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Introduction

We consider a simple model of particle interaction,

dxj
dt

=
1

N

∑

k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N (1)

• Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

• Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

• Mathematically F (r) is positive for small r, but negative for large r.

• Commonly, a Morse interaction force is used:

F (r) = exp(−r)−G exp(−r/L); G < 1, L > 1 (2)
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• Under certain conditions on repulsion/attraction, the steady state typically consists
of a bounded “particle cloud” whose diameter and is independent of N in the limit
N → ∞. Then the continuum limit becomes

ρt +∇ · (ρv) = 0; v(x) =

∫

Rn

F (|x− y|) x− y

|x− y|ρ(y)dy.

• Questions

1. Describe the equilibrium cloud shape in the limit t → ∞

2. What about dynamics?
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Morse force, h-stable vs. catastrophic
• If GLn+1 > 1, the system is catastrophic: doubling N doubles the density but cloud

volume is unchanged:

F (r) = e−r − 0.5e−r/2

• If GLn+1 < 1, the system is h-stable: doubling N doubles the cloud volume: but
density is unchanged:

F (r) = e−r − 0.5e−r/1.2
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Morse force, explicit results
• Bernoff-Topaz, 2010: In one dimension, the steady states for the Morse force F (r) =
exp(−r)−G exp(−r/L) have the form

ρ(x) =

{

a cos(bx) + 1, |x| < R
0, |x| > 0

where a, b, c are related to G,L.

(taken from Topaz+Bernoff, 2010 preprint)

• What about stability? Dynamics? 2D?
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Bounded states of constant density

Claim. Suppose that

F (r) =
1

rn−1
− r, where n ≡ dimension

Then the aggregation model

ρt +∇ · (ρv) = 0; v(x) =

∫

Rn

F (|x− y|) x− y

|x− y|ρ(y)dy.

admits a steady state of the form

ρ(x) =

{

1, |x| < R
0, |x| > R

; v(x) =

{

0, |x| < 1
−ax, |x| > 1

.

where R = 1 for n = 1, 2 and a = 2 in one dimension and a = 2π in two dimensions.
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Proof for two dimensions

Define

G(x) := ln |x| − |x|2
2

; M =

∫

Rn

ρ(y)dy

Then we have:
∇G = F (|x|) x|x| and ∆G(x) = 2πδ(x)− 2.

so that

v(x) =

∫

Rn

∇xG(x− y)ρ(y)dy.

Thus we get:

∇ · v =

∫

Rn

(2πδ(x− y)− 2)ρ(y)dy

= 2πρ(x)− 2M

=

{

0, |x| < R
−2M, |x| > R

The steady state satisfies ∇ · v = 0 inside some ball of radius R with ρ = 0 outside such
a ball but then ρ = M/π inside this ball and M =

∫

Rn
ρ(y)dy = MR2 =⇒ R = 1.
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Dynamics in 1D with F (r) = 1− r

Assume WLOG that
∫ ∞

−∞
xρ(x) = 0; M :=

∫ ∞

−∞
ρ (x) dx

Then

v(x) =

∫ ∞

−∞
F (|x− y|) x− y

|x− y|ρ(y)dy

=

∫ ∞

−∞
(1− |x− y|) sign(x− y)ρ(y)

= 2

∫ x

−∞
ρ(y)dy −M(x + 1).

and continuity equations become

ρt + vρx = −vxρ

= (M − 2ρ) ρ

Define the characteristic curves X(t, x0) by

d

dt
X(t; x0) = v; X(0, x0) = x0
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Then along the characteristics, we have ρ = ρ(X, t);

d

dt
ρ = ρ(M − 2ρ)

Solving we get:

ρ(X(t, x0), t) =
M

2 + e−Mt(M/ρ0 − 2)
; ρ(X(t, x0), t) → M/2 as t → ∞
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Solving for characteristic curves

Let

w :=

∫ x

−∞
ρ(y)dy

then
v = 2w −M(x + 1); vx = 2ρ−M

and integrating ρt + (ρv)x = 0 we get:

wt + vwx = 0

Thus w is constant along the characteristics X of ρ, so that characteristics d
dt
X = v

become
d

dt
X = 2w0 −M(X + 1); X(0; x0) = x0
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Summary for F (r) = 1− r in 1D:

X =
2w0(x0)

M
− 1 + e−Mt

(

x0 + 1− 2w0(x0)

M

)

w0(x0) =

∫ x0

−∞
ρ0(z)dz; M =

∫ ∞

−∞
ρ0(z)dz

ρ(X, t) =
M

2 + e−tM (M/ρ0(x0)− 2)

Example: ρ0(x) = exp
(

−x2
)

/
√
π; M = 1 :

rho for t=0..5, dt=0.5
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Global stability

In limit t → ∞ we get:

X =
2w0

M
− 1; w0 = 0 . . .M ; ρ(X,∞) =

M

2

We have shown that as t → ∞, the steady state is

ρ(x,∞) =

{

M/2, |x| < 1
0, |x| > 1

(3)

• This proves the global stability of (3)!

• Characteristics intersect at t = ∞; solution forms a shock at x = ±1 at t = ∞.
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Dynamics in 2D, F (r) = 1
r − r

• Similar to 1D,
∇ · v = 2πρ(x)− 4πM ;

ρt + v · ∇ρ = −ρ∇ · v
= −ρ (ρ− 2M) 2π

• Along the characterisitics:

d

dt
X(t; x0) = v; X(0, x0) = x0

we still get
d

dt
ρ = 2πρ(2M − ρ);

ρ(X(t; x0), t) =
2M

1 +
(

2M
ρ(x0)

− 1
)

exp (−4πMt)
(4)

• Continuity equations yield:

ρ(X(t; x0), t) det∇x0X(t; x0) = ρ0(x0)
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• Using (4) we get

det∇x0X(t; x0) =
ρ0(x0)

2M
+

(

1− ρ0(x0)

2M

)

exp (−4πMt) .

• If ρ is radially symmetric, characteristics are also radially symmetric, i.e.

X(t; x0) = λ (|x0| , t) x0
then

det∇x0X(t; x0) = λ(t; r) (λ(t; r) + λr(t; r)r) , r = |x0|
so that

λ2 + λrλr =
ρ0(x0)

2M
+

(

1− ρ0(x0)

2M

)

exp (−4πMt)

λ2r2 =
1

M

∫ r

0

sρ0(s)ds + 2 exp (−4πMt)

∫ r

0

s

(

1− ρ (s)

2M

)

ds

So characteristics are fully solvable!!

• This proves global stability in the space of radial initial conditions ρ0(x) =
ρ0(|x|).

• More general global stability is still open.
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The force F (r) = 1
r − rq−1 in 2D

• If q = 2, we have explicit ode and solution for characteristics.

• For other q, no explicit solution is available but we have differential inequalities:

Define
ρmax := sup

x
ρ(x, t); R(t) := radius of support of ρ(x, t)

Then

dρmax

dt
≤ (aRq−2 − bρmax)ρmax

dR

dt
≤ c

√
ρmax − dRq−1;

where a, b, c, d are some [known] positive constants.

• It follows that if R(0) is sufficiently big, then R(t), ρmax(t) remain bounded for all t.
[using bounding box argument]

• Theorem: For q ≥ 2, there exists a bounded steady state [uniqueness??]
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Inverse problem: Custom-designer
kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

ρ(x) =

{

b0 + b2x
2 + b4x

4 + . . . + b2nx
2n, |x| < R

0, |x| ≥ R
(5)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (6)

Then ρ(r) is the steady state corresponding to the kernel

F (r) = 1− a0r −
a2
3
r3 − a4

5
r5 − . . .− a2n

2n + 1
r2n+1 (7)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n
∑

j=k

a2j

(

2j
2k

)

m2(j−k), k = 0 . . . n. (8)
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Example: custom kernels 1D

Example 1: ρ = 1− x2, R = 1, then F (r) = 1− 9/5r + 1/2r3.

Example 2: ρ = x2, R = 1, then F (r) = 1 + 9/5r − r3.

Example 3: ρ = 1/2 + x2 − x4, R = 1; then F (r) = 1 + 209425
336091

r − 4150
2527

r3 + 6
19
r5.
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Inverse problem: Custom-designer
kernels: 2D
Theorem. In two dimensions, conisder a radially symmetric density ρ(x) = ρ (|x|) of
the form

ρ(r) =

{

b0 + b2r
2 + b4r

4 + . . . + b2nr
2n, r < R

0, r ≥ R
(9)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (10)

Then ρ(r) is the steady state corresponding to the kernel

F (r) =
1

r
− a0

2
r − a2

4
r3 − . . .− a2n

2n + 2
r2n+1 (11)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n
∑

j=k

a2j

(

j
k

)2

m2(j−k)+1; k = 0 . . . n. (12)

This system always has a unique solution for provided that m0 6= 0.
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Numerical simulations, 1D
• First, use standard ODE solver to integrate the corresponding discrete particle model,

dxj
dt

=
1

N

∑

k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N.

• How to compute ρ(x) from xi? [Topaz-Bernoff, 2010]

- Use xi to approximate the cumulitive distribution, w(x) =
∫ x

−∞ ρ(z)dz.

- Next take derivative to get ρ(x) = w′(x)

[Figure taken from Topaz+Bernoff, 2010 preprint]
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Numerical simulations, 2D

• Solve for xi using ODE particle model as before [2N variables]

• Use xi to compute Voronoi diagram;

• Estimate ρ(xj) = 1/aj where aj is the area of the voronoi cell around xj.

• Use Delanay triangulation to generate smooth mesh.

• Example: Take

ρ(r) =

{

1 + r2, r < 1
0, r > 0

Then by Custom-designed kernel in 2D is:

F (r) =
1

r
− 8

27
r − r3

3
.

Running the particle method yeids...
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Numerical solutions for radial steady
states for F (r) = 1

r − rq−1

• Radial steady states of radius R satisfy ρ(r) = 2q

∫ R

0

(r′ρ(r′)I(r, r′)dr′

where c(q) is some constant and I(r, r′) =
∫ π

0
(r2 + r′2 − 2rr′ sin θ)q/2−1dθ.

• To find ρ and R, we adjust R until the operator ρ → c(q)
∫ R

0
(r′ρ(r′)K(r, r′)dr′ has

eigenvalue 1; then ρ is the corresponding eigenfunction.
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Discussions/open problems
• We found bound states of constant density with F (r) = r1−n − r.

- may be of relevance for biology (minimizes overcrowding)

• Can we get explicit results for Morse force in 2D?

- To get explicit results in 2D, we need that F (r) ∼ 1/r as r → 0.

- Morse force looks like F (r) ∼ const. as r → 0. This is a more “difficult”
singularity in 2D.

• Open question: global stability for F (r) = r1−n − r? [can show for n = 1 or for
radial initial conditions if n ≥ 2.]

• Open question: Uniqueness of (radial) steady states for F (r) = r1−n−rq−1, q 6= 2?
[can show it is bounded for all q; can show uniqueness if q = 2]

• What about q < 2?

• Most of the results generalize to n dimensions.

• This talk is downloadable from my website (preprint will be available by spring),
http://www.mathstat.dal.ca/˜tkolokol/papers
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