Mesa-type structures and
their stability Iin the
Brusselator

T heodore Kolokolnikov
Joint work with

Thomas Erneux

Juncheng Wei



Brief history

1952: Turing instability

1968: Prigogine, Lefever, propose the Brus-
selator

1970’'s: Nicolis, Prigogine, Erneux, Turing
patterns in the Brusselator

1980-2000's: Spots, stripes, hexagonal pat-
terns, oscillatory instabilties, spatio-temporal
chaos: Erneux, Reiss, De Wit, Brockmans,
Dewel, Kidachi, Pena, Perez-Garcia
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Some examples of patterns in 2-D:
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T he Brusselator model

Rate equations:

AS X, B+X ->Y+D, 2X4Y —-3X, XS E.

After rescaling, we get a PDE system:

v = eDvgr + Bu — uzfv,
Tut = eDugy + A + uly — (B4+¢)u

on the interval [0,1] with Neumann boundary
conditions.

We assume:

eDLKL1, D>1.
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Steady state

O =¢eDvyy + Bu — uzv,
0 =€Dum—|-€A—|-u2v— (B4+¢)u

Let w = v+ u; then
0 = 6%vzs + B(w—v) — (w—v)?v,
O=Dwzrz—w—+v+ A

where 62 =D < 0 and D > 1. Therefore

w ~ wWo
is constant to first order; and §%v;; = Cubic(v).
The Maxwell line condition then implies:

2 5
B = —w&§.
90



Away from interfaces, v ~ wg or v ~ wq/3.
Near the interface zg,

2 1 (wo (z — :I:o)>

~ — &+ —tanh
v oy = Wog 3 V2D

Suppose v ~ wg/3 on [0,l] and v ~ wg on [, 1].
Using solvability condition we obtain,

1
wo—A:/O v =lwg/3 4+ (1 —1wg

and so
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An example of a three-mesa equilibrium state
for v. Here, K =3, A =2, B =18, ¢D =
0.022.



Stability of K mesas

Theorem 1 Consider a K mesa equilibrium state.
Suppose that

1
1<<DK2<<O< — ) and O(r—1)> 0.
) )

Such solution is stable when  — 1 > 0 and
unstable when T —1 < 0. There are 2K small
eigenvalues of order O (¢) ; all other eigenvalues
are negative and have order < O (De). The
smallest 2K eigenvalues are given by

14 \/1 — 2K2dl |1 — cos (3]

K
2(t—1)
17=1...K — 1,

— Kl —1

T — 167 >\+ -1
and are all negative when > 1, and positive
when < 1. The transition from stability to
instability occurs via a Hopf bifurcation as t
Is decreased past T, where to leading order,
Th ™~ 1.

AjE ~ €,

A~

E.



Theorem 2 Suppose that

T>1

and let

1
Dy = ﬁDl where

A2 . 242 B

5 In2 12/2AB3/2
6(\/@—14)2

(V2B—A)°
2:In2(12423/2)

Dy ~ < + [.s.1.

242 > B

\

Here, |.s.t. denotes logarithmically small terms.
Then a K mesa symmetric equilibria with K >
2 isstable if D < Dy and is unstable otherwise.
Moreover, a single-mesa equilibria K = 1 is al-
ways stable.
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Example of Theorem 2

Take e = 0.001, A=2, B=18,7 = 3; then

D1 =121.16,D, =5.3, D3=2.35.
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(2) (b)

(a) K =3, D=5+ 0.1floor(¢t/2500). Change
of stability when D ~ 5.5.

(b) K =2, D =1.940.1floor(t/2500). Change
of stability when D ~ 2.45.
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T he condition

DK2=O< 12 )
eln<e

can be rewritten as

p=o(en ()

where § = VeD is the characteristic width of
the interface. Thus the instability threhold oc-
curs when D is exponentially large compared to
K%S. In this case the exponentially small inter-
actions in the tail of v become of the same
order as other terms in the calculation and is

the cause of the instability.
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Asymmetric patterns

Consider a single symmetric mesa solution on
domain [0, L]. Second order computation yields,

w(L) ~ 3 /B34 L2 2 (@—A)

D16B 2
+ 3V2B (exp{— LQ?D} +exp{—\/% (@— A)})

The minimum of the curve L — w(L) occurs
when D/L? = O( L ) At that point an

cln?e
asymmetric solution bifurcates from the sym-
metric branch. This point coincides with the

instability threshold after taking L = 1/K.
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Example: A = 2, B = 18, ¢ = 0.001 and
D = 10.

Asymmetric solution is obtained by gluing to-
gether two solutions on different intervals but
with the same height. Here a two-mesa asym-

metric solution is constructed on interval of
length ~ 0.6 4+ 0.8.
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Comparison with Turing
instability

The instability of Theorem 2 occurs when

K=K'=0O 11
(SlnE

where 6 = +/De is the charactersitic interface
width.

When B > A2, the modes in the Turing insta-
bility band all have the order

=o(3)

It is then clear that £ > K by a logarithmi-
cally large amount. Therefore coarsening is
expected if initial condition is a homogeneous
steady state.

When B < AQ, the homogeneous steady state
IS stable with respect to Turing. But stable
mesa solutions also occur!
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Breather-type instability

Lemma 1 Suppose that

1
1< DK2< O <—In25) .
g

The eigenvalues of such equilibrium state are
given implicitly by

/\Nz,/B% <1dK—3(T_1)/\+€>
o g

where o is one of

mJ

inzc:lz\/az—l-bQ—l-QabCOS(E), j=1...K—1
cr=c+axLhb

where

- —Hd b — —H
sinh (pugd)’ sinh (ul)’

¢ = pg coth (ugd) 4 ppcoth (pl)

VA
—

V2e+ (21 — 1)
| = )

H 5

Hd
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Theorem 3 Suppose that
B 5 1
\|— < DK <<o( )
eD e 1n?

Th+=1+%<ld—§(d3—|—l3))

Then a K-mesa solution undergoes a Hopf bi-
furcation when T = Thy - It is stable when T >
Thy and unstable otherwise. When 1t = They s
the corresponding eigenvalue has value

)1/4

Let

Ay ~iVBK (DB
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Example
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From Theorem 3, Ay ~ 0.0168 so that one
period is P = .~ 373.5. This agrees with an
estimate P = 400 from the figure.
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Open question 1

Study the limit of small mesa width [ — O.

e A single mesa admits two small eigenval-

ues, A+. Ay corresponds to even perturba-
tions, causing the breather instability. A_
corresponds to an odd perturbation which
can lead to oscillatory travelling mesa. How-
ever numerically only A is observed.

For Gray-Scott model, oscillatory travelling
instability was also observed in the spike
regime.

Does Brusselator also admit oscillatory trav-
elling instability in the limit where the width
of the mesa [ — 07
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Open question 2

Does there exist a regime where both the ho-
mogeneous steady state is unstable with re-
spect to Turing and mesa structure is unsta-
ble with respect to breather instability? (if yes,
then we expect spatio-temporal chaos).

If O(\/e%) <K DKO (sln12e) then the answer is
no.
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Open question 3

Describe the slow dynamics of the mesas. There
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e slow mass exchange (¢ ~ 0 — 2000)

0 0.1 0.2 0.3 0.4 0.

e slow motion (¢ > 2200)
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Comparison to other bistable
systems

e Brusselator: Has an asymptotic “mass con-
servation” law. Coarsening process termi-
nates when K = K* > 1. Algebraically
slow dynamics?

e Cahn-Hilliard: Has a variational structure,
exact mass conservation. Coarsening pro-
ceeds until only one interface is left. EXx-
ponentially slow dynamics.

o FitzHugh-Nagumo: No coarsening, no mass
conservation [Goldstein, Muraki, Petrich,
96]
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Final comment

L ocalized structures far from the Turing regime
are commonplace in reaction-diffusion systems
such as the Brusselator, and provide an alter-
native pattern-formation mechanism to Turing
instability.

Turing analysis cannot explain the diverse phe-
nomena that can occur in this regime, such as
coarsening and the “breather’-type instabili-
ties. However singular perturbation tools can
be successfully applied to asnwer many of these
questions.
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