)

(0. ¢]

—2 [ sty - MGa+1)

—0o0

Assume WLOG that

Then

and continuity equations become

Pt T VPy = —Uzp
= (M —2p)p

Define the characteristic curves X (t, x) by

d
@X(t;xo) =v;  X(0,20) = z0



Then along the characteristics, we have p = p( X, t);

d
—p=p(M —?2
7P =1l p)

Solving we get:

M

p(X(t, x0)7 t) - 2+ e—Mt(M/po - 2)7

p(X(t, xy),t) = M/2 ast — oo
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Solving for characteristic curves

w = /1 py)dy

v=22w—-Mx+1); v,=2p—M
and integrating p; + (pv)x = (0 we get:

Let

then

wy +ovw, =0

Thus w is constant along the characteristics X of p, so that characteristics %X = v
become
d

X = 2uwg — M(X +1); X(0;20) = o
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Summary for F(ry=1—-r1n 1D:

2w B 2w
X = ?\(40)—1+e Mt(x0+1— ?\(40))

wnan) = [tz M= [ s
M

p(X, 1) =

2+ e="M(M/po(xo) — 2)
Example: py(z) = exp ( /f M=1:

rho for t=0..5
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Global stability

In limit £ — oo we get:

2 M
X:%— o wy=0...M; p(X,oo):7
We have shown that as ¢ — 00, the steady state is
M/2, |x| <1

e This proves the global stability of (3)!

e Characteristics intersect at £ = o0; solution forms a shock at x = £1 att = oc.
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Dynamics in 2D, F(r) =1 —»

T

e Similar to 1D,
Vv =2mp(x) — 4 M,

pr+v-Vp=—pV - v
= —p(p—2M)2m

e Along the characterisitics:

d

—X(tzo) =v;  X(0,20) = 2o

dt

we still get
d
—p =2mp(2M — p);
P = 2mp p):;
2M
p(X (t;30),1) = Y (4)
1 + (m — 1) exXp (—47TMt)

e Continuity equations yield:
p(X(t;20),t) det V,, X (t; x0) = polxo)

14



e Using (4) we get

det V,,, X (t; xg) = POQ(]\?) + (1 — P;(j\?)) exp (—4mMt) .

e If pisradially symmetric, characteristics are also radially symmetric, i.e.
X(t; xo) = A (‘xo‘ , t) Lo

then
det Vo, X (t; o) = A& 7) (At r) + No(E 7)), 7 = |0

so that

N4 N Ar = /)02(1\3;)) + (1 — pog(]\?)> exp (—4mw Mt)

1 r T
N2 = M/o spo(s)ds + 2€Xp(—47th)/O S (1 — 25\?) ds

So characteristics are fully solvable!!

e This proves global stability in the space of radial initial conditions pg(x) =
po(|z]).

e More general global stability is still open.

15



The force F(r)= L —r4=1 in 2D

e If ¢ = 2, we have explicit ode and solution for characteristics.

e For other ¢, no explicit solution is available but we have differential inequalities:

Define
Pmax ‘= sup p(z,t); R(t) := radius of support of p(z,t)
Then
d max —
pdta S (aRq o bpmax)pmax

d
—R < ey/Pmax — AR

where a, b, ¢, d are some [known] positive constants.

e It follows that if R(0) is sufficiently big, then R(t), pmax(t) remain bounded for all ¢.
[using bounding box argument]

e Theorem: For g > 2, there exists a bounded steady state [uniqueness??]

1A



Inverse problem: Custom-designer
kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

by + b2$2 + b4ZL’4 + ...+ anZL’Qn, ‘ZL" <R
plz) = 0, |z|>R ©))
Define the following quantities,
R
Moy = / p(r)r*idr. (6)
0
Then p(r) is the steady state corresponding to the kernel
a a a
F(r):1—a0r——2r3——4r5—...—ir2”’+1 (7)
3 5 2n + 1
where the constants ag, as, . . . , as,, are computed from the constants by, b, . .., by, by

solving the following linear problem:

n 9
bgk = Zagj ( 2“]1 ) mg(j_k), k=0...n. (8)

Jj=k

17



Example: custom kernels 1D

Example 1: p=1—12% R =1 then F(r)=1—9/5r +1/2r3.
Example 2: p =2, R=1,then F'(r) =1+9/5r — .

Example 3: p=1/2+ 2% — 2%, R=1;then F(r)=1+

p()= 1-x°

0.8
0.6
0.4
0.2

p(X)= X

Ex.2
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Inverse problem: Custom-designer
kernels: 2D

Theorem. In two dimensions, conisder a radially symmetric density p(x) = p(|z|) of
the form
(r) = { Do + bar? + byt + .+ bor®, r < R )
p 0, > R

Define the following quantities,

R
Moy = / p(r)r*idr. (10)
0
Then p(r) is the steady state corresponding to the kernel
1 ap a9 A9y,

Flry=>—=2r— 2=y — - — p2nfl 11
(r) ro 2 4 2n + 2 (1)
where the constants ag, as, . . . , as,, are computed from the constants by, b, ..., by, by

solving the following linear problem:

N\ 2
bgk = Z a2 ( L]ZZ ) mg(j_k)_H; E=0...n. (12)

j=k
This system always has a unique solution for provided that mg # 0.
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Numerical simulations, 1D

e First, use standard ODE solver to integrate the corresponding discrete particle model,

dz; 1 Ti— T .
dt N Z (o = ] |z, — xp|’ /
e How to compute p(z) from x;7 [Topaz-Bernoff, 2010]
- Use ; to approximate the cumulitive distribution, w(z) = [*_ p(z)dz.

- Next take derivative to get p(z) = w'(x)

[Figure taken from Topaz+Bernoff, 2010 preprint]

20



Numerical simulations, 2D

e Solve for x; using ODE particle model as before [2/V variables]
e Use x; to compute Voronoi diagram;

e Estimate p(x;) = 1/a; where a; is the area of the voronoi cell around ;.

Use Delanay triangulation to generate smooth mesh.

e Example: Take
(r) = 1+ r<1
PPT=Y 0, r>0

Then by Custom-designed kernel in 2D is:

Running the particle method yeids...

21
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Numerical solutions for radial steady
states for r(r) =1 —ra—1

T

R
e Radial steady states of radius R satisfy p(r) = 2¢ / (' p(r") I (ryr")dr’
0
where ¢(q) is some constantand I(r, ') = ["(r? + r'? — 2rr’sin 6)4/2~1df.

e To find p and R, we adjust R until the operator p — ¢(q) fOR(r’p(r’)K(r, r)dr' has
eigenvalue 1; then p is the corresponding eigenfunction.

2

—qg=1
I —qg=p
1.8 B
1.6 | =4
1.4 |
(e
(e» N
1.2 |
1\
0.8 %
o 0.2 0.4 0.6 0.8 1
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Discussions/open problems

e We found bound states of constant density with F'(r) = r1™" —r.

- may be of relevance for biology (minimizes overcrowding)

e Can we get explicit results for Morse force in 2D?

- To get explicit results in 2D, we need that F'(r) ~ 1/r asr — 0.

- Morse force looks like F'(r) ~ const. as r — 0. This is a more “difficult”
singularity in 2D.

1—

e Open question: global stability for F(r) = r'~" — r? [can show for n = 1 or for

radial initial conditions if n > 2.]

e Open question: Uniqueness of (radial) steady states for F'(r) = pl=n —rq_l, q # 27

[can show it is bounded for all ¢; can show uniqueness if ¢ = 2]
e What about ¢ < 27
e Most of the results generalize to n dimensions.

e This talk is downloadable from my website (preprint will be available by spring),
http://www.mathstat.dal.ca/"tkolokol/papers
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