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Editorial

Emergent behaviour in multi-particle systems with non-local interactions

1. Introduction

This special issue grew out of a BIRS workshop of the same
title that was held in February 2012. It contains new research
contributions from a broad spectrum of researchers on topics
related to emergent behaviour. The goal is to present the current
research in a single volume to showcase the diversity and vitality
of this area and to serve as a useful resource for future reference.
Collective group behaviour is a fascinating natural phenomenon

that is observed at all levels of the animal kingdom, from beau-
tiful bacterial colonies, insect swarms, fish schools and flocks of
birds, to complex human population patterns. The emergence of
very complex behaviour is often a consequence of individuals fol-
lowing very simple rules, without any external coordination. In re-
cent years, many models of group behaviour have been proposed
that involve nonlocal interactions between the species [1–4]. Re-
lated models also arise in many physical systems such as granular
media [5–8], self-assembly of nanoparticles [9,10], vortex dynam-
ics in Bose-Einstein Condensates [11–14] and other media [15,16],
n-body problems [17], synchronization in biological systems
[18–20] and molecular dynamics simulations of matter [21].
Due to their nonlocal nature, these systems can exhibit complex

and novel phenomena that pose challenging questions and
motivate the development of new mathematical techniques. They
typically lead to coherent and synchronized structures apparently
produced without the active role of a leader. The instantaneous
emergence has been called self-organization [22,23], and has
been observed across a wide range of species, even for some
microorganisms such as myxobacteria [24].
Most mathematical models of self-organization are based on

discrete systems [1–3,25,19] incorporating certain effects that we
might call the ‘‘first principles’’ of swarming. Animals are typically
modeled as simple particles following certain microscopic rules
determined by their position and velocity inside the group and by
the local density of animals. These first principles are based on
modelling the ‘‘sociological behavior’’ of animals with very sim-
ple rules such as the social tendency to produce grouping (attrac-
tion/aggregation), the inherent minimal space they need to move
without problems and feel comfortably inside the group (repul-
sion/collisional avoidance) and themimetic adaptation or synchro-
nization to a group (orientation/alignment).Models based on these
principles are classical in fishmodelling [26,27]. Even if thesemin-
imalmodels contain very basic rules, the patterns observed in their
simulation and their complex asymptotic behavior is already very
challenging from the mathematical viewpoint.
The source of tendency to aggregate can also be related to fac-

tors other than sociological, such as survival fitness of grouping
against predators, collaborative effort in food finding, etc. More-
over, one can incorporate a variety of interaction mechanisms

between animals such as those produced by certain chemicals,
pheromone trails for ants, the interest of the group to stay close
to their roost, physics of swimming/flying, etc. Although the mini-
malmodels based on ‘‘first principles’’ are quite rich in complexity,
it is interesting to incorporate more effects to render them more
realistic as for instance described in [23,28–30].
Several micro and macroscopic models developed in recent

years have attracted attention of many mathematicians, in
particular kinetic aggregation models [31–34], second order
models for self-propelled particles with attraction and repulsion
effects [35–37], and Cucker–Smale model of aligment [38]. For
instance, the authors in [36] use the ideas of H-stability from
statistical mechanics to classify various pattern morphologies
that appear for different parameter values, including translational
flocks, rotating single and double mills, rings and clumps. On
the other hand, in the simpler alignment models [38], we get
generically a flocking behavior. Much more elaborate models
starting from these basic building blocks are capable of simulating
collective behaviors in systems with a large number of agents
N . Control of large agent systems is important not only for the
somehow bucolic example of understanding animal behavior, but
also for pure control engineering for robots and devices with the
aimof unmanned vehicle operation and their coordination, see [39,
40] and the references therein.
When the number of agents is large, the use of continuummod-

els for the evolution of a density of individuals becomes essen-
tial. Some continuum models were derived phenomenologically
[31,41,42] including attraction–repulsion mechanisms through a
mean force and spatial diffusion to deal with the anti-crowding
tendency. Other continuum models are based on hydrodynamic
descriptions [43,44,14] derived by means of studying the fluctu-
ations or the mean-field particle limits. Hyperbolic systems have
also been proposed [45–47]. The essence of the kinetic modelling
is that it does connect themicroscopicworld, expressed in terms of
particle models, to the macroscopic one, written in terms of con-
tinuum mechanical systems. A very recent trend of research has
been launched in this direction in the last few years, see for in-
stance [48,49,44,50–54] for different kinetic models in swarming.
Introducing noise in these models can lead to phase transitions, a
line of research which is wide open [1,55–57].
Finally, variational approaches have been very fruitful to attack

steady states and their stability for first order models of swarming.
A very classicalmodel in this field is the Patlak–Keller–Segelmodel
for chemotactic cell movement [58]. Many exciting developments
have happened in this direction in the last years [59–62] and
these variational tools have had nice implications in the theory of
first order models [63,64]. Fluid mechanics techniques have also
been adapted to the aggregation equation to deeply analyse its
qualitative properties [65–67].
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The common feature of these models is that they all lead to
some non-locality in the equations, either in the form of a large
system of ODE’s with global coupling, or as a PDE with non-
local kernels (integral terms). The analysis, asymptotic behavior,
numerical simulation, pattern formation and their stability in
many of these models still remain unexplored research territory.
The development of these models has in part been motivated by
increaseduse of computerswhich allows for easy experimentation.
Inmany of thesemodels, novel and exciting phenomena have been
observed numerically. However, the fundamental understanding
of observed patterns and their dynamics has been lagging. The
time is ripe for development of better analytical tools whichwould
allow to gain a better insight of these models.

2. Overview of papers in the special issues

Several major themes are represented in this special issue
which we now summarize.

2.1. First-order particle models

One of the simplest models of interacting particles that yields
very complex dynamics is

d
dt
xi =

1
N

N∑
j6=i

F(|xi − xj|)
xi − xj
|xi − xj|

. (1)

where F(r)models the interaction force between the particles [68].
In the hydrodynamic limit N →∞, the model yields an intergro-
differential equation

ρt +∇x · (ρv) = 0; v(x) =
∫

Rd
F (|x− y|)

x− y
|x− y|

ρ(y)dy. (2)

We refer to (1) or (2) as the aggregation model. This basic model
is of fundamental importance as it is among the simplest non-
local models that exhibits many of the phenomena that are found
in more complex models. In part because of this, the aggregation
model has been a very active area of research over the past decade;
there are by literally hundreds of papers on this model and its vari-
ations; see for example [69,34,31,41,70] and references therein.
Despite this intensive research, there are many new aspects that
have recently come to light and which are addressed in this issue.
Balague, Carrillo, Laurent and Raoul [71] investigate the radially

symmetric solutions of the aggregation model in dimension 2
and higher with repulsive–attractive radial potentials. Under some
conditions on the potential, they show that radially symmetric
solutions converge toward a spherical shell stationary state. Such
steady states have been recently studied in [32,72]. They also
generalize this analysis to singular stationary states supported
on hypersurfaces which are not necessarily spheres. They show
that dimensionality of the solution is related to the growth of the
potential at the origin.
Hughes and Fellner [73] introduce several motilitymechanisms

to the aggregation model, including linear and nonlinear diffusion.
A variety of exact analytical results are discussed, including
equilibria, time-dependent solutions, and transitions between
asymptotic collapse and asymptotic escape.
Fetecau and Huang [74] consider the potential which consists

of short-range Newtonian repulsion and long-range power-law at-
traction. They use the method of moving planes to show that the
unique equilibria that are supported on a compact set are radi-
ally symmetric and are monotone in the radial coordinate. The
authors also study the asymptotics for several limiting cases of
the exponent of the power-law attraction. Unlike related works
[62,75] where exact solutions were computed for specific parame-
ter choices, the results in this paper rely on formal asymptotics and
analytical techniques.

Kolokolnikov, Huang and Pavlovski [76] study singular and
near-singular patterns for certain classes of potentials. Recent
studies [32,72] have demonstrated that the aggregation equation
exhibits a very rich solution structure, such as steady states
consisting of rings, spots, annuli, N-fold symmetries, soccer-ball
patterns etc. In this work the authors show that many of these
patterns can be understood as singular perturbations off lower-
dimensional equilibrium states. For example, an annulus is a
bifurcation from a ring; soccer-ball patterns bifurcate off solutions
that consist of delta-point concentrations. Using asymptotic
methods, the authors describe the form and stability of many of
these patterns, including ellipses and annular-like solutions.
Yao and Bertozzi [77] study radially symmetric finite-time

blow-up dynamics for the aggregation equation with degenerate
diffusion in arbitrary dimension, and for power-law attractive
kernels. Depending on model parameters and the initial data, they
show that the solution exhibits three kinds of blow-up behavior:
self-similar with no mass concentrated at the core, imploding
shock solution, and near-self-similar blow-up with a fixed amount
of mass concentrated at the core.

2.2. Second order models

Models of self-propelled particles typically take acceleration as
well as self-propulsion of particles into account. An example of
such a model is [36],

d
dt
vi =

(
α − β|vi|

2) vi +∑
j6=i

F(|xi − xj|)
xi − xj
|xi − xj|

;
d
dt
xi = vi

(3)

where F(r) represents the interaction force between the particles
and the term

(
α − β |vi|

2) vi is the self-propulsion force. These
models typically lead to complex dynamics including swarms,
mills and double mills [36,43,44,37]. A related system is the
Cucker–Smale equationsmodelling the flocking of birds [38]; in its
simplest form it reads

d
dt
vi =

λ

N

N∑
j=1

1(
1+

∣∣xi − xj∣∣)β
(
vj − vi

)
;
d
dt
xi = vi. (4)

The contributions which we summarize below study different
aspects of these models.
Carlen, Chatelin, Degond and Wennberg [78] study the propa-

gation of chaos in biological swarm models. They consider models
where pairs of particles interact to adjust their velocities one to
each other. In the first process, called ‘BDG’, they synchronize their
average velocity up to some noise. In the second process, called
‘CL’, one of the two particles tries to adjust its velocity to that of
the other. This paper establishes the master equations and BBGKY
hierarchies of these two processes. It investigates the infinite par-
ticle limit of the hierarchies at large time scales. It shows that the
resulting kinetic hierarchy for the CL process does not satisfy prop-
agation of chaos. Numerical simulations indicate that the BDG pro-
cess has similar behavior to the CL process.
Carrillo, Martin and Panferov [79] consider a particle system

(3). They introduce a class of interaction potentials for which
macroscopic equations allow for explicit solutions in terms of
special functions, and which admit flock and rotating mill states.
These special interaction potentials are the two-dimensional
analogues of the one-dimensional Morse potential, which also
admits a solution [34]. The analytical solution is compared with
full dynamical simulations of the underlying particle system and
close agreement is obtained.
Vecil, Lafitte and Linares [80] perform a numerical study of the

self-propelled system (3) in a 3D setting. They identify parameters
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that govern the possible asymptotic states for this system (clumps,
spheres, dispersion, mills, rigid-body rotation, flocks). They then
describe the kinetic system derived from the particle model in
the limit as N tends to infinity. They propose a numerical scheme
based on the kinetic system in 1D and perform a numerical
analysis devoted to trying to recover asymptotic patterns similar to
those emerging for the equivalent particle systems, with particles
originally evolving on a circle.

2.3. Stochasticity and modeling

Most systems in nature have a random component. The
presence of noise is often one of the driving forces that can
completely alter the behaviour of the system. Several papers in this
issue discuss how to model noise and its effect on the system.
Burger, Haškovec and Wolfram [81] examine models of

biological aggregation based on randomly moving particles with
individual stochasticity depending on the perceived average
population density in their neighborhood. They consider both
first and second-order models. Instead of having an attractive
potential, the aggregation is obtained exclusively by reducing the
individual stochasticity in response to higher perceived density.
In the mean-field limit, these models yield nonlocal degenerate
diffusion. Linear stability analysis of the continuum limit is used
to identify conditions for pattern formation; well-posedness is
studied. They also present results of numerical simulations for both
the first- and second-order model on the individual-based and
continuum levels of description.
Gazi [82] describes a model of swarm dynamics based on

Lagrangian dynamics, associated with an energy formulation. The
concept of biological potential energy is introduced. This flexible
approach allows to easily incorporate various extensions; some
examples studied include predator and environmental effects.
Galante and Levy [83] study a model of cyanobacteria. In

previousworks [84,85], the authors developed a stochastic particle
system describing local interactions between cyanobacteria. They
focused on the common freshwater cyanobacteria Synechocystis,
which are coccoidal bacteria that utilize group dynamics to move
toward a light source, a motion referred to as phototaxis. To gain
further understanding of the group dynamics, in this paper the
authors replace the stochastic model with a system of ordinary
differential equations describing the evolution of particles in
one dimension. Unlike many other models, the emphasis here
is on particles that selectively choose one of their neighbors
as the preferred direction of motion. Numerical simulations are
conducted to study the stability, size, andmerging of aggregations.
Rodríguez [86] studies a class of ‘reaction–advection–diffusion’

systems of partial differential equations, which can be taken as
basic models for criminal activity. This class of systems are based
on routine activity theory and other theories, such as the ‘repeat
and near-repeat victimization effect’ and were first introduced in
[87]. In these models the criminal density is advected by a velocity
field that depends on a scalar field, which measures the appeal to
commit a crime. The author gives several results on local and global
well-posedness of solutions.

3. Discussion

This special issue gathers articles by foremost experts on the
subject, and covers many recent results on modelling multi-
particle systems. Mathematically, the two main approaches to
study multi-particle systems consists in applying the theory of
dynamical systems or by taking the continuum limit, which
typically results in a PDE system that involves integral terms.
Due to their nonlocal nature, these systems often lead to
novel phenomena that have motivated the development of new
mathematical tools and pose new problems that are further
explored in this issue. The diversity of the topics involved and the

backgrounds of the researchers attest to the vitality of this exciting
area of research, which is currently undergoing an explosive
development.
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