Hot spots in crime model
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UCLA Model of hot-spots in crime

e Originally proposed by Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi, and
Chayes, 2008 [The UCLA model]

e Crime is ubiquious but not uniformly distributed

- Some neigbourhoods are worse than others, leading to crime "hot spots”

- Crime hotspots can persist for long time.

Fig. 1. Dywynamic changes in residential burglary hotspots for two consecutive three-month periods
beginning June 2001 in Long Beach, CA. These density maps were created using ArcGIS,

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.
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e Crime is temporaly correlated:

- Criminals often return to the spot of previous crime

- If a home was broken into in the past, the likelyhood of subsequent breakin
increases

- Example: graffitti "tagging”



Modelling criminal’s movement

e In the original model, biased Brownian motion was used to model criminal’'s movement
e Our goal is to extend this model to incorporate more realistic motion

e Typical human motion consists short periods of fast movement [car trips] interspersed
with long periods of slow motion [pacing, thinking about theorems, sleeping...]

e Such motion is often modelled using Levi Flights: At each time, the speed
Is chosen according to a power-law distribution; direction chosen at random:
ly(t +0t) — y(t)| = dtX where X is a power-law distribution whose distribution
function is

f(d) =Cldl™"

® (i is the power law exponent

-In1D, 1 < 4 < 3;in2D, 1 < pu < 4.

- = 3 corresponds to Brownian motion in one dimension.
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Brownian motion Levi flight motion

e Gonzalez, Hidalgo, Barabasi, Understanding individual human mobility patterns,
Nature 2008, use cellphone data to suggest that human motion follows “truncated”

Levi flight distribution with p ~ 2.75.



Discrete (cellular automata) model

e Two variables

A (t) = attractiveness at node k, time ¢;
Ny(t) = criminal density at node &

e Modelling attractiveness: Attractiveness has static and dynamic component:

Ap(t) = A° + By(t).

o | 3>

Bk(t + 5t) = (1 — 77) Bk(t) + (Bk_1 + Bk+1) &1 — W5t2+§tAka€-

A= 7
Ve

"broken window effect” decay rate  # of robberies

- 0 < m < 1is the strength of broken window effect

- w is the decay rate



e Modelling criminal movement: Define the relative weight of a criminal moving from
node ¢ to node k, where ¢ # k, as

Ay
i — k|
- [ is the grid spacing, (. the Levi flight power law exponent
- The weight is biased by attractiveness field

(1)

Wik =

e The transition probability  of a criminal moving from point 7 to point k, where ¢ # k,
IS
Wi

(2)

deo Zjez,#z’ Wi—j
e Update rule for criminal density:
Ni(t+0t) = > N+ (1= Aibt) - gy + 6L, 3)
1€2L,i#k
- A;0t = probability that criminal robs
- (1 — A;0t) = probability that no robbery occurs
- N; - (1 — A;0t) = expected number of criminals at node ¢ that don’t rob

- N; - (1 — A;0t) - ¢, = expected number of criminals that move from mode i to
mode k.

- '0t = constant "feed rate” of the criminals



Take a limit [, 0t < 1 :

e Main trick is to write A; ~ A(x) where x = [; then

JEL,jF#1 jEZ];«éz
= 4
| ..m@—yw 2 l“\z—y\” @
JEL,j#1 JEL, jFi
1 (™ Aly) — Ax) -
~ = d 712 A
| Ay A

e \We recognize the integral as fractional Laplacian

S is+1/2) [~ fa
A f(z) = 2° VQ\F |/ x—yP“ dy, 0<s<1.

e Key properties:

- The normalization constant is chosen so that the Fourier transform is:
Fomsg {0 f ()} = —[q** Foso{ f ()} (5)

- s = 1 corresponds to the usual Laplacian: A®f(x) = f., if s = 1.



Continuum model

The continuum limit of CA model becomes

%—?:UAM—AJFQJFAP- (6)
dp AN }
— = =) — =A° —A 7
5 =D A48 (§) — G0 ] - a0+ )
where
j—1 P 222 ()| :
° 2 € (0.1 m 20tw’ ot 2zZI'(2s+ 1w ’ “ o/w: B fw

e Separation of scales: if [, 0t < 1 then
Dn7>1 0<s<l1. (8)

e The special case s = 1 (u = 3) corresponds to regular diffusion Al f(x) = f,..

- We recover the UCLA model because:

p P (P
A(A):m AA”_(""’” QAA‘%L

- Note that D — oo as s — 1~ since |[['(—s) | ~ 1/(1 — s).



Simulation of continuum model

e Use a spectral method in space combined with method of lines in time.

e That is, we first discretize in space = € [0, L]. To approximate A*u, we make use of

Fourier transform:
Asy = F~1 (—|q\23FxHq{u}) : (9)

e This becomes FFT on a bounded interval

e Matlab code to estimate the discretization of A*u(x), x € [0,1]:
n = numel(u);
q = 2*xpi x[0:n/2-1, -n/2:-1]’;
LaplaceS _u = ifft(-q.”(2 *S). *fft(u));

e This implicitly imposes periodic boundary conditions on the solution.
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Comparison: discrete vs. continuum

Example: Take i = 2.5, n = 60,1 = 1/60, 7 = 0.1, 6t = 0.01, Ay =1, = 3.

Then the continuum model gives s = 0.75,n = 0.001388, D = 0.1828, a = 1, 5 = 3.

15 =0 4 =1 10 =5
M

PO A

O'50 0.5 1 Oo 0.5 1 Oo 0.5 1

10 t=10 10 t=50 10 t=200

Discrete model is represented by dots; continuum model by solid curves. Blue is A, red is
p. Two hot-spots form.

11



Turing instability analysis

0A dp P P
I A, — A Ap, —:D[AA*S(—)——ASA}—A
5 = +a+ Ap 5 1)~ A p+ B
Steady state:
i __f
A=a+p8;, p=
B p=—7 5
Linearization:
Az, t) = A+ peMe™™, (10a)
p(z,t) =P+ e, (10b)
Using the Fourier transform property, we have:
Aseikx _ |k|2s€ilm

so the eigenvalue problem becomes
kP —14p A Tl e 1)
LDk —p =Dk — A 0] ~ " [v]
The dispersion relationsh is then given by
N—TA+6=0

12



where

T = —DI|k|* —n|k|*— A—1+p; 5 = DIk|* (n|k|* +1 - 3p)+n|k]> A+A.

Note that 7 < 0 so the steady state is stable iff 6 > 0 for all k. Equilibrium is stable
if p < 1/3.1f p > 1/3 then equilibrium is unstable iff

- 3P
A< Dnz’ | —1 12
7735( +x+1> (12)

where x is the unique positive root of

>+ 2 (2+3p(1—5)/s)+1—3p=0.

1



Comparison

with numerics

n=0.01, p=1
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The effect of changing s on dispersion relationship
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Dominant instability [biggest )]

e Recall that in terms of original gridsize [ and time step dt, we have:

—1 124 [2s 1/22—23 (—
A lew) g=gt p=CT 2 TS
2 20tw ot ZI'(2s+ 1) w

S
sothatn D =0((1—s) 1 (0t)° ) >1, 0<s<1

e For a physically relevant regime, the continuum model satis fies the key
relationship

n D > 1. (13)

Change the variables k = 2'/2n~1/2 and let M = Dy~ >> 1. Then we obtain
T=-Ms*—2°+p—1—A; 6=Mz*(z+1—-3p) +zA+ A
The fastest growing mode corresponds to the maximum of the dispersion curve:

M—TA+6=0 and X\ =1,/0,.
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e Asymptotically, this becomes

sp(—2 4+ 3A +6p) | D .
Kastest(s) ~ [ d D p)] , Dn=7 > 1. (14)
N
L
Expected number of “bumps” ~ floor (2—kfastest) : (15)
T

® kiciest IS @t @ maximum when s satisfies

p(—2 4+ 3A +6p
log (p( oA p)s> =s+1
Dn
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Comparison with numerics
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e The initial instability has sinusoidal shape
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e Eventually, hot-spot forms.

- Hot-spots are localized regions which are not of the sinusoidal shape!

- In general, the total number of stable hot-spots does not correspond to fastest-
growing Turing mode!

- The hot-spot regime is separate from the Turing regime!
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Ficvre 7. Numerically computed bifurcation diagram of A(0) vs. 7. The parameter values are o = 1.e = 0.05,z € [0,1],
and D = 2. A localized hot-spot appears for large values of A(0). The asymptotics A{0) ~ 2{:'5—:!} (see (2.19)) are shown by
a dotted line. The constant steady state A ~ = is indicated by a solid straight line line. Turing patterns are born from the
spatially uniform steady state as a result of a Turing bifurcation at 4 ~ 3a/2 = L.5. The weakly nonlinear regime is indicated
by a dashed parabola coming out of the bifurcation point. Inserts shows the change in the shape of the profile A(x) along the

bifurcation curve.
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Construction of hotspot solution

Hotspot solution satisfies:

0=nA, — A+ a+ Ap; O:D[AAS(£>—£AS(A)}—Ap+ﬂ (16)

AN

and is periodic on [—1, 1].

e Key transformation: Let p = vA?; then

0=nA, —A+a+Av;, 0= D[AA® (vA) —vAA* (A)] - A%v+ B8 @7)

e Inner problem: Change variables = = n'/?y; then
0=A4,, —A+a+ A%; 0= Dy *[AA° (vA) — vAA® (A)] — A%v + 3
e As before, Dn~® > 1 so that in the inner region,
AAY (vA) —vAA] (A) ~ 0 = v(y) ~ const. ~ vy
- Change variables A = Uo_l/Qw(y), then

Wy, — W+ w* =0 — w = vV/2sech ()
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- To determine vy, integrate (17) and use the identity f fA*qg — gA®f = 0; then

fra- ]

Alz) ~ { Anaw(z/y/M), =0 (¢)

a, x> 0(e).
20 B3/
Vi

where [ is the half-width of the spot.

e The final result is

Amax ~

14

12

10

O 02 04 06 08 1
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Stability of hot-spots (1D, s = 1)

e Localized states: Consider a periodic pattern consisting of localized hotspots of
radius [. It is stable iff [ > [. where
(UD)1/4 T1/201/2

le = 33/4

e Turing instability in the limit ¢ — 0:
- Preferred Turing characteristic length:

Dn
p(—2+3A+6p

1/4
lturing ~ 2T |: )] , Dn_l > 1

e Note that both O (I.) = O(ljyring) = O((Dn)'/4)!
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Example:a =1, v=2, D=1, ¢ =0.03.

W\MMWW\/\/\N\/WWMOD
/\/\/\J\N\NW\; 18
/\/\ t=114.5

t=7.1

t=[19.9

j\ t=34505.5
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Small and large eigenvalues

e Near-translational invariance leads to “small eigenvalues (perturbation from zero)”
corresponding eigenfunction is ¢ ~ w'.

e Large eigenvalues are responsible for “competition instability”.
e Small eigenvalues become unstable before the large eigenvalues.

e Example: Take [ = 1,7 = 2,a = 1, K = 2, ¢ = 0.07. Then D, gmar =
20.67, D jarge = 41.33.

-if D = 15 = two spikes are stable
- if D = 30 = two spikes have very slow developing instability
- if D = 50 == two spikes have very fast developing instability

500002

40000 4000

30000 3000

20000 2000

10000 1000
o = B

1 0 1 2 3 1 0 1 2 3

20

15

0

275



Stability: large eigenvalues

e Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):
Mo = @' — ¢+ 3w — x (/ w2g/>) w®  wherew” —w4+w?=0. (18)
with

3
X f_oooo w3dy

L <A
K

2
(1 +e°D(1 — cos _)4l4ﬂ3
e Step 2: Key identity : Lyw? = 3w?, where Lo¢ := ¢" — ¢ + 3w?¢. Multiply (18) by

w? and integrate to get
5 3 3

Conclusion: (18) is stable iff x > ﬁ < D > D¢ jarge-

e This NLEP in 1D can be fully solved!!
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Stability: small eigenvalues

e Compute asymmetric spikes
e They bifurcate from symmetric branch
e The bifurcation point is precisely when D = D, gma.

e This is “cheating”... but it gets the correct threshold!!
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Stability of K spikes

e Possible boundary conditions:

Config type

Boundary conditions for ¢

Single interior spike on
even eigenvalue

:_lv l

¢'(0) = 0=¢'(])

Single interior spike on
odd eigenvalue

:_lv l

¢(0) =0 =¢'(l)

Two half-spikes at [0, (] ¢'(0) =0=o¢(l)

K spikes on [—1, 2K —1)I], | (1) = z¢(=1), ~ ¢'(l) = 2¢'(=1),
Periodic BC z=-exp(2mik/K), k=0...K —1

K spikes on [—1, 2K —1)I], | (1) = z¢(=1),  ¢'(]) = 2¢'(=1),
Neumann BC z=exp(mik/K), k=0...K —1

(same BC for 1))
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Two dimensions

Given domain of size S, let

1/3

1

K, :=0.07037 3 D~1/? (m 7) Ba238. (19)
1

Then K spikes are stable if K < K.. Example: aa=1,7v=2,e =0.08, D = 1.

We get S = 16, K. = 10.19. Starting with random initial conditions, the end state
constits of K = 7.5 < K hot-spots [counting boundary spots with weight 1/2 and corner
spots with weight 1/4], in agreement with the theory.
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Discussion

e Natural Separation of scales: n=°D > 1

- comes from the modelling assumptions
- Required for hot-spot construction

- The steady states are localized hotspots in the form of a sech, not sinusoidal
bumps!

e Open question:
- extend stability of hot-spots to Levi flights

- More general moels of human motion?

e There is an optimal Levi flight exponent 1 < p < 3 which “maximizes” the number of
hot-spots. Do criminals “optimize” their strategy with respect to 7

e References:

- J. Breslau, T. Chaturapruek, D. Yazdi, S. McCalla and T. Kolokolnikov,
Incorporating Levi flights into a model of crime, in preparation

- T. Kolokolnikov, M. Ward and J. Wei, The Stability of Steady-State Hot-Spot
Patterns for a Reaction-Diffusion Model of Urban Crime, to appear, DCDS-B.
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