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Brief history

• 1952: Turing instability

• 1968: Prigogine, Lefever, propose the Brus-

selator

• 1970’s: Nicolis, Prigogine, Erneux, Turing

patterns in the Brusselator

• 1980-2000’s: Spots, stripes, hexagonal pat-

terns, oscillatory instabilties, spatio-temporal

chaos: Erneux, Reiss, De Wit, Brockmans,

Dewel, Kidachi, Pena, Perez-Garcia
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Some examples of patterns in 2-D:

Reference: B. Peña and C. Pérez-Garćıa, Sta-

bility of Turing patterns in the Brusselator model,

Phys. Rev. E. Vol. 64(5), 2001.
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The Brusselator model

Rate equations:

A
ε→ X, B+X → Y +D, 2X+Y → 3X, X

ε→ E.

After rescaling, we get a PDE system:

vt = εDvxx + Bu − u2v,

τut = εDuxx + εA + u2v − (B + ε)u

on the interval [0,1] with Neumann boundary

conditions.

We assume:

εD � 1; D � 1.
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Coarsening process

A = 1, B = 8, ε = 10−4, D = 10, τ = 10.
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Steady state

0 = εDvxx + Bu − u2v,

0 = εDuxx + εA + u2v − (B + ε)u

Let w = v + u; then

0 = δ2vxx + B (w − v) − (w − v)2 v,

0 = Dwxx − w + v + A

where δ2 = εD � 0 and D � 1. Therefore

w ∼ w0

is constant to first order; and δ2vxx = Cubic(v).

The Maxwell line condition then implies:

B =
2

9
w2

0.
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Away from interfaces, v ∼ w0 or v ∼ w0/3.

Near the interface x0,

v ∼ w0
2

3
± w0

1

3
tanh

(

w0

3

(x − x0)√
2εD

)

Suppose v ∼ w0/3 on [0, l] and v ∼ w0 on [l,1].

Using solvability condition we obtain,

w0 − A =

∫ 1

0
v = lw0/3 + (1 − l)w0

and so

l =
A√
2B

.
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An example of a three-mesa equilibrium state

for v. Here, K = 3, A = 2, B = 18, εD =

0.022.
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Stability of K mesas

Theorem 1 Consider a K mesa equilibrium state.

Suppose that

1 � DK2 � O

(

1

εln2 ε

)

and O (τ − 1) � 0.

Such solution is stable when τ − 1 � 0 and

unstable when τ − 1 � 0. There are 2K small

eigenvalues of order O (ε) ; all other eigenvalues

are negative and have order ≤ O (Dε) . The

smallest 2K eigenvalues are given by

λj± ∼
−1 ±

√

1 − 2K2dl
[

1 − cos
(

πj
K

)]

2 (τ − 1)
ε,

j = 1 . . . K − 1;

λ− ∼
−Kl

τ − 1
ε, λ+ =

−1

τ − 1
ε.

and are all negative when τ > 1, and positive

when τ < 1. The transition from stability to

instability occurs via a Hopf bifurcation as τ

is decreased past τh where to leading order,

τh ∼ 1.
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Theorem 2 Suppose that

τ > 1

and let

DK =
1

K2
D1 where

D1 ∼



































A2

2ε ln2

(

12
√

2AB3/2

ε(
√

2B−A)
2

), 2A2 < B

(√
2B−A

)2

2ε ln2
(

12
√

2
εA B3/2

), 2A2 > B

+ l.s.t.

Here, l.s.t. denotes logarithmically small terms.

Then a K mesa symmetric equilibria with K ≥
2 is stable if D < DK and is unstable otherwise.

Moreover, a single-mesa equilibria K = 1 is al-

ways stable.
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Example of Theorem 2

Take ε = 0.001, A = 2, B = 18, τ = 3; then

D1 = 21.16, D2 = 5.3, D3 = 2.35.
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(a) K = 3, D = 5 + 0.1floor(t/2500). Change

of stability when D ∼ 5.5.

(b) K = 2, D = 1.9+0.1floor(t/2500). Change

of stability when D ∼ 2.45.
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The condition

DK2 = O

(

1

ε ln2 ε

)

can be rewritten as

D = O

(

δ2 exp

{

1

Kδ

})

where δ =
√

εD is the characteristic width of

the interface. Thus the instability threhold oc-

curs when D is exponentially large compared to
1

Kδ. In this case the exponentially small inter-

actions in the tail of v become of the same

order as other terms in the calculation and is

the cause of the instability.
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Asymmetric patterns

Consider a single symmetric mesa solution on

domain [0, L]. Second order computation yields,

w (L) ∼ 3
√

B/2 +
1

D

A

16B
L2
(√

2B − A
)2

+ 3
√

2B

(

exp

{

−
LA√
2εD

}

+ exp

{

−
L√
2εD

(√
2B − A

)

})

The minimum of the curve L → w(L) occurs

when D/L2 = O
(

1
ε ln2 ε

)

. At that point an

asymmetric solution bifurcates from the sym-

metric branch. This point coincides with the

instability threshold after taking L = 1/K.
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Example: A = 2, B = 18, ε = 0.001 and

D = 10.
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Asymmetric solution is obtained by gluing to-

gether two solutions on different intervals but

with the same height. Here a two-mesa asym-

metric solution is constructed on interval of

length ∼ 0.6 + 0.8.
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Comparison with Turing
instability

The instability of Theorem 2 occurs when

K = K∗ = O





1

δ ln 1
ε





where δ =
√

Dε is the charactersitic interface

width.

When B > A2, the modes in the Turing insta-

bility band all have the order

k = O

(

1

δ

)

.

It is then clear that k � K by a logarithmi-

cally large amount. Therefore coarsening is

expected if initial condition is a homogeneous

steady state.

When B < A2, the homogeneous steady state

is stable with respect to Turing. But stable

mesa solutions also occur!
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Breather-type instability

Lemma 1 Suppose that

1 � DK2 � O

(

1

ε
ln2 ε

)

.

The eigenvalues of such equilibrium state are

given implicitly by

λ ∼ 2

√

B
ε

D

(

ldK −
2

σ

(τ − 1)λ + ε

ε

)

where σ is one of

σj± = c ±
√

a2 + b2 + 2ab cos

(

πj

K

)

, j = 1 . . . K − 1

σ± = c + a ± b

where

a =
−µd

sinh (µdd)
, b =

−µl

sinh (µll)
,

c = µd coth (µdd) + µl coth (µll) ,

µl ≡

√

2ε + λ (2τ − 1)

δ
, µd ≡

√
λ

δ
.
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Theorem 3 Suppose that
√

B

εD
� DK2 � O

(

1

ε ln2 ε

)

.

Let

τh+
= 1 +

1

4D

(

ld −
K

3

(

d3 + l3
)

)

Then a K-mesa solution undergoes a Hopf bi-

furcation when τ = τh+
. It is stable when τ >

τh+
and unstable otherwise. When τ = τh+

,

the corresponding eigenvalue has value

λ+ ∼ i
√

8K
(

ε3DB
)1/4
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Example

A = 1 B = 8 D = 10 ε = 0.00025 τ = 0.999.

From Theorem 3, λ+ ∼ 0.0168 so that one

period is P = 2π
λ+

∼ 373.5. This agrees with an

estimate P = 400 from the figure.
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Open question 1

Study the limit of small mesa width l → 0.

• A single mesa admits two small eigenval-

ues, λ±. λ+ corresponds to even perturba-

tions, causing the breather instability. λ−
corresponds to an odd perturbation which

can lead to oscillatory travelling mesa. How-

ever numerically only λ+ is observed.

• For Gray-Scott model, oscillatory travelling

instability was also observed in the spike

regime.

• Does Brusselator also admit oscillatory trav-

elling instability in the limit where the width

of the mesa l → 0?
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Open question 2

Does there exist a regime where both the ho-

mogeneous steady state is unstable with re-

spect to Turing and mesa structure is unsta-

ble with respect to breather instability? (if yes,

then we expect spatio-temporal chaos).

If O(
√

B
εD) � D � O

(

1
εln2 ε

)

then the answer is

no.
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Open question 3

Describe the slow dynamics of the mesas. There
are two types:

• slow mass exchange (t ∼ 0 − 2000)

• slow motion (t > 2200)
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Comparison to other bistable
systems

• Brusselator: Has an asymptotic “mass con-

servation” law. Coarsening process termi-

nates when K = K∗ � 1. Algebraically

slow dynamics?

• Cahn-Hilliard: Has a variational structure,

exact mass conservation. Coarsening pro-

ceeds until only one interface is left. Ex-

ponentially slow dynamics.

• FitzHugh-Nagumo: No coarsening, no mass

conservation [Goldstein, Muraki, Petrich,

96]
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Final comment

Localized structures far from the Turing regime

are commonplace in reaction-diffusion systems

such as the Brusselator, and provide an alter-

native pattern-formation mechanism to Turing

instability.

Turing analysis cannot explain the diverse phe-

nomena that can occur in this regime, such as

coarsening and the “breather”-type instabili-

ties. However singular perturbation tools can

be successfully applied to asnwer many of these

questions.
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