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Conventional agriculture uses herbicides, pesticides, and chemical fertilizers that have the potential to pollute
the surrounding land, air and water. Organic agriculture tries to avoid using these and promotes an
environmentally friendly approach to agriculture. Instead of relying on herbicides, pesticides and chemical
fertilizers, organic agriculture promotes a whole system approach to managing weeds, pests and nutrients,
while regulating permitted amendments. In this paper, we consider the effect of increasing the total area of
agricultural land under organic practices, against a background of conventional agriculture. We hypothesized
that at a regional scale, organic agriculture plots benefit from existing in a background of conventional
agriculture, that maintains low levels of pathogens through pesticide applications. We model pathogen
dispersal with a diffusive logistic equation in which the growth/death rate is spatially heterogeneous. We find
that if the ratio of the organic plots to conventional plots remains below a certain threshold lc, the pest
population is kept small. Above this threshold, the pest population in the organic plots grows rapidly. In this
case, the area in organic agriculture will act as a source of pest to the surrounding region, and will always
infect organic plots as they become more closely spaced. Repeated localized epidemics of pest outbreaks
threaten global food security by reducing crop yields and increasing price volatility. We recommend that
regional estimates of this threshold are necessary to manage the growth of organic agriculture region by
region.
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1. Introduction

A rapidly growing agricultural system is organic agriculture. This
system has its origins in concerns over the accumulation of synthetic
chemicals and the use of synthetic fertilizers in conventional
agriculture, with harmful consequences to the environment (Trewavas,
2001; Ramesh et al., 2005; Carvalho, 2006; Hobbs, 2007; Badgley et al.,
2007). Organic farming (Lampkin, 2007; Tamm, 2001) is gaining
popularity in Europe, south America, north America, Japan and
Australia among consumers and producers (OECD, 2008; Yussefi,
2004). These studies report an increase of 60% in global acreage under
organic agriculture between 2000 and 2004, and an average annual
growth rate of about 20%, although it reaches 50% in Turkey (Sayin et
al., 2004). Initially supplied by numerous small operations, more
recently large suppliers to international distributors have engaged in
providing organic-labeled produce (Raynolds, 2004; Brand, 2006).
Produce with an organic label meet the criteria that certify it was
produced without applications of pesticides, herbicides, chemical
fertilizers and free of genetically modified organisms, as governed by
national or regional legislation. Consumers are drawn to these produce
for two principal reasons. First, health conscious consumers perceive
organic produce to be healthier (Woese et al., 1997; Yiridoe et al.,
2005) and safer as they do not contain trace amounts of chemicals that
are potentially hazardous to human health (Barceló and Hennion,
1997; Rivas et al., 1997; Sharpe, 1999). Second, organic produce are
believed to be environmentally friendly, because organic agriculture
avoids using chemicals that are perceived to be environmentally
harmful to soil, freshwater, ground water and the air (Carvalho et al.,
1997; Taylor et al., 2003; Chernyak et al., 1996). As many of these
chemicals are not immediately biodegradable they can persist in the
environment and bioaccumulate through the food web into many non-
target species, including humans (Nhan et al., 1999; Carvalho, 2005).
Two general concerns with organic agriculture are regularly raised. The
first concerns food safety issues, the second is food security issues
(Carvalho, 2006; Perfecto and Badgley, 2007). One would assume
organic produce, having been produced without the application of
pesticides would be safe to consume. However, there are regular recent
cases of consumer illnesses and cross-border product recalls caused by
contaminated organic produce, (US-FDA, accessed 31st March 2010).
Thus, it is no longer possible to assume that organic produce are de
facto safer than conventional produce. More significantly, the concern
with food security is more difficult to address. Compared to
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conventional output, organic agriculture tends to produce statistically
significant lower yields under intensive agriculture, due to decreased
germination success and loss to disease, among other issues (Borlaug,
2000; Trewavas, 2002; Smil, 2000; Green et al., 2004). Can organically
produced crops provide food security, while being more susceptible to
yield fluctuations caused by pathogens and pests (Trewavas, 2001;
Perfecto and Badgley, 2007)? The issue continues to be debated but it is
clear that organic agriculture is more expensive (Ramesh et al., 2005).
This becomes a more serious issue as more land under conventional
agriculture is brought into organic production (Badgley et al., 2007).

In an agricultural landscape, organic farms operate against a
background of conventional agriculture that maintains pathogen load
and pest levels low. Intuitively, as the number of plots in organic
agriculture increases they become closer together. Thus, as the
number of plots in organic agriculture continues to increase, the
number of refugia for pests and pathogens is postulated to increase.
Therefore, it is worth considering whether disease outbreaks could
become more frequent as the ratio of total agricultural land under
organic farming increases relative to the area under conventional
agriculture. We hypothesize that, in any given region, organic
agriculture benefits from the conventional agriculture landscape
which provides a low pathogen background. We further hypothesize
that as organic agriculture plots become more frequent in the
landscape, the likelihood of pathogen outbreaks increases. We
addressed this question mathematically in one and two dimensions.
The results show the existence of a bifurcation point above a threshold
ratio of organic to conventionally farmed area, above which infections
will always occur.
2. Theory and calculations

Typically, differentmathematical modeling approaches are used to
model agricultural pathogen dispersal at different scales (Maanen and
Xu, 2003; Kuparinen et al., 2007; Viljanen-Rollinson et al., 2007).
Many of the pests we wish to consider are spread by winds which
have a prevalent direction. However, if we consider appropriate time
and spatial scales, we can consider the direction of the wind to be
close to uniformly random. On this scale, random diffusion is a
reasonable assumption (Maanen and Xu, 2003; Kuparinen et al., 2007;
Viljanen-Rollinson et al., 2007). For regional or descriptive models,
one could include the effect of a dominant wind direction by adding
an advective term. We focused on wind dispersed foliar pathogens
and assumed that in organic plots pathogen control was less effective
than in conventional plots.

In constructing the model, we make the following assumptions:

1. At the regional scale pathogens spread in a manner consistent with
random diffusion.

2. In the absence of pesticide, the pathogen population is non-zero
and can be modeled by a logistic growth model.

3. The addition of pesticide causes negative growth rate of pathogens
and at sufficient concentration, it causes the population to die out.

4. In organic plots, positive growth rate of pathogens occurs because
plot management does not independently prevent pathogen
outbreak.

We now define the variables and parameters used in the model:

• p — The fraction of the maximal pest population
• D — The diffusivity of the pest
• v — The rate of pest growth in the absence of pesticides
• μ — The death rate due to the presence of pesticide. We assume μNv
(assumption 3 of our model)

• l — The size of a farm plot devoted to organic practices
• and L — Size of the entire area
In one dimension, the model is then given by,

∂p
∂t = D

∂2p
∂x2

+ νp 1−pð Þ−hl xð Þμp; 0 b x b L; ð1Þ

∂p
∂x 0ð Þ = ∂p

∂x Lð Þ = 0 ð2Þ

where,

hl xð Þ = 0;0 b x b l
1; l b x b L

:

�
ð3Þ

Here,
∂2p
∂x2 is the second partial derivative of pwith respect to x and

∂p
∂t is the partial derivative of p with respect to time. This boundary

condition allows us to consider infinite domains in which organic and
conventional farms are interspersed periodically. By varying the value
of l, we can examine the effects of varying the percentage of farmland
devoted to organic methods. Note that related models were also
considered in other contexts (Ludwig et al., 1979; Shigesada et al.,
1986; Cantrel and Cosner, 1989; Berestycki et al., 2005) among others.
Refer to the Appendix for the mathematical proof.

3. Results

The main result is that if l is sufficiently small, the pest population
becomes extinct throughout the organic and conventional farms.
However as the total area under organic farming l is increased, there
exists a critical domain size of lc such that if lN lc then there will be
growth of pest in the organic farm which will then act as a source of
pest to the neighboring agricultural region. In this case, the density of
the pest is most concentrated within the organic area and decreases
away from it (see Appendix A). The value of lc is the smallest positive
root of

∝ tan ∝lcð Þ = β tanh β L−lcð Þð Þ ð4Þ

where α =
ffiffiffiffiffiffiffiffiffiffi
v =D

p
and β =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−vð Þ=Dp

:

In two dimensions the result is similar: as shown in the Appendix,
pathogen outbreakwill always occur if the area under organic farming
is sufficiently large. For the special case when the organic area has a
circular shape of radius l inside a larger conventionally farmed area of
radius L, the critical threshold value lc is given by

α
J1 αlcð Þ
J0 αlcð Þ = β

K1 β lc−Lð Þð Þ
K0 β lc−Lð Þð Þ ; ð5Þ

where Ji, Ki are Bessel functions of order i (Abramowitz and Stegun,
1964).

Mathematically, this behavior corresponds to a bifurcation of the
zero steady state as l is increased past lc. An example of this
phenomenon is illustrated in Fig. 1 for D=1, μ=4, ν=1 and L=10.
By numerically solving Eq. (4) we then find that lc=1.047. Fig. 1(a)
shows p(0) as a function of l. Note that a pest outbreak solution pN0
bifurcates from the point l=lc as l is increased. The corresponding
equilibrium profiles p(x) are illustrated (Fig. 1b). Since there is a very
large range of pest diffusivity in one direction, expressed from
10 m day−1 to 10,000 m day−1, we plot the critical organic plot area
lc versus the logarithmof pest diffusivity (Fig. 2). FromEq. (4), it is clear
that as D→∞;lc→L μ

μ + ν. Therefore, from this simple relationship, one
can estimate the critical ratio of organic to conventional farmed area
for rapidly dispersing pathogens. A diversity of hypothetical scenarios
demonstrates the critical threshold of organic to conventional area
varies depending on the parameters (Table 1). In addition, this model
can be refined further using local or regional scale models that contain
more parameters if regional data exists.



Fig. 1. (a) Plot of the fraction of the farmland dedicated to organic farming against fraction of maximal pest population abundance with D=1, L=10, v=1, μ=4 and l as given. If less
than 10% of the farmland is dedicated to organic practices the pest population abundance remains minimal. Past this limit, the pest population grows rapidly to maximal. This agrees
with the prediction given by Eq. (4) of lc=1.047. (b) The graph of the pest population profile for various values of l. From bottom to top, l=1.1,1.5,2,4,8. Other parameters are as in
(a). Symbols: D is pest diffusivity, L is the total farmed area, l is the area under organic farming, lc is the critical area of organic to conventional farmed area as described in Eqs. (4) and
(5), v is the rate of pest growth in the absence of pesticide, and μ is the death rate due to pesticides.
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Our first hypothesis that organic agriculture benefits from the
backgroundof conventional agriculture in the landscape is supported by
the model calculations. When there are few organic plots, or when the
total area of organic to conventional agriculture is low, pathogen
outbreaks occur but do not spread into an epidemic. Our second
hypothesis is also supported, that as organic plots become more
frequent or when the total area of organic to conventional agriculture is
above a threshold, pathogen outbreaks are more likely to occur and
spread into an epidemic to all organic plots.
4. Discussion

4.1. Interpretation of the model

The results show that above a threshold ratio of organic to
conventionally farmed land area, pathogen outbreaks will always
occur. This is possible because each organic plot acts as a refugia for
pathogens, against the dominant land area under conventional
agriculture. When organic plots are sparse and far apart from each
other, infections will tend to be mostly through autodeposition (same
field infections). But as the abundance of plots increase the ratio of
autodeposition to allodeposition (new field infections across distance)
decreases. The conventional plots, although regularly infected from
conventional and organic plots, reduce or inhibit pathogen spread and
viability through the application of pesticides. However, this increases
the cost of production for conventional fields, that have to apply
pesticidesmore often as the abundance of organic plots increase in their
midst to counter pathogen spread from the untreated organic plots.
Fig. 2. Plot of lc versus log 10 for the case μ=2, v=1 and L=10. See Fig. 1 for symbol
legend.
4.2. Pathogen control

The National List of Allowed and Permissible Substances in organic
agriculture (Electronic Code of Federal Regulation – Agriculture – Part
205 National Organic Program) lists and prescribes chemicals usage
for pathogen control. A search of the effectiveness of pesticides used
in organic agriculture demonstrated a dearth of published data in
refereed journals. Instead the literature relies on a combination of
mild pathogen level management (disease resistant plant varieties,
crop rotations, integrated pest management, treatments from pre-
industrial agriculture period, manual removal of diseased plants)
(Barker, 2010). In the pre-industrial period crops were regularly
devastated by epidemics that swept through Europe with conse-
quences on human nutrition and food security (for example Ordishe,
1987; Millardet, 1885; Gennadios, 1889).
4.3. Pathogen dispersal distance

Plant pathogens tend to be viruses, bacteria, fungal spores or fungal
hyphae, nematodes or arthropods, thus representing a range of size and
weight of the dispersal particle. Dispersal occurs through rain drops,
wind, arthropod dispersal, carried by a vector such as an insect or
through an infected host (seed, pollen, insect) (Viljanen-Rollinson et al.,
2007; Chen and Feng, 2006; Togashi and Jikumaru, 2007) as well as
anthropogenic transport. Dispersal of spore, pollen, seed or arthropods
is usually described by diffusion based analytical models (Cantrell and
Cosner, 1993), persistent randomwalk (Bicout andSache, 2003), logistic
and Gompertz models (Maanen and Xu, 2003; Shaw et al., 2006;
Pethybridge et al., 2005; Bergua et al., 2008), Lagrange puff models with
Gaussian or non-Gaussian turbulence as in atmospheric pollution
studies (Pfender et al., 2006; Kuparinen et al., 2007). Epidemic progress
can be modeled with general disease models developed from data
(Maanen and Xu, 2003). Field data confirm that spore dispersal and
deposition events are randomly distributed because spores arrive both
from allodeposition, autodeposition and accumulation in the field from
previousyears (Bicout andSache, 2003; Zhanget al., 2005; Pfender et al.,
2006; Pethybridge et al., 2005; Schmale et al., 2005; Roslin et al., 2007).

The dispersal distance is affected by weight of the infective particle
and the time scale, so that with longer time duration the particles reach
further but become less abundant with distance (Kuparinen et al.,
2007). Thus the infection severity decreases with distance as particle
density decreases. The epidemic progress is affected, in addition to
weight, time scale and infection severity, by day-to-day weather
changes, temperature, crop growth phase, pathogen life history and
landscape characteristics (Pivonia and Yang, 2006). Regional disease
progress models can be constructed for the most important pathogens,
withmore or less parameters, to predict and manage epidemics locally.

image of Fig.�2


Table 1
Critical values lc for various hypothetical pathogen parameter values in one dimension.
Here the total length of the agriculture area is 1, so the critical length can be thought of
as a fraction of the area of organic to conventional agriculture. The model was run for a
range of diffusivity representing length per unit time, with three values of net growth
rate and two values of net death rate from the logistic equation as individuals per unit
time. See Fig. 1 for symbols legend.

Diffusivity Growth rate Death rate Calculated critical threshold lc

D=10 ν=0.1 μ=0.2 =0.0906
μ=0.4 =0.2296

ν=1 μ=2 =0.2364
μ=4 =0.4782

ν=10 μ=15 =0.3097
μ=25 =0.5503

D=100 ν=0.1 μ=0.2 =0.0306
μ=0.4 =0.0865

ν=1 μ=2 =0.0906
μ=4 =0.2296

ν=10 μ=15 =0.1350
μ=25 =0.3160

D=1000 ν=0.1 μ=0.2 =0.0099
μ=0.4 =0.0291

ν=1 μ=2 =0.0306
μ=4 =0.0865

ν=10 μ=15 =0.0475
μ=30 =0.1300

2195S. Adl et al. / Science of the Total Environment 409 (2011) 2192–2197
From Table 1, one can estimate which parameters are likely to affect
pathogen growth the most, considering regional wind patterns and
pathogen species. However, an unpredictable stochastic element exists
through long-distance wind dispersal. Vertical wind puffs carry a
fraction of infective particles into the upper parts of the atmospheric
boundary layer (mixed layer). This atmospheric pathway is responsible
for long-distance and inter-continental dispersal hundreds to thousands
of kilometers from the source (Viljanen-Rollinson et al., 2007; Zeng and
Luo, 2006; Brown and Hovmøller, 2002; Isard et al., 2005). Increased
frequency of outbreaks in one region can therefore cause repeated long-
distance infections through air currents as demonstrated in these
papers.

Regionally, organic plot aggregation or total area can be maintained
below a problematic threshold. The effective organic plot frequency can
be further reduced by maintaining crop rotations so that plots growing
the same crops remain further apart. This situation is analogous to plant
population fragmentation studies that have considered the opposite
scenario. Plant pollination studies showed that as a species becomes
more fragmented or less dense, the declining population size reaches a
threshold value for extinction likelihood, beyondwhich itwill go extinct
as the dispersing pollen fails to reach the plants (Ghazoul, 2005) (This is
true for non self-fertilizing species). The species rarefaction affects both
pollen dispersal success and insect foraging efficiency in insect
pollinated plants (analogous to vector or host dispersal of pathogens)
(Ghazoul, 2005). The existence of this threshold has plant conservation
implications when selecting size and frequency of protected areas. The
issue was discussed ecologically (Janzen, 1983, 1986) and, then,
mathematically (Cantrell and Cosner, 1993) confirming the existence
of parameter values for which extinction will always occur even in
protected areas, and conditions underwhich co-existence of competitor
plants is possible. For plants in parks or protected areas, growth rate,
park area, plant species density, and population fragmentation are
important parameters affectingdispersal andplant establishment. Parks
that are too small suffer from what ecologists call an edge effect, and
called a buffer zone by Cantrell and Cosner (1993). In the situation
studied by these authors, the park is located inside a background of
agriculture or secondary successional habitat, but the species invasion is
from the background into the protected area, the inverse situation from
our analysis here with pathogens. This issue is relevant here as organic
agriculture provides refuge habitats without pesticides for pollinators
and beneficial insects to disperse from, which can benefit conventional
plots. However, whether these insects can be abundant enough to be
useful depends in turn on the ratio of the area of the organic agriculture
refuge to the area under conventional agriculture.

5. Conclusions and perspectives

We showed that as the ratio of the area under organic agriculture
increases relative to the area under conventional agriculture, there is a
threshold ratio indicated by a mathematical bifurcation, above which
organic plots always become infected with pathogens. This also
increases the pathogen infection rate on the surrounding area under
conventional practice. The value of the threshold will vary with the
pathogen, environmental factors, field management related variables
and abiotic parameters. Compared to conventional agriculture, lower
crop yield, reduced germination rate and plant growth, and higher
loss to disease are the three principal arguments levied at organic
agriculture. These arguments raise both doubt and concern that world
food supply security can be maintained through establishment and
expansion of organic agriculture alone. However, one ought not
ignore the valid serious criticisms raised against conventional
methods, that stimulated organic agriculture (Ramesh et al., 2005;
Hobbs, 2007; Badgley et al., 2007). Clearly, the soil erosion, organic
matter depletion, reduced water and nutrient retention, and bioaccu-
mulation of toxic agricultural pollutants, at their current levels are
unsustainable. There is a fertile middle-ground of agricultural
practices that provide sustainable alternatives to conventional
methods. These include conservation agriculture (no-tillage meth-
ods), reduced tillage, better management of irrigation water
resources, crop rotations, integrated pest management, and reduced
applications of fertilizer, pesticides, and herbicides through better soil
organic matter management (Rotz et al., 2005; Rosset and Altieri,
1997; Lal, 2007; Lal et al., 2007; Smith et al., 2008; Hobbs, 2007; Ye et
al., 2002). In addition, returning to locally adapted crop varieties, at
least for cereals, shows potential in increasing yields under sustain-
able or organic management (Mason and Spaner, 2006). The current
trend of increasing the area under organic farming is itself
unsustainable, but reactionary in response to consumer demand.
Although there is a place for organic produce in society (Ramesh et al.,
2005), realistically, they must remain confined to small productions
or the luxury end of the market if we are serious about addressing
food security issues, until published evidence accumulates that
methods used by the organic agriculture sector are effective.
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Appendix A. Mathematical analysis of the model

We show the existence of the critical domain size lc. In either one
or two dimension, the model can be written as

∂u
∂t = DΔu + g xð Þu−νu2

; x∈Ω; ∂nu = 0; x∈∂Ω ð6Þ

where Ω is either a one or two-dimensional bounded domain and

g xð Þ = ν; jxj b l
ν−μ b 0; jxj N l

�

The main conclusion is the following.

Theorem. There exists a critical domain size lc such that:

1. If lb lc, then for any initial conditions p(x, 0)=pi(x)≥0, we have p
(x, t)→0 as t→∞. That is, infestation does not occur.

2. When lN lc, there exists a unique, positive steady state po(x)N0
such that for any non-zero initial conditions p(x, 0)=pi(x)N0, we
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have p(x, t)→po(x)N0 as t→∞. That is, an outbreak will occur and
the pest profile will settle to po(x)N0 after some time.

3. When lN lc and in the case when the domain Ω is a disk (in one or
two dimensions), the outbreak profile p0 is radially symmetric, p0
(x)=p0(|x|) and is decreasing in |x|.

Proof. It was shown in Berestycki et al. (2005) that the instability of
the zero solution is a necessary and sufficient condition for the
oubreak solution to occur. The global stability and uniqueness of p0(x)
were also proven there. Therefore to show 1. and 2., it remains to
show that there exists a unique lc such that the zero solution is stable
if lb lc and is unstable if lN lc. Linearizing around p=0, we obtain the
eigenvalue problem

λφ = DΔφ + gφ; ∂nφ = 0; x∈∂Ω: ð7Þ

Using the Raylegh–Ritz quotient, the biggest eigenvalue of Eq. (7)
satisfies the

λ = max
∫
Ω
−j∇ϕj2 + gϕ2dx

∫
Ω
ϕ2dx

ð8Þ

where the maximum is taken over all C1 functions with ∂nϕ=0 on
∂Ω. Since g is an increasing function of l for a fixed x, it follows that λ is
an increasing function of l. When l=0, gb0 and from Eq. (8) it follows
that λb0. On the other hand, when l=L, we have gN0 and using ϕ=1
as a test function, it immediately follows that λN0. Therefore there
exists a unique lc such that λ=0 when l= lc ;λb0 when lb lc and λN0
when lN lc.

Next we prove the monotonicity of po for a radially symmetric
case. Note first that by the uniqueness of po, it must be symmetric
(otherwise rotating po yields another solution). Therefore the
outbreak profile po satisfies

∂2p
∂r2

+
n−1
r

∂p
∂r + g−pð Þ0 = 0;p 0ð Þ = 0;p Lð Þ = 0;p rð Þ N 0 ð9Þ

where n=1 ifΩ is one-dimensional or n=2 for a disk. Differentiating
we obtain

∂3p
∂r3

−n−1
r2

∂p
∂r +

n−1
r

∂2p
∂r2

+ g xð Þp + g−2pð Þ ∂p∂r = 0: ð10Þ

Suppose that ∂p
∂r N 0 at some point inside (0,L). Then let r0∈(0,L) be

the point where
∂p
∂r attains its maximum, so that ∂2p

∂r2 r0ð Þ = 0; ∂
3p
∂r3 r0ð Þb0.

Then from Eq. (10) we have g(r0)−2p(r0)≥0. Conversely from Eq. (9)
we also have g(r0)−p(r0)≤0. But this implies p(r0)≥2p(r0) which is a
contradiction since pN0 by assumption. This concludes the proof.

In one dimension, when Ω=(0,L), Eq. (7) can be written as

λϕ = D
d2ϕ
dx2

+ νϕ = 0;0 b x b l

λϕ = D
d2ϕ
dx2

− μ−νð Þϕ = 0; l b x b L

ϕ0 0ð Þ = 0;ϕ0 Lð Þ = 0;ϕ l−ð Þ = ϕ lþ
� �

;ϕ Lð Þ = 0;ϕ0 l−ð Þ = ϕ0 lþ
� �

:

8>>>>>><
>>>>>>:

Setting λ=0, l= lc, we find that lc satisfies Eq. (4). WhenΩ is a two-
dimensional ball of radius L, the formula (5) is similarly computed.
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