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Abstract. We consider the singular limit of a perturbed Allen-Cahn model on a bounded two
dimensional domain:


ut = ε2∆u− 2(u − εa)(u2 − 1), x ∈ Ω ⊂ R2

∂nu = 0, x ∈ ∂Ω

where ε is a small parameter and a is an O(1) quantity. We study equilibrium solutions that have
the form of a curved interface. Using singular perturbation techniques, we fully characterize the
stability of such an equilibrium in terms of a certain geometric eigenvalue problem, and give a simple
geometric interpretation of our stability results. Full numerical computations of the time-dependent
PDE as well as of the associated two-dimensional eigenvalue problem are shown to be in excellent
agreement with the analytical predictions.
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1. Introduction. We consider a perturbed two dimensional Allen-Cahn equa-
tion, boundary layer analysis

{
ut = ε2∆u+ f(u) + εg(u), x ∈ Ω ⊂ R2 ,
∂nu = 0, x ∈ ∂Ω .

(1.1)

Here, Ω is a smooth two-dimensional domain and f(u) is a smooth function having
the following properties:

1. f has three roots u− < u0 < u+ with f ′(u±) < 0
2.
∫ u+

u−
f(u) du = 0

and g(u) is any smooth function function with
∫ u+

u−
g(u) du 6= 0.

The standard Allen-Cahn equation corresponds to g = 0, f = −2u
(
u2 − 1

)
. This

model was introduced in [2] as a simple model of evolution of antiphase boundaries and
is now well understood. In the limit ε→ 0, the solution forms a sharp interface layer.
On one side of the interface, u ∼ u− while on the other, u ∼ u+. Once the interface
layer is formed, its motion is described by the mean curvature law which minimizes
the perimeter of the interface ([5], [9]). The stable stationary solution corresponds
to an interface with a minimal perimeter that intersects the boundary orthogonally
([12]). Therefore any non-trivial stable steady equilibrium of the unperturbed Allen-
Cahn equation consists of a straight interface. The stability of such an interface has
been analysed by several authors in variety of settings, see for instance [1], [10], [11],
[14], [15], [17]. The main result is that such an interface can be stable provided the
domain contains a “neck”. More precisely, as shown in [10], [11], in the limit ε → 0,
the interface stability depends only on the curvatures κ+, κ− of the boundary at the
two points that intersect the interface, and the interface length `. The interface is
stable provided that `+κ−1

+ +κ−1
− < 0. Geometrically, the threshold case corresponds

to the two boundaries that are locally concentric.
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Fig. 1.1. Motion of an interface for the perturbed Allen Cahn model given by ut = ε2∆u−2(u−
εa)(u2 − 1), with a = 0.3, ε = 0.07. Top row: the interface is unstable and eventually disappears.
Bottom row: The interface gets “stuck” in the middle of the domain; a non-trivial equilibrium is
reached. The domain height is 1.5 and the distance between the side boundaries is 0.5. The radius
of the left boundary is 1.5 for the top row and 1.0 for the bottom row.

More generally, the perturbed Allen-Cahn equation (1.1) is used as a prototype
model of wave propagation in various contexts. A typical nonlinearity is f + εg =
−2 (u−A) (u2 − 1) where A is close to 0. This system (but without the assumption
that A is small) was used as a simple model of spreading depressions in the human
brain that are associated with cerebral strokes [4]. (When A is replaced by an inho-
mogeneous term a(x), it is called Fife-Greenlee problem [8], [6].) For convex domains,
it is known ([3] [13]) that the only stable solution is a trivial equilibrium. Indeed
any interface propagates until it merges with the boundary and disappears. However
when domain consists of two boxes of different heights, it was shown in [4] that the
interface can get “stuck” at the juncture between the two boxes, provided their di-
mensions are sufficiently different. A similar phenomenon was reported in [16], where
the propagation of chemical pulses in complex geometries with corners and junctures
was studied numerically and experimentally.

The perturbation by a small term εg(u) has a large effect on the shape and
stability of the interface. In particular, the equilibrium solution now consists of a
curved interface. In the limit ε→ 0, this curve is part of a circular arc whose radius R̂,
given by (1.2) below and is independent of the domain shape. For non-convex domains,
it is possible to get a stable interface. One such domain is illustrated on Figure 1. It
consists of a rectangle with a circular cutout. In the first simulation (top row), the
interface propagates through the domain without reaching any equilibrium whereas in
the second simulation (second row) the interface settles to a steady state somewhere
in the middle of the domain. The only difference between the two simulations is the
curvature of the left boundary of the domain, which has been increased in the second
simulation.

In this paper, we fully characterize the stability of curved interfaces. First, we pro-
vide the necessary and sufficient conditions that describe the stability of an interface.
Second, we give a simple geometric interpretation of our stability results.

Before stating our stability result, we characterize the radius of the steady state.
This simple result was already given in [15], Appendix A. We summarize it here as
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following.
Proposition 1.1. Let U be a solution to

U ′′(y) + f(U) = 0, U → u± as y → ±∞

and define

R̂ = −
∫∞
−∞ U ′2(y)dy∫ u+

u−
g(u)du

. (1.2)

Suppose that there exists a circle of radius R̂ which intersects ∂Ω orthogonally, and
let p be its center. Then in the limit ε→ 0 we have

u(x) ∼ U
(
R̂− |p− x|

ε

)
, ε→ 0 (1.3)

Moreover, any solution to (1.1) of the form (1.3) must satisfy (1.2).
We are now ready to state our main result.
Theorem 1.2. Let u(x) be the steady-state solution as given in Proposition 1.1

and R̂ its radius as defined in (1.2). Let ` be the length of the interface and let κ+, κ−
be the curvatures of the boundary at the points which intersect the interface. Consider
the stability problem associated with (1.1),

{
λφ = ε2∆φ+ f ′(u)φ+ εg′(u)φ, x ∈ Ω
∂nφ = 0, x ∈ ∂Ω.

(1.4)

In the limit ε→ 0, the eigenvalues λ are of O(ε2) given by

λ = ε2λ0 (1.5a)

where λ0 solves the following geometric eigenvalue problem:





T ′′ +
(
R̂−2 − λ0

)
T = 0

T ′(−`/2) + κ−T (−`/2) = 0
T ′(`/2)− κ+T (`/2) = 0.

(1.5b)

Thus, the interface is stable if all solutions λ0 of (1.5b) are negative, and unstable
if at least one solution is positive. Equivalently, λ0 solves

λ0 =
1

R̂2
− µ2 where tan (µ`) = −µ (κ+ + κ−)

µ2 − κ+κ−
(1.6)

or

arctan

(−κ+

µ

)
+ arctan

(−κ+

µ

)
= µ` (1.7)

for some branch of arctan.
Remark: Suppose that λ0 6= 0, i.e., the geometric eigenvalue problem (1.5b) has no
zero eigenvalue. Then the existence of such steady state can be rigorously proved,
following the lines of [11]. We omit the details.
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Fig. 1.2. Geometric interpretation of stability criterion (see Theorem 1.3). The numbers
indicate the radius of the corresponding interface below that number. The maximum and minimum
radius is 1.2 and 0.8, respectively. If R̂ = 1 then curve c represents the location of a stable interface,
whereas curves a and e correspond to unstable interfaces.

In the case of the unperturbed Allen-Cahn equation (g = 0, R̂ = ∞), the geo-
metric eigenvalue problem (1.5b) is identical to Equation (1.5) obtained by Kowalczyk
in [10], [11] However here, we use a somewhat different method using solvability con-
dition and test functions.

The stability criterion (1.5b) has a natural geometric interpretation which we
now discuss. Consider a domain such as shown in Figure 1.2. Parameterize the top
boundary in terms of arclength s, from left to right, and let q(s) be the corresponding
point on the top boundary. We suppose that there is a unique circle that goes through
q(s) and that intersects both top and bottom boundaries orthogonally. Let R(s)
denote the radius of such a circle. Then we have the following.

Theorem 1.3. Let R̂ be the radius of a steady interface as defined in Proposition
1.1, let R(s) be as defined above, and suppose that R(s) = R̂ for some s. Then the
interface is stable if R′(s) < 0 and it is unstable if R′(s) > 0.

For example, for the domain as shown in Figure 1.2, if R̂ ∈ (0.8, 1.2) then there
exists a stable steady interface between curves b and d. On the other hand, any
interface to the left of b or to the right of d is unstable.

The rest of the paper is outlined as follows. Proposition 1.1 is derived in §2.
The main result, theorem 1.2 is then derived in §3. Finally we prove Theorem 1.3
in §4. We conclude with numerical calculations in §5 and some discussions and open
problems in §6.

2. Equilibrium Front Solution. In this section we construct the steady state
consisting of a single interface. The main goal is to derive (1.2) of Proposition 1.1.

We seek a solution which divides the domain into two regions. In one of the
regions u ∼ u+ and in the other u ∼ u−. The two regions are separated by an
interface, or front, of thickness O(ε). We expect the interface to be localized about a
circle segment which intersects the boundary of Ω orthogonally. Let R̂ be the radius
of the interface and define the following coordinate system as illustrated in Figure 2.1:
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Fig. 2.1. Schematic used for the derivation of coordinate systems in the interior of the domain
and localized near the boundaries.

x = R− − r− cos(θ−) = r̂ sin(ŝ/R̂) , (2.1)

y = r− sin(θ−) = r̂ cos(ŝ/R̂)− R̂ . (2.2)

Near the boundaries, we define localized coordinates ρ± and t± as follows:

ρ± ≡
r± −R±

ε
, t± ≡

R±θ±
ε

. (2.3)

Here, + and − are used to denote the right and left curved boundaries respectively.
The ± will be dropped whenever the meaning is clear. We also define coordinates
localized near the front by,

ρ̂ ≡ R̂ − r̂
ε

. (2.4)

We can then write ρ̂ as a function of t and ρ

ρ̂ = t− ε
(
ρt

R
− ρ2

2R̂

)
+ · · · . (2.5)

In the interior of the domain, we expect the front to be radially symmetric. Thus in
the new coordinate system, the equilibrium front will satisfy

uρ̂ρ̂ +
ε

R̂+ ερ̂
uρ̂ + f(u) + εg(u) = 0 , (2.6)
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in the interior of the domain. We expand

u = u0 + εu1 + ε2u2 + · · · , (2.7)

substitute into (2.6) and collect powers of ε to obtain,

u′′0 + f(u0) = 0 , (2.8)

u′′1 + f ′(u0)u1 = − 1

R̂
u′0 − g(u0) , (2.9)

u′′2 + f ′(u0)u2 =
1

R̂2
ρ̂u′0 −

1

R̂
u′1 −

f ′′(u0)u2
1

2
− g′(u0)u1 . (2.10)

From here on ′ denotes differentiation with respect to ρ̂ when associated with ui. In all
other cases ′ will represent differentiation with respect to the appropriate argument.
At this point is convenient to define the operator Lψ ≡ ψ′′ + f ′(u0)ψ.

From conditions 1 and 2 following (1.1) u0 will be given by the unique heteroclinic
orbit connecting u+ to u−. For the case f(u) = 2u(1−u2), we have the exact solution
u0 = tanh(ρ̂). We note that by differentiating (2.8) with respect to ρ̂, Lu′0 = 0.

To determine R̂, we consider the steady-state system,

ε2∆u+ f(u) + εg(u) = 0 . (2.11)

We multiply (2.11) by u′0 and integrate over the domain,
∫

Ω

u′0(ε2∆u+ f(u) + εg(u)) dA = 0 . (2.12)

Applying Green’s identity to (2.12) we obtain

−ε2

∫

∂Ω

u ∂nu
′
0 ds+

∫

Ω

ε2u∆(u′0) + u′0(f(u) + εg(u)) dA = 0 . (2.13)

We now use (2.7) and (2.4) in (2.13) and collect powers of ε to obtain

−ε2

∫

∂Ω

u0∂nu
′
0 ds+

∫

Ω

(
(u0(u′0)′′ + f(u0)u′0) + ε

(
(u′0)′′u1 +

1

R̂
(u′0)′u0 + f ′(u0)u1u

′
0 + g(u0)u′0

))
dA = 0 .

(2.14)
Integrating over ρ̂ by parts and using limρ̂→±∞ u′0 = 0 yields

∫

Ω

(u′0)′′u0 dA =

∫

Ω

u′′0u
′
0 dA , (2.15)

∫

Ω

(u′0)′u0 dA =

∫

Ω

(u′0)2 dA . (2.16)

Using (2.8) and Lu0 = 0, (2.14) may be written as,

−ε
∫

∂Ω

∂nu
′
0u0 ds = −

∫

Ω

(
u′0
R̂

+ g(u0)

)
u′0 dA . (2.17)

Using (2.5) we find the leading order behaviour of ∂nu
′
0|∂Ω:

∂nu
′
0|∂Ω ∼

∂

∂ρ
u′0

(
t− ε

(
ρt

R
− ρ2

2R̂

))∣∣∣∣
ρ=0

, (2.18)

= −εu′′0
t

R
. (2.19)
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Thus the boundary term in (2.17) is of a much lower order, and the equilibrium radius
of the front is given by

R̂ ∼ −
∫∞
−∞(u′0)2 dt∫ u+

u−
g(y) dy

. (2.20)

This shows, that to leading order, R̂ is independent of the domain shape and completes
the derivation of Proposition 1.1. �

3. Proof of Theorem 1.2.. We now construct a solvability condition to de-
termine the principal eigenvalues of (1.4). Since u′0 is of one sign and Lu′0 = 0, we
expect that the principal eigenvalue is small and to leading order the principal eigen-
function will behave like u′0 in the interior of the domain. Such an eigenfunction is
often referred to as a translation eigenfunction as it is associated with the near trans-
lation invariance of the front in the interior of the domain with respect to the radial
co-ordinate. In this case, ŝu′0 also satisfies (1.4) to leading order and as a result, we
will need two solvability conditions to determine the principal eigenvalue.

We construct our solvability conditions by multiplying (1.4) by test function v
and integrating over the domain we obtain

∫

Ω

v
(
ε2∆φ+ f ′(u)φ

)
dA+ ε

∫
g′(u)φ v dA = λ

∫

Ω

φ v dA , (3.1)

where v is of the form

v(ŝ, ρ̂) = w(ŝ)u′0(ρ̂) (3.2)

and w(ŝ) is an arbitrary test function.

Using Green’s identity and applying the boundary conditions in (1.4) results in

−ε2

∫

∂Ω

φ ∂nv ds+

∫

Ω

(
ε2∆v + f ′(u) v + ε g′(u) v

)
φ dA = λ

∫

Ω

φ v dA . (3.3)

Here, s is arc length along the boundary and dA is an element of area in the interior.
From (2.3) and (2.4),

ds = Rdθ = ε dt , (3.4)

dA =
r̂

R̂
dr̂ dŝ = ε

(
1 + ε

ρ̂

R̂

)
dρ̂ dŝ . (3.5)

Consider the
∫

Ω

(
ε2∆v + f ′(u) v + ε g′(u) v

)
φ dA term in (3.3), in which v, u, φ are

written in the interior coordinates r̂ and ŝ. Expand φ :

φ = φ0 + εφ1 + ε2φ2 + · · · . (3.6)

Use (2.4), (3.5), (3.6), and (2.7) to write
∫

Ω

(
ε2∆v+ f ′(u) v+ ε g′(u) v

)
φ dA in terms

7



of the coordinates, ρ̂ and ŝ:

(
ε2∆v(r̂) + f ′(u) v(r̂) + ε g′(u) v(r̂)

)
φ dA

∼
[
ε2

(
1

ε2
vρ̂ρ̂ +

1

R̂+ ερ̂

1

ε
vρ̂ + vŝŝ

)
+ f ′(u0 + ε u1 + ε2 u2) v

+ ε g′(u0 + ε u1 + ε2 u2) v

][
φ0 + εφ1 + ε2φ2

] [
ε

(
1 + ε

ρ̂

R̂

)
dρ̂ dŝ

]

∼
{
ε2

[
1

R̂
vρ̂ φ0 + u1 f

′′(u0) v φ0 + g′(u0) v φ0

]
+

+ ε3

[
vŝŝφ0 + u2 f

′′(u0) v φ0 +
1

2
u2

1 f
′′′(u0) v φ0 + u1 g

′′(u0) v φ0

+
1

R̂
vρ̂ φ1 + u1 f

′′(u0) v φ1 + g′(u0) v φ1

+
ρ̂

R̂
u1 f

′′(u0) v φ0 +
ρ̂

R̂
g′(u0) v φ0

]}
dρ̂ dŝ (3.7)

since v = w(ŝ)u
′
0(ρ̂) is in the kernel of L.

Equation (3.7) has terms involving u1 and u2, so we must examine the equations
(2.9) and (2.10) for these terms. We take the derivative of (2.9) with respect to ρ̂ and
multiply by φ0, integrate and use Green’s identity to obtain

−
∫

∂Ω

∂nu
′
1φ0 ds =

∫

Ω

(
− 1

R̂
u′′0 − f ′′(u0)u′0u1 − g′(u0)u′0

)
φ0 dA . (3.8)

It will become evident that λ = O(ε2). To avoid tedious calculations, we will write
λ = ε2λ0 + · · · . In this way, λ0 terms will enter at the correct order. We substitute
(3.4) and (3.5) into (3.8) multiply by ε and arrange the terms to match the u1 term
in (3.7):

ε2

∫

Ω

f ′′(u0)u′0u1φ0 dρ̂ dŝ = −ε2

(∫

Ω

(
1

R̂
u′′0 + g′(u0)u′0

)
φ0 dρ̂ dŝ+

∫

∂Ω

∂nu
′
1φ0 dt

)

+ ε3

∫

Ω

(
− 1

R̂
u′′0 − f ′′(u0)u′0u1 − g′(u0)u′0

)
ρ̂

R̂
φ0 dρ̂ dŝ+ · · · .

(3.9)

We repeat the above procedure to handle the u2 term in (3.7). First we differentiate
(2.10) with respect to ρ̂,

∆(u′2)+f ′(u0)u′2 = − 1

R̂
u′′1+

1

R̂2
ρ̂u′′0+

1

R̂2
u′0−f ′′(u0)u′0u2−

f ′′′(u0)u′0u
2
1

2
−f ′′(u0)u1u

′
1−g′′(u0)u′0u1−g′(u0)u′1 .

(3.10)
We multiply the above expression by φ0, integrate over the domain, apply Green’s
identity to the right hand side, and multiply by ε3 to match the u2 term in (3.7)
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which results in the following:

ε3

∫

Ω

f ′′(u0)u′0u2φ0 dρ̂ dŝ = ε3

∫

Ω

(
− 1

R̂
u′′1 +

1

R̂2
ρ̂u′′0 +

1

R̂2
u′0 −

f ′′′(u0)u′0u
2
1

2

− f ′′(u0)u1u
′
1 − g′′(u0)u′0u1 − g′(u0)u′1

)
φ0 dρ̂ dŝ

+ ε3

∫

∂Ω

∂nu
′
2φ0 dt+ · · · . (3.11)

Since φ is a translation eigenfunction, in the interior we may write

φi = T (ŝ)u′i(ρ̂). (3.12)

We also note that,
∫

Ω

1

R̂
u′′1φ0 dρ̂ dŝ = −

∫

Ω

1

R̂
φ′0u

′
1 dρ̂ dŝ . (3.13)

Using (3.13), (3.12), (3.11),(3.9) and (3.7) we can write (3.1) as

ε2λ0

∫

Ω

vφ0 dρ̂ dŝ = ε2

∫

Ω

(
vŝŝφ0 +

2

R̂
φ1vρ̂ +

1

R̂2
u′0φ0

)
dρ̂ dŝ−ε2

∫

∂Ω

(φ0∂nv + φ0∂nu
′
1) dt+· · ·

(3.14)
where, from (3.11), the boundary integral involving ∂nu

′
2 is of higher order. The

eigenfunction φ0 = T (ŝ)u′0 is the derivative of a monotonic front and is thus of one
sign and hence is the principal eigenfunction. The principal eigenfunction of L must
be even in the radial direction and the function v′ will be odd in the radial direction.
Thus the term

∫
Ω

2
R̂
φ1v
′ dρ̂ dŝ will be zero to leading order.

For the boundary integral involving ∂nv, we need to find ∂nv on ∂Ω. Away from
the points where the front and boundary intersect, ∂nv will be exponentially small, so
we will only consider the two components of the boundary Γ±. Since the front meets
Γ± orthogonally,

∂nv|Γ± = ± ∂v

∂r±

∣∣∣∣
Γ±

. (3.15)

We note from (2.1), (2.2), (2.3) and (2.4),

∂ŝ

∂r

∣∣∣∣
Γ±

∼ −1 and
∂ρ̂

∂r

∣∣∣∣
Γ±

∼ t

R
. (3.16)

Thus,

∂nv
∣∣
Γ±
∼
(
∓w′(ŝ)u′0(t)± w(ŝ)u′′0(t)

t

R

)∣∣∣∣
Γ±

. (3.17)

We let ` be the length of the interface and place ŝ = 0 such that ŝ = ±`/2 on Γ±.

Then, using (3.12), (3.2), ρ̂ ∼ t on Γ± and
∫
tu′′0u0 = − 1

2

∫
u′0

2
with (3.17) results in,

−
∫

∂Ω

∂nvφ0 dt ∼ −
(
w′(−`/2)T (−`/2)

∫ ∞

−∞
(u′0(t))2 dt− w(−`/2)T (−`/2)

2R−

∫ ∞

−∞
(u′0(t))2 dt

−w′(`/2)T (`/2)

∫ ∞

−∞
(u′0(t))2 dt− w(`/2)T (`/2)

2R+

∫ ∞

−∞
(u′0(t))2 dt

)
.

(3.18)
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For the boundary integral involving ∂nu
′
1, we have that, near ∂Ω,

u ∼ u0(ρ̂) + ε u1 = u0(t)− ε
(
ρ t

R
− ρ2

2R̂

)
u′0(t) + ε u1 + · · · . (3.19)

Also, on ∂Ω, we have ∂nu = 0, so that, on ∂Ω

∂nu1 ∼ −
∂

∂ρ

[
1

ε
u0(t)−

(
ρ t

R
− ρ2

2R̂

)
u′0(t)

]∣∣∣∣
ρ=0

=
t

R
u′0(t) . (3.20)

Then

∂nu
′
1 ∼

1

R
u′0(t) +

t

R
u′′0(t) (3.21)

and

−
∫

∂Ω

∂nu
′
1φ dt ∼

∫

Γ−

T (−`/2)

(
u′′0(t)u′(t)

t

R
+ u′0(t)2 1

R

)
dt

+

∫

Γ+

T (`/2)

(
u′′0(t)u′(t)

t

R
+ u′0(t)2 1

R

)
dt ,

=

(
T (`/2)

2R+
+
T (−`/2)

2R−

)∫ ∞

−∞
(u′0(t))2 dt . (3.22)

Substitute (3.17) and (3.22) into (3.14) to obtain

(
λ0 −

1

R̂2

)∫

Ω

vφ0 dρ̂ dŝ ∼
∫

Ω

vŝŝφ0 +

(
−w′(−`/2)T (−`/2) +

w(−`/2)T (−`/2)

2R−

+w′(`/2)T (`/2) +
w(`/2)T (`/2)

2R+
+
T (`/2)

2R+
+
T (−`/2)

2R−

)∫ ∞

−∞
(u′0(t))2 dt .

(3.23)

The eigenfunctions will depend on both ŝ and ρ̂. We thus substitute the ansatz
φ = T (ŝ)Φ(ρ̂) into the eigenvalue problem (1.4),

(
Φ′′ +

ε

R̂
Φ′ − ε2 ρ̂

R̂2
Φ′ + f ′(u)Φ + εg′(u)Φ

)
T + ε2T ′′Φ = ε2λ0TΦ . (3.24)

We divide both sides by TΦ,

(
Φ′′ + ε

R̂
Φ′ − ε2 ρ̂

R̂2
Φ′ + f ′(u)Φ + εg′(u)Φ

Φ

)
+ ε2T

′′

T
= ε2λ0 . (3.25)

Since T is independent of ρ̂, the term in the brackets must be independent of ρ̂ or
equal to a constant α:

Φ′′ +
ε

R̂
Φ′ − ε2 ρ̂

R̂2
Φ + f ′(u)Φ + εg′(u)Φ = αΦ . (3.26)

We expand Φ = Φ0 + εΦ1 + ε2Φ2 + · · · and α = α0 + εα1 + εα2 + · · · . The lowest
order terms satisfy

Φ′′0 + f ′(u0)Φ0 = α0Φ0 . (3.27)
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Thus Φ0 = u′0(ρ̂) and α0 = 0. The O(ε) terms satisfy

Φ′′1 + f ′(u0)Φ1 = α1Φ0 −
1

R̂
Φ′0 − f ′′(u0)u1Φ0 − g′(u0)Φ0 . (3.28)

Differentiating (2.9) results in the following solvability condition,
∫ ∞

−∞
f ′′(u0)u1(u′0)2 dρ̂ = −

∫ ∞

−∞
g′(u0)(u′0)2 dρ̂ . (3.29)

Applying (3.29) to the solvability condition for (3.28), yields α1 = 0. The O(ε2) terms
satisfy

Φ′′2+f ′(u0)Φ2 = α2Φ0−Φ′1
1

R̂
+

1

R̂2
ρ̂Φ′′0−f ′′(u0)u1Φ1−f ′′(u0)u2Φ0−

1

2
f ′′′(u0)u2

1Φ0−g′′(u0)u1Φ0−g′(u0)Φ1 .

(3.30)
We have the following solvability condition

α2

∫ ∞

−∞
Φ2

0 dρ̂ =
1

2

∫ ∞

−∞
f ′′′(u0)u2

1Φ2
0 dρ̂+

∫ ∞

−∞
g′′(u0)u1Φ2

0 dρ̂+

∫ ∞

−∞
g′(u0)Φ1Φ0 dρ̂+

∫ ∞

−∞
f ′′(u0)u2Φ2

0 dρ̂+

∫ ∞

−∞
f ′′(u0)u1Φ1Φ0 dρ̂−

∫ ∞

−∞

1

R̂2
ρ̂Φ′′0Φ0 dρ̂+

∫ ∞

−∞

1

R̂
Φ′1Φ0 dρ̂ . (3.31)

Differentiating (2.10) results in the solvability condition,

−
∫ ∞

−∞
f ′′(u0)u2(u′0)2 dρ̂−

∫ ∞

−∞

1

R̂
u′′1u

′
0 dρ̂+

1

R̂2

∫ ∞

−∞
ρ̂u′′0u

′
0 dρ̂+

1

R̂2

∫ ∞

−∞
(u′0)2 dρ̂

−
∫ ∞

−∞
f ′′(u0)u1u

′
1u
′
0 dρ̂−

1

2

∫ ∞

−∞
f ′′′(u0)u2

1(u′0)2 dρ̂−
∫ ∞

−∞
g′′(u0)u1(u′0)2 dρ̂−

∫ ∞

−∞
g′(u0)u′1u

′
0 dρ̂ = 0 .

(3.32)

Now we use
∫∞
−∞ ρ̂u

′′
0u
′
0 dρ̂ = − 1

2

∫∞
−∞(u′)2 dρ̂ and (3.32) in (3.31) to yield

α2 =
1

R̂2
. (3.33)

Now we can substitute (3.26) into (3.25) using α = ε2

R̂2
+ · · · to get

T ′′ =

(
λ0 −

1

R̂2

)
T . (3.34)

Note that
(
λ0 −

1

R̂2

)∫

Ω

vφ0 dρ̂ dŝ ∼
(
λ0 −

1

R̂2

)∫ `/2

−`/2
wTdŝ

∫ ∞

−∞
(u′0(t))2 dt (3.35)

∫

Ω

vŝŝφ0 ∼
∫ `/2

−`/2
w
′′
Tdŝ

∫ ∞

−∞
(u′0(t))2 dt . (3.36)

Substituting (3.34), (3.35) and (3.36) into (3.23), integrating by parts, we obtain

w(−`/2)

[
T
′
(−`/2) +

1
1
R−

T (−`/2)

]
+w(`/2)

[
−T ′(`/2) +

1
1
R+

T (`/2)

]
= 0.
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Since w is an arbitrary test function, we see that T satisfies the following boundary
conditions

T
′
(−`/2) +

1

R−
T (−`/2) = 0, −T ′(`/2) +

1

R+
T (`/2) = 0. (3.37)

(3.34) and (3.37) proves that T satisfies the geometric eigenvalue problem (1.5b).
Hence λ0 = 1

R̂2
− α where α satisfies





T ′′ + αT = 0
T ′(−`/2) + κ−T (−`/2) = 0
T ′(`/2)− κ+T (`/2) = 0,

(3.38)

where, κ± ≡ 1
R±

and κ± > 0 corresponds to a convex domain as in Figure 2.1.

If α ≤ 0, then λ0 ≥ 1
R̂2

. If α = µ2 > 0, (where µ > 0), then it is easy to see that
µ must satisfy the following transcendental relation:

tan(µ`) =
µ(κ+ + κ−)

κ+κ− − µ2
, (3.39)

and the eigenvalues of (1.4) are given by,

ε2λ =
1

R̂
− µ2 , (3.40)

which is precisely (1.6). Formula (1.7) is seen to be identical to (1.6) by applying the
identity

tan (x+ y) =
tanx+ tan y

1− tanx tan y
(3.41)

This completes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3.. In this section we show that geometric condition
of Theorem 1.3 is a direct consequence of Theorem 1.2.

Fix a point q+ on the top boundary and consider a circular arc going through q+

and intersecting both top and bottom boundaries orthogonally (refer to Figure 4.1).
Let p be the center of this arc and let R denote its radius. First, we shall show that
dR
dq+

= 0 if and only if the formula (1.5) holds with λ0 = 0. By zooming into the point

where dR
dq+

= 0, we can assume that locally, p moves along a straight line as q+ moves

along the boundary, and that the boundaries are segments of circles of radii R±, as
shown on Figure 4.1. In general, R± may be positive or negative; for convenience, as
shown on the figure, we chose R± = − 1

κ±
with κ± < 0 so that R± are positive. Now

from geometry, we find the relationship

R =
R+(1− cos θ+) + h+

sin θ+
.

where h+, θ+ are as shown on Figure 4.1. We obtain

∂R

∂θ+
=
R+ − (R+ h+) cos θ+

sin2 θ+

12
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Fig. 4.1. Setup for proof of Theorem 1.3

so that upon eliminating h+ we obtain

∂R

∂θ+
= 0 ⇐⇒ R

R+
= tan θ+ (4.1)

and similarly with + replaced by −. Since θ± are functions of q+, we find that at the
point where dR

dq+
= 0, we have

arctan
R

R±
= θ±.

Now from geometry, θ+ = `+/R, θ− = `−/R and ` = `+ +`−. Therefore upon adding
the two equations in (4.1) we obtain

arctan
R

R+
+ arctan

R

R−
= θ+ + θ− =

`

R
.

But this is precisely (1.7) with λ0 = 0 after substituting R± = − 1
κ±
.

Next, we note that in the case of a cone (κ+ = κ− = 0), equation (1.7) yields
λ0 = 1

R2 > 0 so that the interface is unstable for a cone domain, for which R′ > 0.
Since λ0 can only be real, it follows by continuity that λ0 crosses zero if and only if
R′ = 0, and λ0 is negative if and only if R′ < 0. This concludes the proof. �

5. Numerical example. We now provide a numerical example of Theorem 1.2.

13



Fig. 5.1. Numerical computation of interface and eigenvalue. Left: the steady-state solution
u(x) of (5.1). Dark denotes u ∼ 1 and light denotes u ∼ −1. Middle: The shape of the corresponding
eigenfunction φ. Right: surface plot of φ. Note the sinusoidal shape along the direction of the
interface boundary. Note also a corner layer that is evident near the boundary of the domain. See
§5 for parameter values.

All computations were done using using the software FlexPDE [18].
Consider a domain as shown in Figure 5.1. Its left and right boundaries consist of

arcs of circles of radii R− = 0.8, R+ = 1.5, so that κ− = −1.25, κ+ = −0.667. The
distance between these two boundaries was chosen to be 0.5. The shape of the top
and bottom boundaries does not affect the computation as long as they are located
O(1) distance from the interface. We chose the nonlinearity to be

ut = ε2∆u− 2(u− εa)(u− 1)(u+ 1) (5.1)

with a = 0.55, ε = 0.06. From Proposition 1.1 we obtain the theoretical value of the
interface radius to be R̂ = 1

2a = 0.9091. To estimate the numerical value of R̂, we
have used FlexPDE to compute the steady state solution to (5.1), using u = tanh(y/ε)
as initial conditions. The resulting steady state is shown on Figure 5.1.a. Next, we
computed the coordinates of the intersection of the middle of the interface (u = 0)
with the boundary, and then used geometry to obtain R̂numerical = 0.9066 This is in
excellent agreement with the theoretical prediction. Geometry then yields an estimate
of l = 0.6486.

Next, we have solved the eigenvalue problem (1.4) numerically. Using global error
tolerance of 0.5×10−4, we obtained a numerical estimate of λnumerical = 0.00504. This
required about 10000 gridpoints (FlexPDE uses adaptive gridding, and chooses the
mesh size based on the global tolerance setting. We have also verified that this result is
correct to two significant digits by changing the tolerance). On the other hand solving
(1.6) gives the theoretical estimate of λ = 0.00506. Excellent agreement (within 0.5%)
is observed.

6. Discussion. In this paper we have characterized the stability of curved in-

terfaces in algebraic and geometric terms. Algebraically, this condition is given by
Theorem 1.2. It is a generalization of the geometric eigenvalue problem derived in
[10], [11]. Geometrically, Theorem 1.3 states that if R(s) denotes the radius of an
arc that intersects the boundary orthogonally at q±(s), then the interface is stable
if R′(s) < 0 whenever R = R̂, whereas the interface is unstable if R′(s) > 0 at that

14



Fig. 6.1. A tractrix: the threshold case where all circles intersecting the boundary have identical
radius. Theorem 1.3 does not apply to such a domain.

point (see Figure 1.2). In particular, this shows explicitly the well-known result that
an interface at equilibrium cannot be stable in a convex domain; on the other hand we
have shown numerical and theoretical examples where such interface is stable when
the domain is non-convex.

In general, the relationship between the radius R of a circle that intersects the
boundary orthogonally and the domain boundary q = (x, y) is given by

x = p1 +R cos θ, y = p2 +R sin θ

where p = (p1, p2) is the center of the arc of radius R; p1, p2, R are arbitrary functions
of s; and θ satisfies a differential equation

R
dθ

ds
= p′1 sin θ − p′2 cos θ.

An interesting threshold case corresponds to R = R̂ for all s. If the bottom boundary
is the x-axis and R = R̂ for all s, then then the top boundary forms a tractrix (see
Figure 6.1.) This is a well-known curve that is also generated when a ball is dragged
on a fixed string by a tractor moving along the x-axis. Implicitly, this curve is given
by

x = R̂(−t+ tanh(t)), y = R̂ sech(t).

It is an open problem to describe either the stability or the location of the interface
for such a domain.

An interesting conjecture arises in study the propagation of fronts around a con-
cave corner. Such domains were used in [16], where the propagation of chemical fronts
was considered. An interface passing through the corner may get “stuck” at the corner
or go through it, depending on the geometry. If we “smooth out” the corner and take
ε sufficiently small, then we can apply Theorem 1.3. The result is that the interface
will get stuck at the corner if there exists a circle that intersects orthogonally with one
boundary, and that passes through the corner point, and whose radius is at most R̂.
This is essentially the geometrical condition described in §III.B in [16] and it agrees
well with numerical results presented there. However the construction of an interface
at a corner point is an open theoretical problem.
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