
Patterned vegetation, tipping points, and the rate of climate change

Yuxin Chen?, Theodore Kolokolnikov†, Justin Tzou† and Chunyi Gai†

(Dated: May 22, 2015)

When faced with slowly depleting resources (such as decrease in precipitation due to climate
change), complex ecological systems are prone to sudden irreversible changes (such as desertification)
as the resource level dips below a tipping point of the system. A possible coping mechanism is the
formation of spatial patterns, which allows for concentration of sparse resources and the survival of
the species within “ecological niches” even below the tipping point of the homogeneous vegetation
state. However, if the change in resource availability is too sudden, the system may not have time
to transition to the patterned state and will pass through the tipping point instead, leading to
extinction. We argue that the deciding factors are the speed of resource depletion and the amount
of the background noise (seasonal climate changes) in the system. We illustrate this phenomenon
on a model of patterned vegetation. Our analysis underscores the importance of, and the interplay
between, the speed of climate change, heterogeneity of the environment, and the amount of seasonal
variability.

Climate change – both anthropogenic and natural – poses multiple pressures on earth ecosystems. While the earth’s
climate has undergone many drastic changes in its history, the rate at which the current human-induced changes are
occurring is unmatched in recent history going back at least 60 million years [1]. Just in the last century, CO2 levels
in the atmosphere have increased by 50%, and are expected to double by 2050 [2]. This rate of increase is more than
200 times the fastest historical rates of at least the last 800,000 years, as measured by ice cores [3]. Similarly, the
acidification of oceans is taking place at breakneck speed, likely unparalleled in earth’s known history [4–6].

Large swings in earth’s climate are not unprecedented, and life has been able to adapt to such swings more or less
successfully in the past. The question is whether a species is resilient enough not just to the changes in environment,
but to the speed with which these changes occur [7–11]. It is widely accepted that anthropogenic climate change
is mainly responsible for increasingly fast swings in precipitation and other weather parameters [2, 12–15]. Many
ecosystems can be very sensitive to sudden shifts in environmental conditions that can trigger critical transitions as
a result of crossing a tipping point, leading to drastic changes in population density and even extinctions [11, 16–21].

The speed of climate change is especially important for an ecosystem that is already under stress, such as vegetation
in arid and semi-arid environments, where a relatively small change in precipitation can have a very large impact [23].
One of the mechanisms by which the vegetation in such environments adapts is by growing in patches, leaving areas
of barren land interspersed with localized patches or stripes of vegetation where it can conserve resources [11, 24–30].
However, it takes time for plants to adjust to reduced precipitation by forming patches. If the environmental changes
occur too rapidly, vegetation may be unable to form these niches and face extinction. This pheonomenon was recently
illustrated numerically in [11], where it was noted in §4.2 that “at high rates of change, desertification can take place
at rainfall levels for which stable patterned states still exist”. They used a modified version of vegetation pattern
formation system introduced by Klausmeier [25]. It is a reaction-advection-diffusion system that couples plant density
n(x, t) to soil water concentration w(x, t), and has the following non-dimensional form:
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Critically, for the existence of spatially heterogeneous states, the model includes spatial terms corresponding to
diffusion of water within soil (d∂2w/∂x2), downhill water flow (c∂w/∂x), as well as the spread of plants (δ∂2n/∂x2).
The parameter a represents the precipitation rate. Parameter b represents the differing timescales in changes in water
level (in days, say) versus those in plant density (in months). For illustration purposes, we consider here the limit
c = 0 (flat ground) in one dimension, corresponding to the well-known Gray-Scott model [31]; the more general case
exhibits the same behaviour.

To understand the effect of the speed of precipitation changes, we consider the case in which precipitation is slowly
decreased in time and fluctuates with small noise. That is, we let

a = a0 − εt+ noise, (2)

with 0 < ε� 1. The initial precipitation a0 is assumed to be sufficiently large so that the system has full vegetation
cover (corresponding to the nontrivial spatially homogeneous state) when a = a0. Here, ε is a small parameter
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FIG. 1. (colour online) Evolution of vegetation patterns in the presence of slow precipitation drift. The green curve A avoids
the tipping point by going into a reversible patterned state. The red curve B falls off the fold point leading to irreversible
extinction. Model (1) is used with a given by (5). The Green curve A corresponds to slow decrease (ε = 0.006, corresponding
to a change of 2 mm/year) while the red curve B corresponds to a faster decrease (ε = 0.03, corresponding to a change of 40
mm/year). Other parameters are a0 = 2.85, a1 = 1.75, σ0 = 0.0001, δ = 0.05, d = 1, c = 0 on a domain of size L = 22.839
with periodic boundary conditions. The full vegetation state (black curve C) bifurcates into a patterned state (blue curve D,
computed by the software package AUTO [22]) at a = ap = 2.4743, and has a fold point at ac = 2. For values of a below ap
and above ac, the full vegetation state still exists (dashed black curve C) but is unstable to spatial perturbations. The vertical
green dashed line E at a = ad = 2.18 is the asymptotic prediction for the delayed “take-off” value of the green curve. Excellent
agreement between the asymptotics and numerics is observed.

corresponding to the rate at which precipitation is decreased as a result of climate change or gradual drought onset.
The noise represents fluctuations in precipitation due to weather or seasonal variability. We model it using

noise = σ0
dW

dt
, (3)

where dWt is spatio-temporal Weiner process, defined by (see e.g. [32–34])

dW =
√
dt

∞∑
m=−∞

ξm (t) exp (imx) ; (4)

here ξm(t) is a Gaussian random variable (with mean zero and variance one). Furthermore we assume that dW is real,
so that ξ−m = ξm. See Appendix A for numerical implementation details. The noise drives a spatial instability and
plays an essential role in transitioning the system to a heterogeneous state, thus allowing the formation of localized
vegetation patches and increasing resilience to drought.

Alternatively, to model precipitation that varies periodically between a0 and a1 we take

a = a0 + (a1 − a0) (1− cos (εt)) /2 + noise. (5)

We illustrate our main point in Figure 1. We let precipitation vary periodically according to (5), with green (A)
and red (B) curves corresponding to two distinct values of ε as given in the caption (colour online). The nontrivial
spatially homogeneous steady state corresponding to full vegetation cover is shown by the black curve (C). It exhibits
a tipping-point structure at a = ac. Below the critical precipitation rate a = ac, the only spatially homogeneous state
is n = 0, corresponding to a “desert state”. On the other hand, the patterned state – shown in blue (D) – bifurcates
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off the full vegetation state at a = ap (as a result of a Turing bifurcation), and exists even for precipitation rates well
below ac.

As a slowly drifts below ap, the homogeneous state becomes unstable to spatial perturbations. However, it takes
time for these perturbations to grow, as illustrated in Figure 1. If the drift speed ε is too large (for example, as a
result of rapid onset of drought), represented by the red curve (B), or equivalently, if the spatial noise σ0 is sufficiently
small, the perturbations may not have enough time to grow before the tipping point ac is reached. If this happens,
the tipping point will be activated before the system can transition to the patterned state. In this case the plant
population crashes to zero, resulting in rapid desertification (extinction). Moreover, as is usual with tipping points,
this process is not easily reversible, so the desert state persists even as precipitation later increases back to the regime
that supports full vegetation cover (a > ap) .

By contrast, if the drift speed ε is sufficiently small (for example, due to a naturally occurring climate change),
represented by the green curve (A), or equivalently, if the spatial noise σ0 is sufficiently large, there is enough time
for the spatial perturbations to grow, and the system is able to transition to the patterned state. This state extends
beyond the tipping point ac, which means that the vegetation can persist in a patterned state even as a is decreased
below ac. Furthermore, unlike the scenario illustrated by the red curve, the case illustrated by the green curve is
entirely reversible: if in the future the precipitation increases past ap, the patterned state gradually transitions back
into the full vegetation state.

We have modeled and analyzed this phenomenon using a stochastic ODE that describes the evolution of the system
along each of the Fourier modes near the slowly-varying steady state. The resulting equation is a variant of the
Ornstein-Uhlenbeck process. For each mode, the combined effect of the slow drift and noise determines the solution
spread of the associated Fokker-Planck equation, which describes the probability density associated to the solutions
of the underlying stochastic ODE. Using a computation similar to that in [35, 36], we derived an analytical threshold
at which the variance of this density starts to grow exponentially. The end result is the prediction, ad, for the delayed
“take-off” value at which the system transitions to the patterned Turing state. See the next section for details and
precise definition of ad. This threshold is indicated by vertical dashed lines at respective values of a = ad in Figures 1
and 2. For sufficiently large ε, ad does not exist, indicating that the transition cannot occur, resulting in extinction.
Figure 1 illustrates an excellent agreement between this analytic prediction and the full numerical simulation of the
system.

It has been known for a long time that a slow parameter drift induces a delay in bifurcation [37, 38]. Recent studies
have shown that noise also plays a key role in the resilience of a homogeneous state against tipping points, and several
effects have been described, including bifurcation-driven tipping [15, 16, 39–41], noise-induced tipping [42–45], and
rate-dependent tipping [46]. Delayed bifurcations with noise have been studied in the context of stochastic ODE’s
[35, 36, 47] with applications to climate change [45, 48, 49], laser dynamics [50] and neuronal bursting [51], among
others; see also [52] for an overview. All of these works study systems described by stochastic ODE’s with a parameter
drift. By contrast, very little work has been done on slow passage problems in PDE’s with noise. However, see recent
work [53] where some related questions are studied. In particular, we show that the spatial component of the PDE
system, when combined with noise and parameter drift, plays a key role in preventing activation of the tipping point.

MATHEMATICAL ANALYSIS OF THE EFFECT OF NOISE

Our starting point is the system (1), where we take a = a (εt) + noise and noise is spatio-temporal Gaussian white
noise with zero mean and standard deviation of σ0. For pedagogical reasons, we will assume that both b and c are
small and can be discarded and we scale d to 1 (the analysis below can be modified to incorporate a more general
case that exhibits the same phenomenon; we expect to report on the more general case elsewhere soon). The system
(1) then becomes

dn

dt
= δ

d2n

dx2
− n+ wn2 , (6a)

0 =
d2w

dx2
+ a(εt)− w − wn2 + σ0

dW

dt
, (6b)

where the spatio-temporal noise dW is defined in (4). For a constant a and with σ0 = 0, the steady-state solution
structure is shown in Figure 2 in black; it has a fold point at a = ac = 2. For a > ac, there are three solutions:
n = 0, w = a and

n± = a/2±
√
a2/4− 1 , w± = 1/n± . (7)
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For a < ac, the only spatially homogeneous solution is the desert state n = 0. Standard linear analysis shows that
the steady state n− is unstable, whereas n+ is stable with respect to spatially uniform perturbations. However n+
undergoes a Turing instability to a patterned state at a = ap given by

ap =
3− 2

√
2− 2δ√(

3− 2
√

2− 2δ − δ
)
δ
. (8)

The dominant Turing branch is shown in blue in Figure 1. In the case where a is slowly-varying with time, n± is a
quasi-equilibrium state, n+ = n+(εt), given by (7) with a replaced by a(εt). Linearizing near the quasi-equilibrium,
we write

n(x, t) = n+(εt) + φ(x, t) , w(x, t) = w+(εt) + ψ(x, t) ,

with |φ|, |ψ| � 1, yielding

dφ

dt
+ εn′+(εt) = δ

d2φ

dx2
+ φ+ n2+ψ , (9a)

0 =

[
d2ψ

dx2
+
(
−1− n2+

)
ψ − 2φ

]
dt+ σ0dW . (9b)

We now separate variables in space. We write

φ(x, t) =
∑

φm(t) eimx , ψ(x, t) =
∑

ψm(t) eimx ,

where the sums are taken over all m such that m2π/L is an integer, where L is the length of the domain, which we
take to be periodic. Similarly, we decompose the noise in terms of the same Fourier modes and each Fourier coefficient
is again Gaussian distributed with zero mean and standard deviation σ0

√
dt. The term n′+(εt) in (9a) is constant in

space and therefore does not contribute to any non-zero (m 6= 0) modes. We obtain for m 6= 0, after dropping the
subscripts,

dφ

dt
= −m2δφ+ φ+ n2+ψ, (10a)

0 =
[
−m2ψ +

(
−1− n2+

)
ψ − 2φ

]
dt+ σ0

√
dtξ. (10b)

Solving for ψ in (10b) and substituting back into (10a), we obtain

dφ = α (εt)φdt+ β (εt)
√
dtξ , (11a)

where ξ is a Gaussian random variable with mean zero and variance 1 and where

α (s) = −m2δ + 1−
2n2+ (s)

m2 + 1 + n2+ (s)
, (11b)

β (s) =
σ0n

2
+ (s)

m2 + 1 + n2+ (s)
. (11c)

Equation (11a) is a variant of an Ornstein–Uhlenbeck process, with coefficients that are slowly changing in time.
In the absence of noise/parameter drift, the mode m is unstable whenever α > 0. The Turing bifurcation threshold

(8) is obtained by setting α = 0 = ∂α/∂m and eliminating m from the resulting system. However, the combined
effect of slow drift and noise introduce a “delay” in the bifurcation. To compute this delay, we proceed similarly to

[35, 36] by studying the density distribution u (φ, s) associated with (11a). More precisely, the integral
∫ φ2

φ1
u(φ, s)dφ

is by definition the probability that φ(s) ∈ (φ1, φ2) . The density satisfies the Fokker-Planck PDE given by

ε
∂

∂s
u+ α(s)

∂

∂φ
(φu) =

β2(s)

2

∂2u

∂φ2
, (12)

with initial condition φ(0) = 0 in (11a) corresponding to u(φ, 0) = δ(φ), where δ(z) is the Dirac delta function. In
(12), we have let s denote the slow time εt.
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FIG. 2. Numerical verification of ad as given in (16) for (6). The slow drift is taken to be a = a0 − εt with a0 = 3,
σ0 = 0.0001, L = 22.839 and δ = 0.05. Top left: the evolution of max n as a function of a with ε as indicated. The dashed
lines show ad as given by (16). The patterned state (blue on-line) to the left corresponds to a single-bump solution, whereas
the patterned state on the right corresponds to the wave-number 10 born from a Turing bifurcation at a = ap = 2.47439. Top
right: color plot of n(x, t) as it evolves in time. The Turing bifurcation point ap, the delayed bifurcation ad and the fold point
ac = 2 are indicated. Bottom left: Comparison of asymptotic and full numerical results for ad. The hybrid curve is obtained
by using the full homogeneous state (17) instead of (7) when computing (16). The value of ad is estimated numerically as
discussed in the text, and an average over 50 simulations is used. We used N = 100, dt = 0.1 (see Appendix A for numerical
implementation details).

Equation (12) can be transformed into a standard diffusion equation vS = vξξ subject to initial condition

v(ξ, 0) = δ(ξ) via a change of variables ξ = φ exp
(
− 1
ε

∫ s
0
α(ρ)dρ

)
, S =

∫ s
0
β2(ŝ)
2ε exp

(
− 2
ε

∫ ŝ
0
α(ρ)dρ

)
dŝ, and

u(φ, t) = exp
(
− 1
ε

∫ s
0
α(ρ)dρ

)
v(ξ, S). The solution for v(ξ, S) is simply the fundamental solution of the diffusion

equation v(ξ, S) = 1√
4πS

e−ξ
2/(4S). This allows us to explicitly compute the variance in φ, σ2(s) =

∫∞
−∞φ

2u(φ, s) dφ,

to obtain

σ2(s ;m) =

∫ s

0

β2(τ) exp

(
−2

ε

∫ s

τ

α(ρ)dρ

)
dτ. (13)

Let sp be the such that that α(sp) = 0, and we assume that α′(sp) > 0. That is, sp is the point at which the mode m
becomes unstable. Then for s > sp, Laplace’s method [54] yields

σ(s;m) ∼ exp

(
1

ε

∫ s

sp

α(τ)dτ

)
β(sp)

(
π

εα′(sp)

)1/4

, (14)

where the dependence of σ on m is through that of α and β in (11b) and (11c). We define the “take-off” time
sd = sd(m) for the mode m to be such that σ(sd;m) = 1. Alternatively, sd is such that σ � 1 when s < sd and σ � 1
when s > sd. For a fixed mode m, the value of sd is therefore found by solving simultaneously
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α(sp) = 0; (15a)∫ sd

sp

α(s)ds+ ε log

(
β(sp)

(
π

εα′(sp)

)1/4
)

= 0 . (15b)

Equation (15) yields the time sd at which the solution density spread σ for a given mode m starts to grow exponentially
fast. Similar results – in the context of stochastic ODE’s and for different applications – were derived using a related
approach in [35], and also in [36] without using the density formulation (12). Analogous results for linear α(s) and
constant β were also obtained in [50, 55, 56] using a similar analysis.

Note that, depending on the parameters, a solution for sd in (15) may not exist, in which case the corresponding
mode m is never activated. The first mode that gets activated yields the delayed take-off value for a:

ad ≡ a(min
m

sd(m)), (16)

where the minimum is taken over all admissible modes m. These are the modes for which the solution to the system
(15) exists. If no such modes exist, no take-off value of a exists, and the patterned state is never activated.

Figure 2 compares the analytic prediction (16) for ad and the delayed value ad,num as estimated from direct numerical
simulations of (6). To determine the latter, we first define td,num as the time at which (maxx n−minx n)/meanx(n)
first exceeds 1. We then calculate ad,num = a(εtd,num). We note that, while the threshold of 1 is somewhat arbitrary,
halving it has a negligible effect on ad,num. Figure 2 also shows two simulations for four different values of ε each with
different random seeds. The bunching together of take-off points for each ε illustrates that ad is insensitive to the
particular seed chosen. Good agreement is observed between asymptotics and numerics when ad is above the critical
point ac = 2.

Asymptotics as shown in Figure 2 (bottom left) predict extinction for ε > 0.09. However, for the values of
ε ∈ (0.009, 0.014), full numerical simulations show that homongeneous quasi-state jumps to the patterned state
branch even when a has been decreased to below ac = 2 where the homogeneous steady state no longer exists. This
is due to the presence of slow relaxation dynamics: it is well known (see for example [57], chapter 6.5) that there is a
boundary layer of O(ε1/3) near the fold point, so that the homogeneous state “falls off” not exactly at the fold point,
but within O(ε1/3) of it. This delay is readily apparent in Figure 2, where the numerics and asymptotics diverge near
a = 2. To better capture this behaviour (and thus to better approximate the values of ε for which the extinction
is observed), it suffices to replace the quasi-steady state approximation n+ and w+ in (7) by the solution to the
(slowly-evolving) homogeneous (ODE) system

dn

dt
= −n+ wn2 , 0 = a(εt)− w − wn2. (17)

Moreover, it is no longer true that n+w+ = 1 so that equations (11b, 11c) and α, β are replaced by

α (s) = −m2δ + (2wn− 1)− 2wn

m2 + 1 + n2
, (18a)

β (s) =
σ0n

2

m2 + 1 + n2
. (18b)

With this modification, the computation for ad is carried out as in before. This allowed us to better capture the
transition (or non-transition) to the patterned state even slightly below the tipping point a = ac. This is clearly
shown in the curve labeled “hybrid” and its agreement with the full numerical result in Figure 2 (bottom left).

To simplify the exposition, we have assumed that b = c = 0 in (6). However our method can be generalized to
remove these assumptions. If c 6= 0 then α in (11b) is complex; in this case the analysis proceeds as before but with
α replaced by its real part. The case b 6= 0 is more involved. In this case, α is an eigenvalue of a certain 2x2 matrix;
and furthermore the formula for β depends on an adjoint eigenvector of such a matrix. Moreover there is a Hopf
bifurcation possible when b is too large. This is a work in progress and we expect to report the results of this soon.

Our method should also be applicable to more complex models of patterned vegetation, such those described in
[27, 58–62]; and more broadly to a general class of reaction-diffusion PDEs that have a Turing bifurcation leading to
pattern formation.

As shown in Figure 2, the Turing branch can also undergo a secondary bifurcation: it eventually becomes unstable,
leading to a “coarsening” process that results in fewer number of localized regions [31, 63]. Whether the secondary
bifurcation is activated depends on the speed of the drift as Figure 2 illustrates: when ε = 0.002, the solution has
time to coarsen and persists beyond the fold point of the Turing branch. By contrast, when ε = 0.004, the fold point
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of the Turing branch is reached before the coarsening process is realized. For localized states, a similar phenomenon
in the absence of noise was recently studied in [64]. It would be interesting to extend these results to incorporate the
role of noise on these secondary bifurcations.

In conclusion, we have used a simple mathematical model to illustrate how patterned states can provide a refuge
and prevent extinction under stressed conditions, even as the control parameter falls below the tipping point of a
homogeneous state. The patterned state can recover to the full vegetation state when the control parameter is dialed
back to favorable conditions. However, if the control parameter drifts too quickly toward threatening conditions, the
system may have no time to transition to the patterned state before the tipping point is reached, resulting in an
irreversible extinction. This simple mechanism underscores the key role that spatial heterogeneity and noise have on
the resilience of the system. It also illustrates the importance of not only the absolute level of climate change, but
also the speed with which it occurs.

APPENDIX A: NUMERICAL METHOD

We use finite differences to solve (6) numerically. Because simulating PDE’s with noise is not as standard, we include
here the algorithm and Matlab code to do this, in particular the details of how to implement the spatio-temporal
noise correctly.

Discretize in space using N gridpoints, ∆x = L/N, and in time using stepsize ∆t so that w(xk, tj) ≈ wkj , n(x, t) ≈ nkj
where xk = ∆xk with k = 1 . . . N, tj = ∆tj. We use a simple implicit-explicit Euler scheme as follows:

nkj+1 − nkj
∆t

= δ
nk+1
j+1 + nk−1j+1 − 2nkj+1

(∆x)
2 − nkj+1 + wkj

(
nkj
)2
,

0 =
wk+1
j+1 + wk−1j+1 − 2wkj+1

(∆x)
2 + a(εtj)− wkj − wkj

(
nkj
)2

+ σ0
1

∆t
W k
j .

Here, W k
j is the discretization of the noise term. Care must be taken to truncate the infinite series (4) to N modes

to avoid oversampling:

W k
j =
√

∆t

N/2∑
m=−N/2+1

ξm(tj)e
imxk , (19)

where ξ−m = ξm when m < 0, and ξm(tk) = X + iY with X,Y normal random variable of mean zero and variance 1
when m > 0; and N is assumed to be even. This can be implemented via discrete FFT.

Alternatively, note from the definition (19) that W k
j is normally distributed (since it is a sum of normal variables),

that its mean is zero and its variance is given by

var(W k
j ) = ∆tN.

Hence an equivalent definition of W k
j , and the one we will use, is

W k
j =
√

∆t
√
Nξj(tk) (20)

where ξj(tk) is a real Gaussian random variable. We include self-contained matlab code – see figure 3 – with further
implementation details.
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