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UCLA Model of hot-spots in crime

• Originally proposed by Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi, and
Chayes, 2008 [The UCLA model]

• Crime is ubiquious but not uniformly distributed

- Some neigbourhoods are worse than others, leading to crime ”hot spots”

- Crime hotspots can persist for long time.

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.
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• Crime is temporaly correlated:

- Criminals often return to the spot of previous crime

- If a home was broken into in the past, the likelyhood of subsequent breakin
increases

- Example: graffitti ”tagging”
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Modelling criminal’s movement

• In the original model, biased Brownian motion was used to model criminal’s movement

• Our goal is to extend this model to incorporate more realistic motion

• Typical human motion consists short periods of fast movement [car trips] interspersed
with long periods of slow motion [pacing, thinking about theorems, sleeping...]

• Such motion is often modelled using Levi Flights: At each time, the speed
is chosen according to a power-law distribution; direction chosen at random:
|y(t + δt)− y(t)| = δtX where X is a power-law distribution whose distribution
function is

f(d) = C |d|−µ

• µ is the power law exponent

- In 1D, 1 < µ ≤ 3; in 2D, 1 < µ ≤ 4.

- µ = 3 corresponds to Brownian motion in one dimension.
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• González, Hidalgo, Barabási, Understanding individual human mobility patterns,
Nature 2008, use cellphone data to suggest that human motion follows “truncated”
Levi flight distribution with µ ≈ 2.75.
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Discrete (cellular automata) model

• Two variables

Ak(t) ≡ attractiveness at node k, time t;

Nk(t) ≡ criminal density at node k

• Modelling attractiveness: Attractiveness has static and dynamic component:

Ak(t) ≡ A0 +Bk(t).

Bk(t + δt) =

[

(1− η̂)Bk(t) +
η̂

2
(Bk−1 +Bk+1)

]

︸ ︷︷ ︸

(1− wδt)
︸ ︷︷ ︸

+ δtAkNkθ︸ ︷︷ ︸
.

”broken window effect” decay rate # of robberies

- 0 < η̂ < 1 is the strength of broken window effect

- w is the decay rate
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• Modelling criminal movement: Define the relative weight of a criminal moving from
node i to node k, where i 6= k, as

wi→k =
Ak

lµ |i− k|µ . (1)

- l is the grid spacing, µ the Levi flight power law exponent

- The weight is biased by attractiveness field

• The transition probability of a criminal moving from point i to point k, where i 6= k,
is

qi→k =
wi→k

∑

j∈Z,j 6=iwi→j
. (2)

• Update rule for criminal density:

Nk(t + δt) =
∑

i∈Z,i6=k
Ni · (1− Aiδt) · qi→k + Γδt. (3)

- Aiδt ≡ probability that criminal robs

- (1− Aiδt) ≡ probability that no robbery occurs

- Ni · (1−Aiδt) ≡ expected number of criminals at node i that don’t rob

- Ni · (1−Aiδt) · qi→k ≡ expected number of criminals that move from mode i to
mode k.

- Γδt ≡ constant ”feed rate” of the criminals
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Take a limit l, δt≪ 1 :

• Main trick is to write Ai ∼ A(x) where x = li; then

∑

j∈Z,j 6=i
wi→j =

∑

j∈Z,j 6=i

Aj

lµ |i− j|µ

=
∑

j∈Z,j 6=i

Aj − Ai

lµ |i− j|µ +
∑

j∈Z,j 6=i

Ai

lµ |i− j|µ (4)

∼ 1

l

∫ ∞

−∞

A(y)−A(x)

|x− y|µ dy + l−µ2ζ(µ)A(x)

• We recognize the integral as fractional Laplacian,

∆sf(x) = 22s
Γ (s + 1/2)

π1/2|Γ(−s)|

∫ ∞

−∞

f(x)− f(y)

|x− y|2s+1
dy, 0 < s ≤ 1.

• Key properties:

- The normalization constant is chosen so that the Fourier transform is:

Fx7→q {∆sf(x)} = −|q|2sFx7→q{f(x)}. (5)

- s = 1 corresponds to the usual Laplacian: ∆sf(x) = fxx if s = 1.
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Continuum model

The continuum limit of CA model becomes

∂A

∂t
= ηAxx −A + α + Aρ. (6)

∂ρ

∂t
= D

[

A∆s
( ρ

A

)

− ρ

A
∆s (A)

]

−Aρ + β (7)

where

s =
µ− 1

2
∈ (0, 1]; η =

l2η̂

2δtw
; D =

l2s

δt

π1/22−2s|Γ (−s) |
zΓ (2s + 1)w

; α = A0/w; β = Γθ/w2.

• Separation of scales: if l, δt≪ 1 then

Dη−s ≫ 1; 0 < s ≤ 1. (8)

• The special case s = 1 (µ = 3) corresponds to regular diffusion ∆1f(x) = fxx.

- We recover the UCLA model because:

A
( ρ

A

)

xx
− ρ

A
Axx =

(

ρx − 2
ρ

A
Ax

)

x

- Note that D → ∞ as s→ 1− since |Γ (−s) | ∼ 1/(1− s).
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Simulation of continuum model

• Use a spectral method in space combined with method of lines in time.

• That is, we first discretize in space x ∈ [0, L]. To approximate ∆su, we make use of
Fourier transform:

∆su = F−1
(
−|q|2sFx7→q{u}

)
. (9)

• This becomes FFT on a bounded interval

• Matlab code to estimate the discretization of ∆su(x), x ∈ [0, 1] :
n = numel(u);

q = 2* pi * [0:n/2-1, -n/2:-1]’;

LaplaceS u = ifft(-q.ˆ(2 * s). * fft(u));

• This implicitly imposes periodic boundary conditions on the solution.
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Comparison: discrete vs. continuum

Example: Take µ = 2.5, n = 60, l = 1/60, η̂ = 0.1, δt = 0.01, A0 = 1, Γ = 3.

Then the continuum model gives s = 0.75, η = 0.001388, D = 0.1828, α = 1, β = 3.
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Discrete model is represented by dots; continuum model by solid curves. Blue is A, red is
ρ. Two hot-spots form.
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Turing instability analysis

∂A

∂t
= ηAxx −A + α + Aρ,

∂ρ

∂t
= D

[

A∆s
( ρ

A

)

− ρ

A
∆s (A)

]

−Aρ + β

Steady state:

Ā = α + β; ρ̄ =
β

α + β
.

Linearization:

A(x, t) = A + φeλteikx, (10a)

ρ(x, t) = ρ + ψeλteikx. (10b)

Using the Fourier transform property, we have:

∆seikx = −|k|2seikx

so the eigenvalue problem becomes
[
−η|k|2 − 1 + ρ̄ Ā
2ρ̄
Ā
D|k|2s − ρ̄ −D|k|2s − Ā

] [
φ
ψ

]

= λ

[
φ
ψ

]

. (11)

The dispersion relationsh is then given by

λ2 − τλ + δ = 0
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where

τ = −D|k|2s−η|k|2−Ā−1+ρ̄; δ = D|k|2s
(
η |k|2 + 1− 3ρ̄

)
+η |k|2 Ā+Ā.

Note that τ < 0 so the steady state is stable iff δ > 0 for all k. Equilibrium is stable
if ρ̄ < 1/3. If ρ̄ > 1/3 then equilibrium is unstable iff

Ā < Dηsxs
(

−1 +
3ρ̄

x + 1

)

(12)

where x is the unique positive root of

x2 + x (2 + 3ρ̄(1− s)/s) + 1− 3ρ̄ = 0.
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Comparison with numerics

14



The effect of changing s on dispersion relationship
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Dominant instability [biggest λ]

••••••• Recall that in terms of original gridsize l and time step δt, we have:

s =
µ− 1

2
∈ (0, 1]; η =

l2η̂

2δtw
; D =

l2s

δt

π1/22−2s|Γ (−s) |
zΓ (2s + 1)w

so that η−sD = O((1− s)−1 (δt)s−1) ≫ 1, 0 < s ≤ 1

• For a physically relevant regime, the continuum model satis fies the key
relationship

η−sD ≫ 1. (13)

Change the variables k = x1/2η−1/2 and let M = Dη−s ≫ 1. Then we obtain

τ = −Mxs − x2 + ρ̄− 1− Ā; δ =Mxs(x + 1− 3ρ̄) + xĀ + Ā.

The fastest growing mode corresponds to the maximum of the dispersion curve:

λ2 − τλ + δ = 0 and λ = τx/δx.
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• Asymptotically, this becomes

kfastest(s) ∼
[
sρ̄(−2 + 3Ā + 6ρ̄)

Dη

] 1
2(s+1)

, Dη−s ≫ 1. (14)

Expected number of “bumps” ≈ floor

(
L

2π
kfastest

)

. (15)

• kfastest is at a maximum when s satisfies

log

(
ρ̄(−2 + 3Ā + 6ρ̄)

Dη
s

)

= s + 1
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Comparison with numerics

l = 0.01, δt = 0.05, η̂ = 0.02, A0 = 1,Γ = 3

• The initial instability has sinusoidal shape
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• Eventually, hot-spot forms.

- Hot-spots are localized regions which are not of the sinusoidal shape!

- In general, the total number of stable hot-spots does not correspond to fastest-
growing Turing mode!

- The hot-spot regime is separate from the Turing regime!
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Construction of hotspot solution

Hotspot solution satisfies:

0 = ηAxx −A + α + Aρ; 0 = D
[

A∆s
( ρ

A

)

− ρ

A
∆s (A)

]

− Aρ + β (16)

and is periodic on [−1, 1].

• Key transformation: Let ρ = vA2; then

0 = ηAxx − A + α + A3v; 0 = D [A∆s (vA)− vA∆s (A)]−A3v + β (17)

• Inner problem: Change variables x = η1/2y; then

0 = Ayy −A + α + A3v; 0 = Dη−s [A∆s (vA)− vA∆s (A)]− A3v + β

• As before, Dη−s ≫ 1 so that in the inner region,

A∆s
y (vA)− vA∆s

y (A) ∼ 0 =⇒ v(y) ∼ const . ∼ v0

- Change variables A = v
−1/2
0

w(y), then

wyy − w + w3 = 0 =⇒ w =
√
2 sech (y)
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- To determine v0, integrate (17) and use the identity
∫
f∆sg − g∆sf = 0; then

∫

A3v0 ∼
∫

β

• The final result is

A(x) ∼
{
Amaxw(x/

√
η), x = O (ε)

α, x≫ O(ε).

Amax ∼
2lβπ−3/2

√
η

where l is the half-width of the spot.
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Stability of hot-spots (1D, s = 1)

• Localized states: Consider a periodic pattern consisting of localized hotspots of
radius l. It is stable iff l > lc where

lc :=
(ηD)1/4 π1/2α1/2

β3/4
.

• Turing instability in the limit ε→ 0:

- Preferred Turing characteristic length:

lturing ∼ 2π

[
Dη

ρ̄(−2 + 3Ā + 6ρ̄)

]1/4

, Dη−1 ≫ 1

• Note that both O (lc) = O(lturing) = O((Dη)1/4)!
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Example: α = 1, γ = 2, D = 1, ε = 0.03.

Then lturing = 0.60; lc = 0.13 < lturing

t=0.0
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Small and large eigenvalues
• Near-translational invariance leads to “small eigenvalues (perturbation from zero)”

corresponding eigenfunction is φ ∼ w′.

• Large eigenvalues are responsible for “competition instability”.

• Small eigenvalues become unstable before the large eigenvalues.

• Example: Take l = 1, γ = 2, α = 1, K = 2, ε = 0.07. Then Dc,small =
20.67, Dc,large = 41.33.

- if D = 15 =⇒ two spikes are stable

- if D = 30 =⇒ two spikes have very slow developing instability

- if D = 50 =⇒ two spikes have very fast developing instability
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Stability: large eigenvalues

• Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):

λφ = φ′′ − φ + 3w2φ− χ

(∫

w2φ

)

w3 where w′′ − w + w3 = 0. (18)

with

χ ∼ 3
∫∞
−∞w3dy

(

1 + ε2D(1− cos
πk

K
)
α2π2

4l4β3

)−1

• Step 2: Key identity : L0w
2 = 3w2, where L0φ := φ′′ − φ + 3w2φ. Multiply (18) by

w2 and integrate to get

λ = 3− χ

∫

w5 = 3− χ
3

2

∫

w3

Conclusion: (18) is stable iff χ > 2∫
w3 ⇐⇒ D > Dc,large.

• This NLEP in 1D can be fully solved!!
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Stability: small eigenvalues

• Compute asymmetric spikes

• They bifurcate from symmetric branch

• The bifurcation point is precisely when D = Dc,small.

• This is “cheating”... but it gets the correct threshold!!
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Stability of K spikes

• Possible boundary conditions:

Config type Boundary conditions for φ

Single interior spike on [−l, l]
even eigenvalue

φ′(0) = 0 = φ′(l)

Single interior spike on [−l, l]
odd eigenvalue

φ(0) = 0 = φ′(l)

Two half-spikes at [0, l] φ′(0) = 0 = φ(l)
K spikes on [−l, (2K − 1)l],

Periodic BC
φ(l) = zφ(−l), φ′(l) = zφ′(−l),
z = exp (2πik/K) , k = 0 . . . K − 1

K spikes on [−l, (2K − 1)l],
Neumann BC

φ(l) = zφ(−l), φ′(l) = zφ′(−l),
z = exp (πik/K) , k = 0 . . . K − 1

(same BC for ψ)
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Two dimensions

Given domain of size S, let

Kc := 0.07037η−3/8D−1/3

(

ln
1√
η

)1/3

βα−2/3S. (19)

Then K spikes are stable if K < Kc. Example: α = 1, γ = 2, ε = 0.08, D = 1.

We get S = 16, Kc ≈ 10.19. Starting with random initial conditions, the end state
constits of K = 7.5 < Kc hot-spots [counting boundary spots with weight 1/2 and corner
spots with weight 1/4], in agreement with the theory.
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Discussion

• Natural Separation of scales: η−sD ≫ 1

- comes from the modelling assumptions

- Required for hot-spot construction

- The steady states are localized hotspots in the form of a sech, not sinusoidal
bumps!

• Open question:

- extend stability of hot-spots to Levi flights

- More general moels of human motion?

• There is an optimal Levi flight exponent 1 < µ < 3 which “maximizes” the number of
hot-spots. Do criminals “optimize” their strategy with respect to µ?

• References:

- J. Breslau, T. Chaturapruek, D. Yazdi, S. McCalla and T. Kolokolnikov,
Incorporating Levi flights into a model of crime, in preparation

- T. Kolokolnikov, M. Ward and J. Wei, The Stability of Steady-State Hot-Spot
Patterns for a Reaction-Diffusion Model of Urban Crime, to appear, DCDS-B.
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