
Law of mass action and saturation in SIR model with application

to Coronavirus modelling

Theodore Kolokolnikov and David Iron

July 24, 2020

Abstract

When using SIR and related models, it is common to assume that the infection rate is
proportional to the product of susceptible and infected individuals. While this assumption
works at the onset of the outbreak, the infection force saturates as the outbreak progresses,
even in the absence of any interventions. We use a simple agent–based model to illustrate this
saturation effect. Its continuum limit leads a modified SIR model with exponential saturation.
The derivation is based on first principles incorporating the spread radius and population density.
We use the data for coronavirus outbreak for the period from March to June, to show that using
SIR model with saturation is sufficient to capture the disease dynamics for many jurstictions,
including the overall world-wide disease curve progression. Our model suggests the R0 value
of above 8 at the onset of infection, but with infection quickly “flattening out”, leading to a
long-term sustained sub-exponential spread.

As the coronavirus pandemic has spread and dramatically altered human lives on a global
scale, it also generated an intense interest to model the epidemic. These include ODE models [1–4],
statistical models [2, 5], agent-based models [6, 7], spatial network models [5, 8] and PDE models
[9,10]; see also [6,11] for reviews. Some of these papers had an outsized influence on public thinking
and policy [3, 7]. At the heart of many of these efforts are the so-called compartmental models,
consisting of various classes of individuals and their interactions. The simplest such model is the
classic SIR (Susceptiple-Infected-Removed) model. It has the form

dS

dt
= − β

N
SI;

dI

dt
=

β

N
SI − γI;

dR

dt
= γI (1)

where S, I and R is the susceptible, infected and removed (or recovered) population, respectively,
and N is the total number of infected individuals. The basic assumption underying SIR and
related models is that the disease spreads when an susceptible individual encounters an infected
individual. The probability of this encounter is typically modeled using the law of mass action
from chemical literature, where this probability is propotional the product SI of susceptible and
infected population, with β being the infection rate. The infected individuals then recover with a
recovery rate γ.

Can SIR model by itself capture the coronavirus infection? To answer this question, we took
data from the from John Hopkins CSSE database [12], which lists the total recorded infections
as well as the number of recovered and dead for different countries. We took the period from
March 15 to June 15, 2020, corresponding to the initial wave of infection (and mostly after the
implementation of the quarantine measures). We used the sum of recovered and dead as a proxy
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for “removed” population R(t), while I(t) is obtained by substracting by substracting “removed”
from the total number of infected. We can then estimate β and γ directly from the equations (1) by

solving β ≈ −NS
′

SI
and γ ≈ R′

I
(where we approximate the derivatives using the finite differences

on one-week running averages). This is shown in Figure 1. We took the data from March 15 to
June 15. As can be seen, the recovery rate γ is relatively constant, while the infection rate β has
a clear decrease over time.

Figure 1: Estimated infection (β) and recovery (γ) rates as a function of time for several jurisdic-
tions during the period of March 15 to June 15, 2020. Note that β is decreasing with time while γ
remains relatively constant.

In this note we propose a simple modification of the basic SIR model (1) to incorporate spa-
tial distribution of population, and which can partially explain the decrease of β over time, even
without time-dependent changes in parameters. Our implementation also naturally incorporates
the population density into the model. We also test the modified model against the COVID data.

We start with the following very simple agent-based model that implicitly incorporates spatial
component. Assume that each agent has some “foraging area” characterized by radius r. Agents
can only encounter each-other within their respective foraging area. Upon encounter, assume there
is a probability p of infection. Assume that a susceptible individual spends on average µ fraction of
the time interacting with others (i.e. going shopping, to bars, etc). Finally an, infected individual
recovers with a daily rate γ. The matlab implementation of this is shown in Figure 2.

We now derive the mean-field limit of this agent-based model. Assuming the agents are well
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r=0.15; % infection radius
p=0.5; % probability of infection
mu =0.05; % daily interaction rate
gamma =0.05; % recovery rate

S=500; I=10; R=0; % I.C.

%%%% Agent based simulation

SS=[S];II=[I]; RR=[R];
tmax =100
for t=2: tmax

Ipos=rand(1,I)+1i*rand(1,I);
Spos=rand(1,S)+1i*rand(1,S);
new_I =0; new_R =0;
for s=1:S

if rand < mu
for i=1:I

if abs(Spos(s)-Ipos(i)) <
r && rand < p
new_I=new_I +1;
break;

end
end

end
end

for i=1:I
if rand < gamma

new_R=new_R +1;
end

end
S=S-new_I;
I=I+new_I -new_R;
R=R+new_R;

SS(end +1)=S;II(end +1)=I;RR(end +1)=R;
end

%%%%% Mean -field (ODE) limit
a=pi*r^2*p;

Sc=SS(1);Ic=II(1);Rc=RR(1);
IIc=[Ic]; SSc=[Sc]; RRc=[Rc];

for t=2: tmax
new_i=mu*(1-exp(-a*Ic))*Sc;
Sc=Sc -new_i;
Ic=Ic+new_i -Ic*gamma;
Rc=Rc+Ic*gamma;

IIc(end +1)=Ic;
SSc(end +1)=Sc;
RRc(end +1)=Rc;

end

%%%%% plot ABM and ODE solutions

clf; hold on;
plot(SS, 'k-o');
plot(II, 'r-o');
plot(RR, 'b-o');
plot(SSc , 'k--');
plot(IIc , 'r--');
plot(RRc , 'b--');

%

Figure 2: Top: self-contained Matlab code for simulating ABM and its mean-field limit (2).
Cut-and-paste to run. Bottom: the output of the simulation.
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mixed, the chances of encountering an infected individual and then getting infected is given by
a = p r

2π
A , where A is the total area of the domain. When I infected agents are present, the

chances of getting infected is then given by µ(1 − (1 − a)I). We also assume that the foraging
area is sufficiently small (compared to the total area A) so that 0 < a � 1, in which case we
may approximate µ(1 − (1 − a)I) ∼ µ (1 − exp (−aI)) . As the result, the mean-field limit of this
agent-based simulation takes the form

dS

dt
= −µ (1 − exp (−aI))S;

dI

dt
= µ (1 − exp (−aI))S − γI;

dR

dt
= γI. (2)

Figure 2 shows the direct comparison of the agent-based model described above, and the mean-
field limit (2); excellent agreement can be seen.

The parameter a can be rewritten in terms of the population density as follows. Write A = N/ρ,
where N is the total population and ρ is the population density, so that

a =
α

N
, where α = ρpr2π. (3)

This shows that the parameter a is directly proportional to the population density.
Non-pharmaceutical interventions are used to reduce µ, α and increase γ. In the context of

coronavirus, the rate of interaction µ is decreased by stay-at-home orders. Social distancing and
mask-wearing will have the effect of reducing the exponent α. Finally, isolating infected individuals
has the effect of increasing γ.

The model (2) reduces to the classical SIR model (1) for small infection rates I via Taylor
expansion 1 − exp

(
− α
N I
)

∼ α
N I, so that β = µα. This shows that the reproduction number

R0 = β/γ = ρµpr2π/γ is proportional to the population density ρ. This is consistent with the
progress of the epidemic: large cities with high population densities (e.g. New York, Toronto,
Montreal...) have been hit much harder than smaller localities with lower population density. As
the number of infected I increases, the saturation terms kicks in and eventually stabilize the force
of infection, leading to linear rather than exponential growth.

We used nonlinear least-squares method to fit the model (2) to the data for several juristictions.
This consists of minimizing the L2 distance to fit both the infected as well as recovered individuals
simulataneously:

min
α,β,γ

∑
j

(I(tj) − Ij)
2 + (R(tj) −Rj)

2 .

Here, Ij , Rj is the real-world data from John Hopkins database [12], and I(t), R(t) is the solution to
(2) for given parameters α, β, γ. In this way, we solve all three parameters, without having to assume
a-priori values for any of them. We used python’s standard scipy.optimize package to perform the
minimization. We also experimented with different distance metrics, such as log distance, which
gave very similar results. Figure 3 shows the fit for several juristictions with a good agreement.

The following table gives the corresponding parameter values for these jurisdictions:

N α µ γ

World 7.7×109 15050 1.25×10−5 0.0232

US 3.4×108 5857.8 7.84×10−5 0.0107

Canada 3.7×107 13165 3.48×10−5 0.0345

Russia 1.5×108 3448.8 6.43×10−5 0.0278

These are the countries where the virus is not over the peak yet. The fit is not always great,
particularly for the countries that are over the peak and have gotten and virus under control and
completely suppressed the new cases, such as Germany, Italy or South Korea.
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Figure 3: Fitting model (2) for several juristictions.

It is interesting to note that the values of parameters are relatively consistent (same order of
magnitude) among the different data sets. Also, the parameter γ is consistent with other estimates
in the literature [2,13]. For the US dataset, we used US census to compute the effective population
density for urban areas where the majority of population resides [14]. We obtained an estimate of
ρ ≈1000 people per km2. This gives us a value of a = pr2π ≈ 5.8 km2 . It is hard to disentangle
the probability p of the infection from from the infection area πr2 per individual. One possibility
is to use the average daily driving range estimate, which was reported in [15] to be 75 km involving
on average 2.3trips. This gives r ≈ 32 km and p ≈ 0.0017. However this does not account for other
modes of transportation (walking, public transport, etc).

For Canada, we used Canadian Census [16] which lists 942 Canadian cities and towns having a
total area of 23998 kmˆ2 and a total population of about 27 million (out of a total population of 37
million). This gives an effective density estimate for Canadian population of ρ ≈ 1174 people/kmˆ2,
yielding a value of a = pr2π ≈ 11.2 km2, about twice that of the US. Assuming similar driving
staistics as the US, would yield the same radius r and p of about twice as as much as the US.

For the model (2), the reproduction number R0 is given by R0 = µα/γ. For world, US, Canada
and Russia, R0 is 8.1, 49.13, 13.26 and 8.8, respectively. It is in the higher-end of the current
estimates for Covid-19. However, the time-dependenent (dynamical) reproduction number, Rt,
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Figure 4: Dynamical reproduction number Rt for for (2) using the best-fit parameters. It is
relatively high at the start of the outbreak but quickly decreases.

decreases rapidly due to saturation. It is given by

Rt =
µ (1 − exp (−aI))S

γI

and is plotted in Figure 4. Currently US appears to have the highest growth rate with Canada the
slowest of the four. Note that Russia had a long period of exponential growth, which is reflected
in a relatively long period of near-constant Rt before Rt comes down.

We have presented a modified SIR model with saturation. Rather than using a phenomenological
saturation [6,17], we used agent-based modelling and then derived the mean-field limit continuum
limit using basic probabibility. We were able to fit the model parameters to obtain a good agreement
with the disease progression during the period of March 15 to June 15, when quarantine and
shutdown policies were mostly in-place.

Figure 5: Fitting basic SIR model (1) versus SIR with saturation (2). Left: world population.
Without saturation, the fit is very bad. With saturation, it is relatively good. Right: synthetic
data from ABM model. The curve with saturation corresponds to the exact parameters used in
ABM simulation without any fitting. The curve without saturation is the ”best-fit” parameters
and does not accurately capture the peak of infection.
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Fitting the original SIR model (1) without any saturation and without dynamically changing
the infection rate β gives rather terrible results as illustrated in figure 5. An alternative is to assume
that parameters are time-dependent [2, 4, 9, 18].

One may ask whether a model with more that just three compartments (such as SEIR, E=exposed,
or SAEIR, A=asymptomatic etc) but without saturation can produce a better fit than SIR with
saturation? Looking at the data of Figure 3, the infected cases exhibit what looks like a subexpo-
nential growth. At least in this stage of the epidemic (as of June 2020), only a small fraction of the
total population has been infected (worldwide, less than 1%). Without saturation, regardless of the
number of compartments used, the model becomes effectively linear when only a small fraction is
infected (e.g., β

N SI ∼ βI in (1)). Linear ODE models generically exhibit exponential growth, so it
is impossible to obtain sub-exponential growth without either having saturation, or time-dependent
parameters.

After this work was completed, by the end of June the US entered a period of fast coronavirus
growth, mostly due to re-opening of economy. In effect, the parameters “on the ground” have
shifted. A more complex model with time-dependent infection rate is required to better model the
progression of the disease on a longer time-scale. This is left for future work.
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