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We present an algorithm for solving first-order ordinary differential equations, by sys-

tematically determining symmetries of the form [ξ = F (x), η = P (x)y + Q(x)], where

ξ ∂/∂x + η ∂/∂y is the symmetry generator. To these linear symmetries one can associate

an ordinary differential equation class which embraces all first-order equations mappable

into separable ones through linear transformations {t = f(x), u = p(x) y + q(x)}. This

single class includes as members, for instance, 429 of the 552 solvable first-order examples

of Kamke’s book. Concerning the solution of this class, a restriction on the algorithm

being presented exists, only in the case of Riccati equations, for which linear symmetries

always exist, but the algorithm will only partially succeed in finding them.

1 Introduction

One of the most attractive aspects of Lie’s method of symmetries is its generality: roughly

speaking, all solution methods for differential equations can be correlated to particular

forms of the symmetry generators [2, 16]. However, for first-order ordinary differential

equations, Lie’s method seems to be, in principle, not as useful as in the higher order

case. The problem is that the determining partial differential equation — whose solution

gives the infinitesimals of the symmetry group — has the original first-order equation

in its characteristic strip. Hence, finding these infinitesimals requires solving the orig-

inal equation, which in turn is what we want to solve using these infinitesimals, thus

invalidating the approach.

For higher order ordinary differential equations, the strategy consists of restricting

the cases handled to the universe of equations having point symmetries, so that the

infinitesimals depend on just two variables, and then the determining partial differential

equation is overdetermined. Although few second or higher order equations have point

symmetries, and the solution of the corresponding partial differential equation system

for the infinitesimals may be a major problem in itself [9], the hope is that one will be

able to solve the system by taking advantage of the fact that it is overdetermined.

One basic motivation in this approach is also that the finite transformations associated
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with point symmetries are pointlike and these transformations form a group by themselves

— not just with respect to the Lie group parameter. Indeed, the composition of any

two point transformations is also a point transformation. Consequently any two point

symmetries can be obtained from each other through a point transformation. Lie point

symmetries can then be used to tackle the equation class, all of whose members can be

obtained from (are equivalent to) each other through point transformations, and which

includes a member we know how to solve (missing the dependent variable).

However, such a powerful approach is not useful in the case of first-order equations

— the subject of this paper — for which “point symmetries” are already the most gen-

eral ones. The alternatives left then, roughly speaking, consist of: looking for particular

solutions to the determining partial differential equation [4], or restricting the form of

the infinitesimals trying to emulate what is done in the higher-order case, so that the

problem can be formulated in terms of an overdetermined linear partial differential equa-

tion system [5, 10]. The question in this latter approach, however, is what would be an

“appropriate restriction” on the symmetries such that:

• the related invariant equation family includes a reasonable variety of non-trivial cases

typically arising in mathematical physics;

• the determination of these symmetries, when they exist, can be performed systemati-

cally, preferably without solving any differential equations;

• the related finite transformations form a group by themselves — not just with respect

to the Lie group parameter — so that the method applies to a whole equation class.

Bearing this in mind, this paper is concerned with first-order ordinary differential equa-

tions and linear symmetries of the form

ξ = F (x), η = P (x) y + Q(x) (1.1)

where {ξ, η} are the infinitesimals, the symmetry generator is ξ ∂/∂x + η ∂/∂y and x

and y ≡ y(x) are respectively the independent and dependent variables. Concerning the

arbitrary functions {F, P, Q}, the requirements are those implied by the fact that (1.1)

generates a Lie group of transformations. The linear symmetries (1.1) have interesting

features; for instance, the related finite transformations are also linear, of the form

t = f(x), u = p(x) y + q(x), (1.2)

where t and u ≡ u(t) are respectively the new independent and dependent variables,

and {f, p, q} are arbitrary functions of x. Linear transformations (1.2) form a group by

themselves too, not just with respect to the Lie parameter. So, as it happens with point

symmetries in the higher order case, any two linear symmetries (1.1) can be transformed

into each other by means of a linear transformation (1.2), and hence we can associate

an equation class with the symmetries (1.1). Since separable equations have symmetries

of this form, the class of equations admitting linear symmetries (1.1) actually includes

all first-order equations which can be mapped into separable ones by means of linear

transformations (1.2).
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We note that in the particular case of polynomial equations, e.g. of Abel type1,

y′ = f3(x) y3 + f2(x) y2 + f1(x) y + f0(x), (1.3)

where f3, f2, f1 and f0 are arbitrary functions of x, (1.2) actually defines their respective

classes2. Since a separable Abel equation can be obtained by just taking the coefficients

fi all equal, this means that there are complete Abel classes all of whose members can be

transformed into separable ones by means of (1.2). Such a case was discussed and solved

at the end of the nineteenth century by Liouville, Appell and others and is presented in

textbooks such as [11, 13].

More generally, for polynomial equations of the form

y′ = fn(x) yn + f1(x) y + f0(x), (1.4)

where fn, f1 and f0 are arbitrary functions x, Chini [7, 11] presented a method similar

to this mapping into separable equations, but through transformations (1.2) with q = 0.

Chini’s method is equivalent to solving (1.4) by determining, when they exist, symmetries

(1.1) with Q = 0.

In connection with the above, this work presents a generalization of these methods as

an algorithm for determining whether or not a first order ordinary differential equation

of arbitrary form3

y′ = Φ(x, y), (1.5)

belongs to this class admitting linear symmetries (1.1), and, if so, for explicitly finding

the symmetry, without restrictions to the form of {F, P, Q}. Both the determination of

the existence of a solution as well as of the symmetry itself are performed without solving

any auxiliary differential equations.

The exposition is organized as follows. In sec. 2, the connection between the symmetries

of the form (1.1) and linear transformations of the form (1.2) is analyzed and a solution

algorithm for the related class is presented. Some examples illustrating the type of prob-

lem which can be solved using this method are shown in sec. 2.2. In sec. 3, a discussion of

Riccati equations in terms of their symmetries and of a variant of the method of sec. 2, to

solve a subset of the Riccati problem, is given. In sec. 4, a discussion and some statistics

are presented concerning the classification of Kamke’s first-order ordinary differential

equation examples. Finally, the conclusions contain general remarks about this work.

2 Linear transformations and symmetries

To determine whether or not a given first-order equation has symmetries of the form

(1.1), following [5], we take advantage of the fact that, for such a symmetry, the related

invariant equation family can be computed in closed form. With the invariant family in

1 In what follows we use y′ = dy

dx
.

2 The Abel equations members of a given class can be mapped between themselves through
(1.2). There are infinitely many non-intersecting such Abel classes but only some of them (still
infinitely many) admit symmetries of the form (1.1).

3 Riccati equations are partially excluded from the discussion; see sec. 3.
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hand, we then show how one can algorithmically compute the infinitesimals (1.1), when

they exist, by quadratures. For that purpose, with no loss of generality, we first rewrite

(1.1) in terms of {f(x), p(x), q(x)} (see (1.2)) as4

ξ =
1

f ′
, η = −

p′ y + q ′

f ′ p
. (2.1)

A direct computation of the finite transformations generated by (2.1) shows that they

are linear, of the form

t = z(x), u =
p(x) y + q(x) − q(z(x))

p(z(x))
(2.2)

where z(x) is a solution of f(z)− f(x) − α = 0 and α is the (Lie) group parameter.

The invariant equation family related to (2.1) can be obtained, for instance, by com-

puting the differential invariants {I0, I1} of order 0 and 1 related to (2.1):

I0 = py + q, I1 =
f ′

p′ y + py′ + q ′
, (2.3)

and hence the invariant equation, given by Λ(I0, I1) = 0, where Λ is arbitrary, can be

conveniently written as I1G(I0) = 1, with arbitrary G, resulting in

y′ =
f ′

p
G(py + q) −

q′

p
−

p′

p
y. (2.4)

Due to this connection between linear transformations and symmetries (1.1), the same

invariant family (2.4) can be obtained directly from an autonomous equation,

u′ = G(u) (2.5)

by just changing variables in it using (1.2). The solution to (2.4) can be obtained in the

same way, by changing variables in the solution to (2.5):

f −

∫ py+q 1

G(z)
dz + C1 = 0 (2.6)

In fact (2.1) can also be obtained from the symmetry [ξ = 1, η = 0] of (2.5) by changing

variables using (1.2). We recall that the knowledge of {ξ, η} in (2.1) suffices to express

the solution of any member of the class (2.4) by quadratures and so it is equivalent to

the determination of {f, p, q} in (2.6).

Theorem 1 Consider y′ = Ψ(x, y) with Ψyyy 6= 0. The determination of whether or

not this equation belongs to the class (2.4), and, when it does, the computation of the

infinitesimals (2.1) themselves, can be performed algorithmically from Ψ by quadratures.

Proof. We start by noting an intrinsic feature of equations that are members of the

4 In this section we assume f ′ 6= 0, since, otherwise, (2.4) would be a first-order linear
equation. The limiting case where f ′ → ∞, ξ = 0, however, is not excluded.
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class (2.4): the determination of p(x) up to a constant factor, say κ, suffices to map any

member of the class into another one having a symmetry of the form

ξ = F (x), η = Q(x). (2.7)

This is easily verified by changing variables

y =
u

κ p
(2.8)

in (2.1), arriving at [ξ = 1/f ′, η = −q′κ/f ′], which is of the form (2.7). In turn, symme-

tries of the form (2.7), when they exist, can be systematically determined as shown in [5].

In what follows, we develop the proof by first showing how to map any equation member

of (2.4) into one having a symmetry of the form (2.7), and then, for completeness, briefly

reviewing how such a symmetry is determined when it exists.

For all equations y′ = Ψ of the class (2.4), we have that

Ψy = f ′G′(py + q) − p′

p
,

Ψyy = f ′pG′′(py + q),

Ψyyy = f ′p2G′′′(py + q).

(2.9)

Thus we let

A ≡
Ψyy

Ψyyy

=
1

p
K(py + q) where K =

G′′

G′′′
. (2.10)

Three cases now arise, related respectively to whether Ay = 0, Ayy = 0 or Ayy 6= 0.

Case 2.1: Ay = 0

In this case, K ′ = 0, so that K = κ for some non-zero κ, and hence A = κ/p. So, from

(2.8), when y′ = Ψ is indeed a member of the class (2.4), by changing variables using

y = A u, (2.11)

the resulting equation family will have a symmetry of the form (2.7).

Case 2.2: Ayy = 0, Ay 6= 0

In this case, K ′′ = 0, so that from (2.10)

A =
κ1 (p y + q) + κ0

p
(2.12)

for some constant κ0 and some non-zero constant κ1. Here the necessary condition for

y′ = Ψ to be a member of (2.4) is that the ratio above be linear in y. In such a case,

when the equation is indeed a member of this class, by introducing

u = ln(A), (2.13)

the resulting equation in u will have a symmetry of the form (2.7); this can be verified

straightforwardly by performing the change of variables directly in (2.1).
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Case 2.3: Ayy 6= 0

In this case let

I ≡
Ayx

Ayy

=
p′y + q′

p
. (2.14)

The necessary condition for y′ = Ψ to be a member of (2.4) is then that I be linear in y,

whence

p(x) = exp

(
∫

Iydx

)

. (2.15)

So, when the equation belongs to this class, from (2.8), changing variables y = u/p will

lead to an equation having a symmetry of the form (2.7).

Once we have shown how a member of (2.4) can be mapped into another one having

a symmetry of the form (2.7), what remains to be done in the proof of Theorem 1 is to

review how that symmetry can be obtained by quadratures.

2.1 Symmetries of the form [ξ = F (x), η = Q(x)]

By computing differential invariants, as we did to arrive at (2.4), the invariant equation

family associated to [ξ = F (x), η = Q(x)] can be written as5

y′ = Φ(x, y) ≡
1

F (x)

(

Q(x) + G

(

y −

∫

Q(x)

F (x)
dx

))

, (2.16)

where F , Q and G are arbitrary functions of their arguments. So far we have shown that

if an equation belongs to (2.4), then after changing variables as shown for the cases 2.1-3,

the resulting equation will be a member of this family (2.16).

Now, to determine F and Q, following [5], we first construct an expression depending

on x and y only through G,

K ≡
Φy

Φyy

=
Gy

Gyy

, (2.17)

where we assume6 Φyy 6= 0. As explained in [5], the problem then splits into two cases.

Case 2.4: Ky 6= 0

In this case, we can obtain the ratio Q(x)/F (x), only depending on x, by taking

Υ ≡
Kx

Ky

= −
Q(x)

F (x)
. (2.18)

The knowledge of this ratio in turn permits the elimination of Q from the determining

partial differential equation for the infinitesimals, leading to7

5 If Q = 0 or F = 0, then the invariant equation is separable or linear, so in (2.16) and
henceforth we assume F 6= 0, Q 6= 0.

6 If Φyy = 0, then (2.16) is already a first-order linear equation solvable in terms of quadra-
tures.

7 For more details see [5].
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F (x) = C1 exp

(
∫

(

Υ Φy − Υx − Φx

Φ + Υ

)

dx

)

, (2.19)

which, together with (2.18), gives the solution we are looking for. The necessary and

sufficient conditions for the existence of such a symmetry are

∂

∂y

(

Kx

Ky

)

= 0,
∂

∂y

(

Υ Φy − Υx − Φx

Φ + Υ

)

= 0. (2.20)

Case 2.5: Ky = 0

Since Ky = −Kx F/Q, then, when Ky is zero, Kx also vanishes, so K = κ for some

non-zero constant κ. Hence, the right-hand side of (2.16) satisfies

Φy

Φyy

= κ (2.21)

and so (2.16), the invariant equation family, is of the form

y′ = Φ ≡ A(x) + B(x) e
y/κ

(2.22)

where A and B are arbitrary functions. For a given equation of this type, A and B can

be determined by inspection, and the determining partial differential equation for the

infinitesimals can be solved directly in terms of A and B as

F (x) =

exp

(

−

∫

A

κ
dx

)

B
, Q(x) = A F (x). (2.23)

2.2 Examples

Example 2.1. Consider the first-order equation, example 128 from Kamke’s book,

xy′ + ay − f(x)g(xay) = 0, (2.24)

where a is an arbitrary constant and f and g are arbitrary functions of their arguments.

For this equation, Kamke shows a change of variables mapping the equation into a

separable one, derived for this particular equation family in [8]. Using the algorithm

presented in this paper, we tackle this equation by computing A in (2.10):

A =
g ′′

xag ′′′
, (2.25)

so we are in Case 2.4. We then proceed by computing I (see (2.14)) arriving at

I =
a y

x
. (2.26)

The existence condition that I be linear in y is satisfied; hence, according to (2.15),

p(x) = xa. (2.27)
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Now, changing variables y =
u

p
as indicated in (2.8), (2.24) becomes

u′ = g(u)
f(x)xa

x
, (2.28)

which is already separable (and thus naturally has a symmetry of the form (2.7)). The

solution to (2.24) is then obtained by changing variables back in the solution to (2.28),

leading to
∫

xa−1 f(x) dx −

∫ xay 1

g(z)
dz − C1 = 0. (2.29)

Example 2.2. We now discuss an example for which Ayy = 0,

y′ =
(

x3y4 + 4 x4y3 + 6 x5y2 + 4 x6y + x7
)

(xa + 1) −
y

x
− 2, (2.30)

where a is an arbitrary constant. For this equation, from (2.10),

A =
y + x

2
(2.31)

so the change of variables here is u = ln(A) (see (2.13)), mapping (2.30) into

u′ = t7+a (ta + 1) e6 u +
7

t
. (2.32)

For this equation, a symmetry of the form (2.7) is computed algorithmically (see sec. 2.1):

ξ =
1

8 (ta + 1)
, η = −

1

8 t (ta + 1)
. (2.33)

Changing variables back directly in the above we arrive at a symmetry for (2.30),

ξ =
1

8 (xa + 1)
, η = −

y + 2 x

8 x (xa + 1)
, (2.34)

whence an implicit solution to (2.30) follows as

x +
1

3 x3 (y + x)
3 +

x(1+a)

1 + a
= C1. (2.35)

Example 2.3. As an example of the case in which Ay = 0, consider

y′ = b ea x yxa +

(

x2 − 1
)

y

x
−

1

x2
+ ln(x) + c, (2.36)

where a, b and c are arbitrary constants. From (2.10), A = 1/(a x), so that by changing

variables as indicated in (2.11), (2.29) becomes

u′ = ut + a b t(a+1)eu −
a

t
+ a t (ln(t) + c) . (2.37)

This equation has a symmetry of the form (2.7),

ξ =
1

t
, η = −

a

t2
, (2.38)

whence (2.36) admits the symmetry

ξ =
1

x
, η = −

x y + 1

x3
, (2.39)
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which suffices to integrate (2.36) by either using canonical coordinates or computing an

integrating factor.

Example 2.4. The algorithm presented is applicable to higher degree equations too (see

Table 1. in sec. 4), provided that it is possible to solve the given equation for y′. Consider,

for instance, Kamke’s example 394,

(y′)2 + 2 f y y′ + g y2 +
(

f2 − g
)

exp

(

−2

∫ x

a

f(z)dz

)

= 0, (2.40)

where a is an arbitrary constant and f ≡ f(x) and g ≡ g(x) are arbitrary functions. For

this problem Kamke presents a particular change of variables derived in [14]. To tackle

this example using our algorithm we first solve the equation for y′:

y′ = −fy ±

√

(

y2 − exp

(

−2

∫ x

a

f(z)dz

))

(f2 − g). (2.41)

Now, by taking either branch of (2.41), and computing the second derivative of (2.10),

we find

Ayy =
2 exp

(

−2
∫ x

a
f(z)dz

)

3 y3
, (2.42)

so that I in (2.14) is given by

I = f y, (2.43)

whence we compute p using (2.15). We finally arrive at the symmetry

ξ =
1

√

f2 − g
, η = −

f y
√

f2 − g
, (2.44)

actually admitted by both branches of (2.41).

These four examples are straightforward problems for the single solving algorithm

presented, but we are not aware of any other algorithm for tackling examples like 2 or

3; also, for examples 1 and 4, the changes of variables presented in Kamke are non-

obvious and presented in connection with different problems [8, 14]. Despite the presence

of arbitrary functions and parameters, both Kamke’s examples 128 and 394 are actually

particular cases of the class represented by (2.4).

3 Riccati equations

The case of Riccati-type equations

y′ = f2 y2 + f1 y + f0 (3.1)

where fi ≡ fi(x), f2 6= 0 and f0 6= 0, deserves a separate discussion. All Riccati equations

admit symmetries of the form (1.1) and so all of them can be mapped into separable ones

using transformations of the form (1.2). However, it is easy to verify that to find such

a transformation requires solving the Riccati equation itself. The algorithm of the pre-

vious section, which does not rely on solving auxiliary differential equations, only works

when Ψyyy 6= 0 (see Theorem 1). The usual approach for solving (3.1) then consists of



First-order Ordinary Differential Equations, Symmetries and Linear Transformations11

converting it to a linear second-order ordinary differential equation and using the various

methods available. Nonetheless, there are entire subfamilies of (3.1) for which symme-

tries of the form (1.1) can be found following an approach such as the one presented in

the previous section, without using techniques for linear second-order equations. Such an

approach is interesting since it enriches the algorithms available for tackling the problem

and could be of use for solving some linear equations by mapping them into Riccati ones.

For the purpose of discussing these cases, and without loss of generality, we rewrite (2.1)

by redefining f ′ → f/p:

ξ =
p

f
, η = −

p′ y + q ′

f
. (3.2)

If now, in (2.4), we redefine f ′ in the same way and take G as a quadratic mapping

depending on two arbitrary constants a and b,

G = u 7→ u2 + a u + b (3.3)

we arrive at the form of an arbitrary Riccati equation, as general as (3.1), but expressed

in terms of these two constants a and b and the functions {f, p, q} appearing in its

symmetry generator (3.2):

y′ = f y2 +
(a + 2 q) f − p′

p
y +

((a + q) q + b) f − q ′ p

p2
. (3.4)

Case 3.1: p′ = 0

A first solvable case happens when p′ = 0, so that in (3.2) both infinitesimals depend

only on x and hence the symmetry can be systematically determined as explained in

sec. 2.1.

Case 3.2: q′ = 0

A second solvable case happens when, in (3.4), q′ = 0, so that the infinitesimals (3.2)

are of the form

ξ = F(x), η = P(x) y. (3.5)

An algorithm for solving such an equation was presented by Chini [7]. In the case of

Riccati equations, Chini’s algorithm can be summarized as “to check for the constant

character” of the expression8

I ≡

(

f0

′

f2 − f0f2

′

− 2 f0f1f2

)2

(f0f2)
3 , (3.6)

where fi are the coefficients of y in (3.1). Whenever I is constant, the problem is sys-

tematically solvable in terms of quadratures (see for instance [11], p.303). Concerning

(3.4) when q′ = 0, a direct computation of I confirms that in such a case I is constant.

Conversely, another direct computation shows that whenever I is constant, the equation

8 This connection between the constant character of an expression like (3.6), constructed with
the coefficients of a polynomial equation of the form (1.4), and symmetries of the form (3.5), is
valid not only for Riccati equations but for equations of the form (1.4) in general.
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will have a symmetry of the form (3.5). To check this, it suffices to solve (3.6) for f1 and

substitute the result into (3.1); the resulting Riccati equation will admit the symmetry

ξ =
1

f2

√

f2

f0
, η =

(

f0

′

f2 − f0f2

′

)

2 f0
2f2

√

f2

f0

y, (3.7)

which is of the form (3.5).

We can also see the equation class solved by Chini’s algorithm, as well as explain the

previous results, by noticing that (3.6) is an absolute invariant for (3.1) under transfor-

mations of the form

t = f̃(x), u = p̃(x) y (3.8)

that is, of the form (1.2) with q = 0. In fact, (3.6) can be written as

I =
s3

2

s2
3

(3.9)

where

s2 = f0f2, s3 = f0

′

f2 − f2

′

f0 − 2 f0f1f2 (3.10)

are relative invariants of weight 2 and 3 with respect to transformations (3.8) [3].

In summary, Chini’s algorithm solves the equation class generated by changing vari-

ables (3.8) in the general Riccati equation (3.4) at q′ = 0, all of whose members have

I = constant.

Three additional solvable Riccati families, where the invariant I is non-constant, are

obtained by equating in (3.2) any two of the three arbitrary functions {f, p, q} with

p′ 6= 0 and q′ 6= 0.

Case 3.3: f = p

When a given Riccati equation belongs to this family, then, by changing variables via9

y =
u

f
(3.11)

in the given equation and in the general form of its symmetry (3.2), we see that the

resulting equation in u will admit the symmetry

ξ = 1, η = −q ′, (3.12)

which can be determined as explained in sec. 2.1.

Case 3.4: q = p

When a given Riccati equation belongs to this family, then, by changing variables via

y = u − 1 (3.13)

in the given equation and in (3.2), we see that the resulting equation in u will admit a

symmetry of the form

9 f is the coefficient of y2 in the given equation.
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ξ =
p

f
, η = −

p′

f
u; (3.14)

that is, infinitesimals of the form (3.5), and hence the equation will be solvable using

Chini’s method.

Case 3.5: f = q

From (3.4), the Riccati family corresponding to this case is given by

y′ = fy2 +
(f (a + 2 f) − p′)

p
y +

((a + f)f + b) f − f ′ p

p2
. (3.15)

From (3.2), this equation family admits the symmetry

ξ =
p

f
, η = −

p′ y + f ′

f
. (3.16)

We have not found an obvious transformation of the form y = P u + Q to map this

symmetry to one of the forms (2.7) or (3.5). A possible approach would be to directly

set up the determining partial differential equation

ηx +
(

ηy − ξ
′

)

(

f2y
2 + f1y + f0

)

− ξ
(

f2

′

y2 + f1

′

y + f0

′

)

− η (2 f2y + f1) = 0

for the coefficients ξ and η of the infinitesimal generator ξ ∂
∂x

+ η ∂
∂y

of an arbitrary

Riccati equation (3.1). Then take ξ and η as given by (3.16) and run a differential

elimination process solving for p. That approach works in principle, but the resulting

symbolic expressions are large enough to become untractable even with simple examples.

An alternative approach leading to more tractable expressions is based on using the

information we have in (3.15) concerning the existence of two constants a and b. So, by

equating the coefficients of (3.15) with those of (3.1), we arrive at the system

f2 − f = 0, (3.17)

f1 −
f2 (a + 2 f2) − p′

p
= 0, f0 −

f2

(

f2a + f2
2 + b

)

− f2

′

p

p2
= 0.

This system can be solved for a and b, so that, when a Riccati equation belongs to this

family, the following two expressions formed from its coefficients fi will be constants:

a =
f1 p − 2 f2

2 + p′

f2
,

b =
f0 p2 + f2

(

f2
2 − f1p − p′

)

+ f2

′

p

f2
. (3.18)

At this point, however, we cannot verify the constant character of these expressions

because p is still unknown. An expression for p can be obtained by computing the inte-

grability conditions for f2 and p implied by (3.17):
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f2

′′

= f1f2

′

− 2 f0p
′ − pf0

′

+

(

f2

′

)2

+ pf0f2

′

f2
, (3.19)

p′′ = 2 f2

′

f2 − p′ f1 − pf1

′

+
f2

′

p′ + pf1f2

′

f2
. (3.20)

Using (3.19) to eliminate p′ from (3.20) we arrive at a solution for p:

p = (3.21)

f2

(

3s2 f2

′′

s2
′

− 2s2
2f2

′′′

+

(

(s2
′′

− s4) s2 − 8s2
3 − 2

(

s2
′

)2

+ 2s3
2

)

f2

′

)

s2 (2 s2s3
′ − 3 s3s2

′)
,

where

s4 =
2 s2 s3

′

− 3 s3 s2
′

+ 3 s3
2

2 s2
(3.22)

is the relative invariant of weight 4 for Riccati equations with respect to transformations

of the form (3.8) [3]. We note that, from (3.9), when the denominator of (3.21) is zero

the equation has a constant invariant I (3.6) and so it is already solvable using Chini’s

algorithm.

In summary, a strategy, not relying on solving second-order linear equations, for finding

linear symmetries of the form (1.1) for Riccati equations, consists of

(1) check if the equation has a symmetry of the form [ξ = F(x), η = Q(x)] (algorithm

of [5] (see sec. 2.1)); or [ξ = F(x), η = P(x) u] (Chini’s algorithm);

(2) check if the equation belongs to one of the two families “f = p” or “p = q” by

using the transformations (3.11) and (3.13) and re-entering the previous step;

(3) check if the equation belongs to the family “f = q” (3.15); for that purpose:

(a) compute the invariants (3.10);

(b) use these invariants to compute p using (3.21);

(c) plug the resulting p into (3.18) and verify if the two right-hand-sides are

constant. If so, the equation admits the symmetry (3.16)

It is our belief that, with the development of computer algebra software and faster

computers, these types of algorithms for Riccati subclasses will become more relevant,

and they will also provide an alternative for tackling second-order linear equations.

4 Classification of Kamke’s examples and discussion

We have prepared a computer algebra prototype of the algorithms presented in sec. 2

and sec. 3 using the Maple system. We have then used this prototype to analyze the set

of Kamke’s 576 first-order equation examples.

In order to perform the classification, we first excluded from the 576 Kamke examples
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all those for which a solution is not shown and for which we were not able to determine

it by other means10. So our testing arena starts with 552 equations.

We know that all equations of type separable, linear, homogeneous, Bernoulli, Riccati

and Abel with constant invariant,11 that is, 372 of Kamke’s examples, have symmetries

of the form (1.1) and then belong to the equation class discussed in this paper. So the

first thing we needed to know was how many of the remaining 552− 372 = 180 examples

admit linear symmetries of the form (1.1), and whether there was any other classification

known for these 180 examples. The information for answering these and related questions

is summarized in this table:

Class First degree in y′: 88 Higher degree in y′: 92 Total: 180 equations

[ξ = F, η = Py + Q] 20 37 57

Abel (non-constant invariant) 15 0 15

Clairaut 0 15 15

d’Alembert 2 21 23

Unknown 33 21 54

Table 1. Classification of 180 non “linear, separable, Bernoulli, Riccati or Abel c.i.” Kamke’s examples.

Hence, 372 + 57 = 429 equations out of Kamke’s 552 solvable examples have linear

symmetries of the form (1.1). Also, Table 1. shows that in Kamke, even among these

particular 180 equations which exclude the “easy ones”, there are more examples having

symmetries of the form (1.1) than examples of Abel (non-constant invariant), Clairaut

and d’Alembert types all together.12

In the second place, if we discard the 61 examples of Riccati-type found in Kamke, the

solvable set is reduced to 552 − 61 = 491 equations, and from this set, 429 − 61 = 368

can be solved algorithmically as shown in sec. 2.

Moreover, a classification of Kamke’s examples of Riccati type according to sec. 3

shows:

Class [ξ = F, η = Q] [ξ = F, η = Py] “Two of {f, p, q} are equal” Total of equations

Riccati 7/61 22/61 2/61 31/61

Table 2. Classification according to sec. 3 of the 61 Riccati equations of Kamke’s book.

So one half of these Riccati examples are still solvable using the algorithms described in

sec. 3, without either mapping the problem into a second-order linear equation or having

to solve auxiliary differential equations.

10 The numbers of the Kamke examples we excluded in this way are: 47, 48, 50, 55, 56, 74,
79, 82, 202, 205, 206, 219, 234, 235, 237, 265, 250, 253, 269, 331, 370, 461, 503 and 576.

11 For an enumeration of Kamke’s examples of Abel type with constant invariant see [6] and
concerning other classes see [4].

12 We note there is no intersection between these classifications: all of Abel (non-constant
invariant) Clairaut and d’Alembert equations do not have symmetries of the form (1.1).
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5 Conclusions

In this work we have presented an algorithm for solving first-order equations, consisting

of determining symmetries of the form (1.1). From the discussions of sec. 2, with these

symmetries one can associate an equation class, represented by (2.4), which embraces all

first-order equations mappable into separable ones through linear transformations. From

the numbers of sec. 4, this class appears as the widest first-order equation class of which

we are aware, all of whose members are algorithmically solvable as shown in sec. 2 or

sec. 3, or mappable into second-order linear equations when the equation is of Riccati

type but the methods in sec. 3 don’t cover the case.

The algorithms presented neither require solving additional differential equations nor

do they rely on the equation member of the class being algebraic (i.e.: rational in y and its

derivatives) or on restrictions to the function fields; the only requirement on the functions

entering the infinitesimals (1.1) are those implied by the fact that these infinitesimals do

generate a Lie group of transformations.

Concerning other related works of which we are aware, the method presented in [15] for

solving Abel equations with constant invariant is a particular case of the one presented

here in that those equations are the subclass of (2.4) of Abel type. In the same direction,

the method by Chini [7], a generalization of the method for Abel equations with constant

invariant which solves more general equations of the form (1.4), is also a particular case

in that (1.4) is a very restricted subclass of (2.4). Also, the class solvable through Chini’s

method is equivalent to a separable equation only through transformations (1.2) with

q = 0. In this sense, the algorithm presented in sec. 2 generalizes both the one discussed

in [15] and the one presented in [7].

The fact that this class (2.4) is algorithmically solvable makes this classification rele-

vant for modern computer algebra implementations. As shown in sec. 4, taking as frame-

work for instance Kamke’s examples, 78% belong to this equation class. Even after dis-

carding Riccati equations, 75% of the remaining Kamke examples belong to this class

(2.4) and so are solvable by the algorithm presented in sec. 2. This algorithm actually

solves many equation families not solved in the presently-available computer algebra sys-

tems (CAS). For instance, of the 4 examples shown in sec. 2.2, three cannot be solved

by Maple 6 or Mathematica 4 at the time of writing this paper. Concerning the Riccati

families presented in sec. 3, two of them (cases “f = q” and “p = q”) are also not solved

by these two CAS, which base their strategy in mapping Riccati equations into linear

second-order ones.

An equally important differential equation problem, complementary to the one dis-

cussed in this paper, is the one where the equation (1.5) cannot be transformed into

separable by means of linear transformations but it is still polynomial in the unknown.

This problem was discussed at the end of the nineteenth century, first by Liouville then

by Appel [12, 1], in the framework of classical invariant theory. The simplest version of

this problem consists perhaps of Abel equations with non-constant invariant, for which

a single class generalizing the known integrable classes is presented in the subsequent

paper in this issue[17].
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[3] von Bülow, K., 2000 Equivalence methods for second order linear differential equations.
M.Sc. Thesis, Faculty of Mathematics, University of Waterloo.

[4] Cheb-Terrab E.S., Duarte L.G.S. and da Mota L.A.C.P., 1997 Computer Algebra Solving of
First Order ODEs Using Symmetry Methods. Computer Physics Communications, 101,
254.

[5] Cheb-Terrab E.S, Roche A.D., 1998 Symmetries and First Order ODE patterns. Computer
Physics Communications 113, 239.

[6] Cheb-Terrab E.S, Roche A.D., Abel ODEs: Equivalence and New Integrable Cases. Com-
puter Physics Communications 130, 2000, p.197.

[7] Chini M., 1924 Sull’integrazione di alcune equazioni differenziali del primo ordine. Rendi-
conti Instituto Lombardo (2) 57, 506-511.

[8] Dickson L.E., 1924 Annals of Math. 2, 25, 324.
[9] Hereman W., 1995 Chapter 13 in vol 3 of the CRC Handbook of Lie Group Analysis of

Differential Equations. Florida. Ed.: N.H.Ibragimov, CRC Press, Boca Raton.
[10] Hydon P.E., 1995 Conformal symmetries of first-order ordinary differential equations.

J.Phys. A: Math. Gen. 27 385-392.
[11] Kamke, E., 1947 Differentialgleichungen. N.Y. Chelsea Publ. Co.
[12] Liouville R., 1887 Sur une classe d’équations différentielles du premier ordre et sur les
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