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We propose a minimal model of predator–swarm interactions which cap-

tures many of the essential dynamics observed in nature. Different

outcomes are observed depending on the predator strength. For a ‘weak’

predator, the swarm is able to escape the predator completely. As the

strength is increased, the predator is able to catch up with the swarm as a

whole, but the individual prey is able to escape by ‘confusing’ the predator:

the prey forms a ring with the predator at the centre. For higher predator

strength, complex chasing dynamics are observed which can become chao-

tic. For even higher strength, the predator is able to successfully capture

the prey. Our model is simple enough to be amenable to a full mathematical

analysis, which is used to predict the shape of the swarm as well as the

resulting predator–prey dynamics as a function of model parameters. We

show that, as the predator strength is increased, there is a transition

(owing to a Hopf bifurcation) from confusion state to chasing dynamics,

and we compute the threshold analytically. Our analysis indicates that the

swarming behaviour is not helpful in avoiding the predator, suggesting

that there are other reasons why the species may swarm. The complex

shape of the swarm in our model during the chasing dynamics is similar

to the shape of a flock of sheep avoiding a shepherd.
1. Introduction
Many species in nature form cohesive groups. Some of the more striking

examples are schools of fish and flocks of birds, but various forms of collective

behaviour occur at all levels of living organisms, from bacterial colonies to

human cities. It has been postulated that swarming behaviour is an evolution-

ary adaptation that confers certain benefits on the individuals or group as a

whole [1–5]. These benefits may include more efficient food gathering [6], pred-

ator avoidance in fish shoals [7] or zebra [4] and heat preservation in penguin

huddles [8]. An example is the defensive tactics used by a zebra herd against

hyaenas or lions [4]. These defence mechanisms may include evasive

manoeuvres, confusing the predator, safety in numbers and increased vigilance

[4,9,10]. On the other hand, a countervailing view is that swarming can also be

detrimental to prey, as it makes it easier for the predator to spot and attack the

group as a whole [1].

Figure 1 gives some idea of the variety and complexity of predator–swarm

interactions that occur in nature. A common characteristic is the formation of

empty space surrounding the ‘predator’ (or a human shepherd as in figure 1a).

There is also a presence of a relatively sharp boundary of the swarm.

In this paper, we investigate a very simple particle-based model of

predator–prey interactions which captures several distinct behaviours that are

observed in nature. There are several well-known mechanisms whereby the

prey tries to avoid the predator. One well-studied example is predator confusion,

which occurs when the predator is ‘confused’ about which individual to

pursue. Predator confusion decreases the predators’ ability to hunt their prey.

To quote Krause & Ruxton [3, p. 19], ‘predator confusion effect describes the

reduced attack-to-kill ratio experienced by a predator resulting from an inability

to single out and attack individual prey’. Bazazi et al. [12] studied marching

insects and demonstrated that their collective behaviour functions partly as
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Figure 1. (a) Flock of sheep in Argentina avoiding the shepherd in the middle. (Photograph by Yann Arthus Bertrand, used with the permission of the author.)
(b) A farmer walks 5000 ducks in Taizhou, China. (Source: BBC news.) (c) A baitball of sardines under attack by diving gannets. (Source: The Telegraph, Jason Heller/
Barcroft Media.) (d – g) A flock of ducks in Vancouver, Canada, being pursued by a kleptoparasitic gull. Snapshots taken 2 s apart showing complex pursuit dynamics.
(Photographs by Ryan Lukeman, used with the permission of the author. Photographs (e,f ) also appear in [11].) (Online version in colour.)
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an anti-predator strategy. During hunting, predators become

confused when confronted with their prey swarm [13] and

predator confusion was observed in 64% of the predator–

prey systems studied in [14]. Predator–prey dynamics were

also studied using computer models (e.g. [5,15–17]). Zheng

et al. [15] studied a mathematical model of schools of fish,

which demonstrates that collective evasion reduces the pre-

dator’s success by confusing it. Olson et al. [16] used

simulated coevolution of predators and prey to demonstrate

that predator confusion gives a sufficient selective advantage

for swarming prey. Similar preference for swarming in the

presence of a confused predator was investigated in [5].

While there are many models in the literature that demon-

strate complex predator–prey dynamics, most of these

models are too complex to study except through numerical

simulations. The goal of this paper is to present a minimal

mathematical model which is carefully chosen so that (i) it

is amenable to mathematical analysis and (ii) it captures the

essential features of predator–prey interactions. A commonly

used approach to swarm dynamics is to represent each prey

by a particle that moves based on its interactions with other

prey and its interaction with the predator. There is a large lit-

erature on particle models in biology, where they have been

used to model biological aggregation in general [1,18–22]

and locusts [21] or fish populations [15,23–27] in particular.

This is the approach that we take in this paper as well.

We now introduce the model that we study in this paper.

We assume that there are N prey whose positions xj(t) [ R2,

j ¼ 1 . . . N follow Newton’s law so that m(d2/dt2)xjþ
m(d/dt)xj ¼ F j,prey�prey þ F j,prey�predator: Here, Fj,prey2prey þ
Fj,prey2predator is the total force acting on the j-th particle,

m is the strength of ‘friction’ force and m is its mass. We

make a further simplification that the mass m is negligible

compared with the friction force m. After rescaling to set
m ¼ 1, the model is then simply (d/dt)xj ¼ F j,prey�preyþ
F j,prey�predator, so that the prey moves in the direction of

the total force. This reduces the second-order model to a

first-order model, which makes it easier to analyse mathe-

matically. Similar reduction was used, for example, in the

analysis of locust populations [28] and other biological

models [19,29]. Various forms can be considered for prey–

prey interactions. To keep cohesiveness of the swarm, we con-

sider the interactions which exhibit pairwise short-range

repulsion and long-range attraction, averaged over all of the

particles. For concreteness, we consider the endogenous

prey–prey interaction of the form F j,prey�prey ¼ 1/NPN
k¼1,k=j (1/jxj � xkj2 � a)(xj � xk): The term xj � xk/jxj � xkj2

represents Newtonian-type short-range repulsion that acts

in the direction from xj to xk, whereas 2a(xj 2 xk) is a linear

long-range attraction in the same direction. While more gen-

eral attraction–repulsion dynamics can be considered, we

concentrate on this specific form because more explicit results

are possible. In particular, in the absence of exogenous prey–

predator force, this particular interaction has been shown to

result in uniform swarms [30,31]. In general, the distribution

inside the swarm can vary and have fluctuations; however,

uniform density of a swarm is often a good first-order

approximation for many swarms. For example, Miller &

Stephen [32] found that the flocks of sandhill cranes feeding

in cultivated fields had distribution close to uniform, regard-

less of flock size. See [19, pp. 537–538], and references therein

for further examples and discussion of prevalence of nearly

uniform distribution of flocks in nature.

The prey–predator interactions are modelled in a similar

fashion: again for concreteness assume that there is a single

predator whose position we denote as z(t) [ R2. Assuming

that the predator acts as a repulsive particle on the prey,

we take F j,prey�predator ¼ b((xj � z)/jxj � zj2), with b being the
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Figure 2. Predator – prey dynamics using the model (1.1) and (1.2). Parameters are n ¼ 400; a ¼ 1; b ¼ 0 : 2; p ¼ 3; and c is as given. The bifurcation values for
c are c0 ¼ 0 : 2190 and chopf ¼ 0 : 7557 (see result 3.1). The velocity vector of the predator is also shown. First row: c , c0; the swarm escapes completely. Second
row: c0 , c , chopf; predator catches up with the swarm but gets ‘confused’ and the swarm forms a stable ring around it. Third row: c is just above chopf; regular
oscillations are observed. Fourth row: c is further increased leading to complex periodic patterns. Fifth row: the predator is able to ‘catch’ the prey (see §4); chaotic
behaviour is observed.
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strength of the repulsion. Finally, we model the predator–prey

interactions as an attractive force in a similar way,

(d/dt)z ¼ Fpredator�prey. We consider the simplest scenario

where Fpredator2prey is the average over all predator–prey

interactions and each individual interaction is a power law,

which decays at large distances; the prey then moves in the

direction of the average force. These assumptions result in

the following system:

dxj

dt
¼ 1

N

XN

k¼1,k=j

xj � xk

jxj � xkj2
� a(xj � xk)

 !
þ b

xj � z

jxj � zj2
(1:1)

and

dz
dt
¼ c

N

XN

k¼1

xk � z
jxk � zjp : (1:2)

To illustrate the results and motivate the analysis in this

paper, consider the numerical simulations of the particle

model (1.1) and (1.2) shown in figure 2. We use the strength

c of the predator–prey attraction as the control parameter,

with other parameters as given in the figure. In the

second row with c ¼ 0.4, random initial conditions for

prey and predator positions are taken inside a unit square.

The swarm forms a ‘ring’ of constant density with a preda-

tor at the centre of the ring. Our first result is to fully

characterize this ring in the limit of large swarms; see

result 2.1. Our main result characterizes the stability of
this ring. In result 3.1, we show that the ring is stable

whenever 2 , p , 4 and

ba(2�p)=2

(1þ b)(2�p)=2
, c ,

a(2�p)=2

b(2�p)=2 � (1þ b)(2�p)=2
: (1:3)

With parameters as chosen in figure 2 this corresponds

to 0.2190 , c , 0.7557. When c is decreased below 0.2910

(row 1), the ring becomes unstable and the predator is

‘expelled’ out of the ring; the swarm escapes completely.

A very different instability appears if c is increased above

0.7557 (row 3). In this case, we show that the ring also

becomes unstable owing to the presence of oscillatory instabilities,

whereby the predator ‘oscillates’ around the ‘centre’ of the

swarm. After some transients, the system settles into a ‘rotat-

ing pattern’ where the predator is continually chasing after its

prey, without being able to fully catch up to it. As c is further

increased (row 4), the motion becomes progressively chaotic

until the predator is finally able to catch the prey (row 5).

Our approach is to take the continuum-limit N!1 of (1.1)

and (1.2), which results in the non-local integro-differential

equation model [19–22]

rt(x, t)þr � (r(x, t)v(x, t)) ¼ 0;

ð
R2

r(y, t)dy ¼ 1, (1:4)

v(x, t) ¼
ð

R2

x� y

jx� yj2
� a(x� y)

 !
r(y, t)dyþ b

x� z

jx� zj2
(1:5)
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Figure 3. Steady state for model (4.2) and (1.2) for parameters as given and with p ¼ q, c ¼ 10. These states were computed by starting with random initial
conditions and as such they appear to be stable. Solid circles correspond to the continuum-limit asymptotics (4.4). (a) q ¼ 2, constant density swarm. (b) q .

2, swarm is denser towards the inner boundary. (c) q , 2, swarm is denser towards the outer boundary. (Online version in colour.)
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and
dz
dt
¼ c

ð
R2

y� z
jy� zjp r(y, t)dy: (1:6)

Here, r(x, t) denotes the density distribution of the

prey swarm at position x [ R2 so that
Ð

R2 r(y, t)dy ¼ 1 and

v(x, t) is the swarm’s velocity field. The system (1.4)–(1.6)

is obtained by choosing the initial density to be

r(x) ¼ 1/N
PN

j¼1 d(x� xj), where d is the delta function.

Equation (1.4) simply reflects the conservation of mass of

the original prey system (1.1) (as no prey particles are created

or destroyed); with the mass normalized so that r(x, t)
represents a probability distribution. By taking different pair-

wise endogenous forces, the steady state to (1.1) and (1.2)

with no exogenous force (b ¼ 0) presents a wide variety of

patterns [33–35]. Similar equations have been used to

model animal aggregation in [21,28,36–39]. The classi-

cal Keller–Segel model for chemotaxis also contains a

Newtonian intra-species interaction [40,41]. Aggregation

models also appear in material science [42–44], vortex

motion [45–48] where Newtonian potential arises for

vortex density evolution and granular flow [49,50].

We now summarize the paper. In §2, we construct the

steady-state solution consisting of a ring of prey particles of

uniform density that surround the predator at the centre. In

§3, we study its stability. We conclude with some extensions

of the model and discussion of some open problems in §4.
2. ‘Confused’ predator ring equilibrium state
We start by constructing the ‘ring’ steady state of the model

(1.4)–(1.6), as shown in the last picture of the second row

of figure 2. Consider a steady state for which the predator

is at the centre of the swarm, surrounded by the prey par-

ticles. The predator is ‘trapped’ at the centre of the prey

swarm while the prey forms a concentric annulus where

the repulsion exerted by the predator cancels out owing

to the symmetry. We state the main result as follows.

Result 2.1. Define

R1 ¼
ffiffiffi
b
a

r
and R2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

a

r
: (2:1)

The system (1.4)–(1.6) admits a steady state for which z ¼ 0, r
is a positive constant inside an annulus R1 , jxj , R2, and
is zero otherwise.
Figure 3a illustrates this result. For parameters as shown in

the figure, the discrete model (1.1) and (1.2) generates a stable

ring steady state, which is shown with dots. Solid curves show

the continuum result (2.1), in excellent agreement with the

discrete model (1.1) and (1.2).

The fact that the density is constant inside a swarm is a

result of the careful choice of the forces in (1.1): namely,

the nonlinearities are both Newtonian. The proof of result

2.1 follows closely [30,31] and uses the method of charac-

teristics, a common technique to find steady states in the

aggregation model.

Derivation of result 2.1. Define the characteristic curves

X(X0, t) which start from X0 at t ¼ 0

dX
dt
¼ v(X, t); X(X0, 0) ¼ X0: (2:2)

Using (1.4), along the characteristic curves x ¼ X(X0, t),
r(x, t) satisfies

dr

dt
¼ �(rx � v)r: (2:3)

Note that rx � ((x� z)=jx� zj2) ¼ Dx( ln jx� zj) ¼ 2pd(x� z)

so that from (1.5) we obtain

rx � v ¼
ð

R2
[2pd(x� y)� 2a]r(y)dyþ 2pbd(x� z)

¼ 2pr(x)� 2aM, x = z, (2:4)

where M ¼
Ð

R2 r(y)dy is conserved. Then (2.3) becomes

dr

dt
¼ (2aM� 2pr)r, (2:5)

which has a solution r(X(X0, t), t) approaching aM/p as t!1

and independent of the location, as long as r(X0, 0) . 0.

Next, we seek a steady state such that r is constant inside

A, r zero outside A, where A is an annulus R1 � jxj � R2,

with R1, R2 and z to be determined. Using the identity

ð
jyj�R

x� y

jx� yj2
dy ¼

pR2 x

jxj2
jxj . R;

px, jxj , R;

8<
: (2:6)

and for x [ A, we compute

v(x) ¼
ð
A

x� y

jx� yj2
� a(x� y)

" #
r(y, t)dyþ b(x� z)

jx� zj2

¼ prx 1� R2
1

jxj2

 !
� axp(R2

2 � R2
1)rþ b(x� z)

jx� zj2
: (2:7)



(b)(a)

Figure 4. (a) The empty region surrounding the shepherd from figure 1a is
shown with a curve. (b) Similar region observed in simulations of (1.1) and
(1.2). (Online version in colour.)
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The assumption of the steady state implies that (2.7) is zero for all

x [ A, which in turn implies that z ¼ 0, p� ap (R2
2 � R2

1) ¼ 0

and pr(�R2
1)þ b ¼ 0 so that R1 ¼

ffiffiffiffiffiffiffiffi
b/a
p

and R2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ b)/a

p
: Conversely, with this choice of R1 and R2, v¼ 0

whenever r= 0. Moreover by symmetry, dz/dt¼ 0 so that v,

r, z as in result 2.1 constitute a true steady state of (1.4)–(1.6).
3. Transition to chasing dynamics
As illustrated in figure 2, the ring steady-state configuration

can transition to a moving configuration in two ways: if the
predator strength c is sufficiently decreased, the swarm will

escape the predator. If c is increased past another threshold,

the predator becomes more ‘focused’ and less ‘confused’,

resulting in ‘chasing dynamics’ which can lead to very com-

plex periodic or chaotic behaviour. Similar dynamics can be

observed in nature, as figure 4 illustrates. The onset of these

dynamics can be understood as a transition from stability

to an instability (i.e. bifurcation) of the ring steady state.

The destabilizing perturbation corresponds to the transla-

tional motion of the predator as well as the inner or outer

boundary of the ring.1

To understand these bifurcations, we consider the pertur-

bations of the inner boundary, outer boundary, as well as the

predator itself. These perturbations are of the form

Inner boundary: x ¼ R1eiu þ 11elt, (3:1)

Outer boundary: x ¼ R2eiu þ 12elt (3:2)

and Predator: z ¼ 0þ 13elt, (3:3)

where 1i � 1: Note that this form of perturbation preserves

the total mass which is an invariant of the model. In

appendix A, we show that l satisfies the eigenvalue problem

(R2
2 � R2

1)l
11

12

13

0
@

1
A ¼ A

11

12

13

0
@

1
A, (3:4)

where
A ¼

�b� 1 b 1

�b� b
1þ b

b
b

1þ b

�c
b
a

� �(2�p)=2

c
1þ b

a

� �(2�p)=2

c
b
a

� �(2�p)=2

� 1þ b
a

� �(2�p)=2
" #

0
BBBBB@

1
CCCCCA:
The eigenvalues of A are given by l ¼ 0 and l ¼ l+ which

satisfy l2
+ þ Bl+ þ C ¼ 0, where B ¼ 1� c{(b/a)(2�p)=2�

((1þ b)=a)(2�p)=2} and C ¼ c ((1þb)=a)(2�p)=2 �b
1þb : The eigenvalues l+

are stable (i.e. Re(l+) , 0) if and only if B . 0 and C . 0.

Note that, when c ¼ 0, we get B ¼ 1, C , 0 so that l2 , 0 ,

lþ and the ring is unstable. As c is increased, either lþ or l2

cross zero. This occurs precisely when c ¼ c0, where

c0 ¼
ba(2�p)=2

(1þ b)(2�p)=2
, (3:5)

with C . 0 if and only if c . c0. If p � 2, then B . 0 for all c . c0

so that Re(l+) , 0. If 2 , p, a Hopf bifurcation occurs when

B ¼ 0 with C . 0; i.e. when c ¼ chopf . c0, where

chopf ¼
a(2�p)=2

b(2�p)=2 � (1þ b)(2�p)=2
: (3:6)

Note 0 , c0 , chopf if and only if 2 , p , 4 (with c0 . chopf if

p . 4, chopf ¼1 if p ¼ 2 and chopf , 0 if p , 2). Therefore,

Re(l+) , 0 if and only if one of the following holds: (i) p � 2

and c . c0; (ii) 2 , p , 4 and c0 , c , chopf.

We summarize as follows.

Result 3.1. Consider the ring steady state of (1.4)–(1.6) given in
result 2.1. Let c0, chopf be as defined by (3.5) and (3.6), respectively.
The ring stability with respect to translational perturbations is
characterized as follows:

— If p � 2: the ring is translationally stable if c0 , c, and unstable
if c , c0.

— If 2 , p , 4: the ring is translationally stable if c0 , c , chopf.
It is unstable owing to the presence of a negative real eigenvalue
if c , c0. As c is increased past chopf, the ring is destabilized
owing to a Hopf bifurcation.

— If p . 4: the ring is unstable for all positive c.

This analysis reveals that there are three distinct regimes,

which depend on the power exponent p of the predator–

prey attraction. If p , 2, then at close range the prey

moves faster than the predator and can always escape. As

a result, the predator can never catch the prey no matter

how large c is. The most interesting regime is 2 , p , 4.

As c is increased just past chopf, complex periodic or chaotic

chasing dynamics result, but the predator is still unable to

catch the prey. The shape of the perturbation is reflected

in the actual dynamics when c is close to chopf (such as in

figure 2, row 3); however, as c is further increased, nonlinear

effects start to dominate and linear theory is insufficient to

describe the resulting dynamics (see figure 2, rows 4 and

5). For even larger c, the predator finally ‘catches’ the



10

20

30

c ho
pf

a = 1

b = 2
b = 1
b = 0.5

rsif.royalsocietypub

6
prey; this is illustrated in figure 2, row 5; see §4 for further

discussion of this.

Note that c0 ¼ chopf when p ¼ 4, in which case the stable

band disappears. If p . 4, then chopf , c0 and the ring con-

figuration is unstable for any c. In this case, the swarm

escapes completely if c , chopf but chasing dynamics and

catching of the prey can still be observed if c . chopf.
2 4 6 8 10
0

p

Figure 5. chopf versus p with a ¼ 1 and b as given. The curve has a mini-
mum given by (4.1) if and only if b . a.

50 100 1500
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N

Figure 6. Number of prey remaining in a swarm during the hunt, as a func-
tion of time. Parameter values are p ¼ 3, a ¼ 1, b ¼ 0.2 and c ¼ 1.8.
(Online version in colour.)
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4. Discussion and extensions
The minimal model (1.1) and (1.2) supports a surprising variety

of predator–swarm dynamics, including predator confusion,

predator evasion and chasing dynamics (with rectilinear,

periodic or chaotic motion).

Biologically, our model is useful in two ways. First,

despite its simplicity our model has an uncanny ability to

reproduce the complex shapes of a swarm in predator–prey

systems. This is illustrated in figure 4. Second, the mathe-

matical analysis of this model provides some rudimentary

biological insight into general forces at play, which we

now discuss.

Formula (3.6) shows that the prey–prey attraction that is

responsible for prey aggregation, controlled by parameter a
in (1.1) and (1.2), is detrimental to prey: chopf is a decreasing

function of a so that increasing a makes it easier for the pred-

ator to catch the prey. This is also in agreement with several

other studies. For example, Fertl and co-workers [51,52]

observed groups of about 20–30 dolphins surrounding a

school of fish and blowing bubbles underneath it in an appar-

ent effort to keep the school from dispersing, while other

members of the dolphin group swam through the resulting

ball of fish to feed. In a survey [1], the authors suggest that

factors other than predator avoidance, such as food gather-

ing, ease of mating, energetic benefits or even constraints of

physical environment, are responsible for prey aggregation.

Our model also supports this conclusion.

The parameter b in the model (1.1) and (1.2) can be

thought of as the strength of prey–predator repulsion. For-

mula (3.6) shows that chopf is an increasing function of b so

that increasing b is beneficial to the prey.

The parameter p can be vaguely interpreted as the preda-

tor ‘sensitivity’ when the prey is close to the predator and

can be thought of as a measure of how sensitive the predator

is to a nearby prey. Simple calculus shows that chopf has a

minimum at p ¼ poptimal given by

poptimal ¼ 2þ 2
ln ( ln ((1þ b)/a) ln (b/a))

ln ((1þ b)=b)
, (4:1)

provided that b . a (no optimal p exists otherwise with

chopf! 0 as p!1; figure 5). From the point of view of the

predator, this choice of sensitivity requires the least strength

c for success. It is unclear however whether this optimal

value has a true biological significance or is simply an artefact

of the model.

So far, we have concentrated on the onset of chasing

dynamics as c crosses chopf, as this value is computable ana-

lytically. This is a precursor to the predator catching the

prey, but for values of c just above chopf the prey still

escapes. Let us investigate further numerically what hap-

pens for larger values of c when the predator can actually

‘catch’ the prey. For concreteness, we say that the prey is

caught if the distance between it and the predator falls

below a certain kill radius, which we take to be 0.01 in our
simulations (numerically, the problem becomes unstable

when this distance becomes too small as the velocity of

the prey and predator increases without bound). Whenever

the prey is caught, we remove it from the simulation (and

decrease N by 1 in (1.1) and (1.2)). Consider the parameters

p ¼ 3, a ¼ 1, b ¼ 0.2, c ¼ 1.8 and suppose there are N ¼ 200

prey initially. Figure 6 shows the number of prey as a func-

tion of time. It shows that the rate of consumption is higher

with fewer individuals. The reader is invited to see the

movie of these simulations.2

Let ccatch be the smallest value of predator strength c for

which the predator is able to catch the prey. We compute

this value using full numerical simulations of (1.1) and (1.2)

for several values of N, while fixing the other parameters to

be p ¼ 3, a ¼ 1, b ¼ 0.2. The results are summarized in the

following table:

N 50 100 200
ccatch 0:9 1:1 1:4:

Note that ccatch is increasing with N, which is also consist-

ent with figure 6 showing that the kill rate increases when

there are fewer particles. This suggests that all else being

equal, having more individuals is beneficial to prey, in that

a higher predator strength c is required to catch the prey

when N is increased. This may be owing to the fact that the

predator becomes more ‘confused’ by the various individuals

inside the swarm when there are more of them.

From a mathematical point of view, our analysis is rather

non-standard: the main result is obtained by doing a stability

analysis on the entire swarm in the continuum limit, which can
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Figure 7. Symmetric steady states for (4.5) with a ¼ 1, b ¼ 2, N ¼ 500, and with M ¼ 2 predators located at z1 ¼ (2d, 0) and z2 ¼ (d, 0) with d as given in
the figure. Steady states are represented by the dots. The solid line is the boundary computed by using the continuum formulation (4.6). Note that, in the
right-hand figure, the swarm separates into two groups.
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be thought of as an infinite-dimensional dynamical system, or,

alternatively, a non-local PDE-ODE system (1.4)–(1.6). Below

we discuss several possible extensions of the model.

4.1. Non-uniform state
The first extension is to replace the prey–predator inter-

action in (1.1) by a more general power nonlinearity, for

example

dxj

dt
¼ 1

N

XN

k¼1,k=j

xj � xk

jxj � xkj2
� a(xj � xk)

 !
þ b

xj � z
jxj � zjq , (4:2)

with the equation for the predator unchanged; the original

model corresponds to q ¼ 2. As before, there is a steady state

with the predator z¼ 0 at the centre with the swarm forming a

ring around it. Unlike the q¼ 2 case, the density of the swarm

is no longer uniform. Using a computation similar to the q ¼ 2

case, we find that, in the continuum limit, the density is given by

r(x) ¼
a
p
� b(2� q)

2pjxjq when R1 , jxj , R2

0 otherwise,

8<
: (4:3)

with R1, R2 satisfying

R1 ¼
b
a

� �1=q

; a(R2
2 � R2

1)� b/2(R2�q
2 � R2�q

1 ) ¼ 1, (4:4)

result 2.1 is recovered by choosing q ¼ 2 in (4.4).

From (4.3) we note that for q , 2, the density is higher

further away from the predator; conversely for q . 2 the den-

sity is higher closer to the predator. This compares favourably

with full numerical simulations as shown in figure 3. How-

ever, the computation of stability for the non-constant

density state remains an open problem.

4.2. Multiple predators
It is easy to generalize (1.1) and (1.2) to include multiple

predators. For example, replace (1.1) by

dxj

dt
¼ 1

N

XN

k¼1,k=j

xj � xk

jxj � xkj2
� a(xj � xk)

 !

þ
XM
k¼1

b
xj � zk

jxj � zkj2
, (4:5)

and replace z by zk in (1.2) (more complex predator–predator

interactions can similarly be added). Even more complex
dynamics can be observed. Multi-species interaction has been

studied in several other contexts recently, including crowd

dynamics and pedestrian traffic [53,54], decision-making in

the group with strong leaders [55] and generalization of the

Keller–Segel model to multi-species in chemotaxis [56–58].

Here, we briefly consider the possible steady states of the

swarm in the presence of two stationary predators (i.e. c ¼ 0).

Consider two predators located symmetrically at z1 ¼ d and

z2 ¼ 2d. Figure 7 shows some of the possible steady states

for various values of d. As d is decreased, the swarm splits

into two. The swarm is symmetric with respect to x- and

y-axes but is not radially symmetric.

The solid curve in figure 7 shows the continuum limit

of (4.5) which is obtained by computing the evolution of

the boundary @D of the swarm, while assuming that

swarm density r ¼ 1/jDj is constant. Using the divergence

theorem, the velocity can then be computed using only a

one-dimensional integration

v(x) ¼ 1

jDj

ð
@D

ln jx� yjn̂dS(y)� ax

þ b
x� z1

jx� z1j2
þ b

x� z2

jx� z2j2
, (4:6)

where we assumed that the centre of mass of the swarm is at

the origin, and where the area jDj ¼
Ð

D dy ¼ 1
2

Ð
@D y � n̂dS(y) is

also a one-dimensional computation.

4.3. Acceleration and other effects
Introducing acceleration allows for a more realistic motion.

A more general model is

mj
d2xj

dt2
þ mj

dxj

dt
¼ 1

N

XN

k¼1,
k=j

F(jxj � xkj)
xj � xk

jxj � xkj
þG(jxj � zj) x� z

jx� zj

(4:7)

and M
d2z
dt2
þ m0

dz
dt
¼ 1

N

XN

k¼1

H(jz� xkj)
z� xk

jz� xkj
, (4:8)

where mj, m0 are friction coefficients of prey and predator,

respectively, and mj, M are their masses. Figure 8 illustrates

some of the possible dynamics of these models. Even more

complex models exist in the literature. For example, to

obtain a more realistic motion for fish an alignment term is

often included, which can lead to milling and flocking

patterns even in the absence of predator [26,59,60].
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Many models of collective animal behaviour found in the

literature include terms such as zone of alignment, angle of

vision, acceleration, etc. These terms may result in a more

‘realistic-looking’ motion, although it can be difficult in prac-

tice to actually measure precisely how ‘realistic’ it is (but see

[11,61] for work in this direction). Moreover, the added com-

plexity makes it very difficult to study the model except

through numerical simulations. Our minimal model shows

that these additional effects are not necessary to reproduce

complex predator–prey interactions.
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Endnotes
1As discussed in the derivation of result 2.1, for large time, the density
r(x,t) rapidly approaches a constant on its support, r! aM/p and the
equation for r along characteristics is independent of the boundary
shape or the form of predator–prey interactions (parameters c and p
in (1.2)). As such, tracking the evolution of the boundary and the
predator is sufficient to determine the stability of the ring state.
2We created a website which contains the movies showing the simu-
lations of predator–swarm interactions from this paper. These can be
viewed by following the link: http://goo.gl/BC6pyC.

Appendix A
In this appendix, we derive eigenvalue problem (3.4) for the

perturbations of the form (3.1)–(3.3). Let oi ¼ 1ie
lt. The

velocity then becomes

v(x)¼ r

ð
B(o2,R2)nB(o1,R1)

x� y

jx� yj2
� a(x� y)

" #
dy

þ b
x� z

jx� zj2
: (A1)
Using (2.6) with x [ B(o2, R2)nB(o1, R1), we get

v(x) ¼ r px� po2 þ apx(R2
1 � R2

2)� pR2
1(x� o1)

jx� o1j2

"

þ ap(R2
2o2 � R2

1o1)
�
þ b(x� o3)

jx� o3j2
: (A 2)

At the steady state oi ¼ 0 and v ¼ 0 so that (A 2) simplifies to

v(x) ¼ rp[(aR2
2 � 1)o2 � aR2

1o1]

þ rpR2
1

x

jxj2
� x� o1

jx� o1j2

" #
þ b

x� o3

jx� o3j2
� x

jxj2

" #
: (A 3)

On the inner boundary, we have x ¼ R1eiu þ 11elt and

linearizing we obtain

v � rp[(aR2
2 � 1)o2 � aR2

1o1]� rpo1e2iu þ bo3e2iu

R2
1

:

Evaluating the perpendicular component v? ¼ v � eiu

yields

v? � rp[(aR2
2 � 1)12 � aR2

111]� rp11 þ
b13

R2
1

� �
eltcos(u):

We equate v ¼ dx/dt ¼ l11elt along the perpendicular

component to finally obtain

l

rp
11 ¼ (� aR2

1 � 1)11 þ (aR2
2 � 1)12 þ

b
rpR2

1

13: (A 4)

The same computation along the outer boundary

x ¼ R2eiu þ 12elt yields

l

rp
12 ¼ �aR2

1 �
R2

1

R2
2

� �
11 þ (aR2

2 � 1)12 þ
b

rpR2
2

13: (A 5)

http://goo.gl/BC6pyC
http://goo.gl/BC6pyC
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Next, we linearize predator equation (1.6) around ring

steady state (2.1). We estimateð
B(o2,R2)nB(o1,R1)

x� o3

jx� o3jp
dx �

ð
B(o2,R2)nB(o1,R1)

x
jxjp dx

þ
ð

B(0,R2)nB(0,R1)

px(x � o3)� o3 jxj2

jxjpþ2
dx

þh.o.t:,

where h.o.t. denotes higher order terms that are quadratic in

oi. We then compute explicitlyð
B(0,R2)nB(0,R1)

px(x � o3)� o3 jxj2

jxj pþ2
dx ¼ �po3(R2�p

2 � R2�p
1 ),

and approximateð
B(o2,R2)nB(o1,R1)

x
jxjp dx � po2R2�p

2 � po1R2�p
1 :
Linearizing predator equation (1.6) then yields

l

rp
13 ¼ �cR2�p

1 11 þ cR2�p
2 12 þ c(R2�p

1 � R2�p
2 )13: (A 6)

The three equations (A 6), (A 4) and (A 5) then yield a

closed three-dimensional eigenvalue problem

l

rp

11

12

13

2
4

3
5¼

�aR2
1�1 aR2

2�1
b

rpR2
1

�aR2
1�

R2
1

R2
2

aR2
2�1

b
rpR2

2

�cR2�p
1 cR2�p

2 c(R2�p
1 �R2�p

2 )

2
666664

3
777775

11

12

13

2
4

3
5: (A7)

Problem (3.4) is obtained by substituting (2.1) into (A 7).
:20131208
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