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Spike lattices

e Solutions to many Reaction-Diffusion systems consist of spikes (or spots)
e Question: how are these spots distributed in the domain?

e Example: hexagonal spike clusters in Gierer-Meinhardt model with percursor:

e Philosophy: treat spikes as “points” in space, derive reduced ODE-algebraic system
for evolution of IV spikes; take the limitas N — oo



Warmup: single PDE with precursor

e Warmup problem: elliptic PDE (1d or 2d):
0=Au—u+u+el|zl (1)

in either one or two dimensions.

e When ¢ = (), the problem was extensively studied by many authors

- [Gidas-Nirenberg, 1981] established uniqueness of a single radial spike on all of
R¢:

- [Ni-Wei, 95; Gui-Wei, 97]: N spikes on a bounded domain satisfy a “ball-packing”
problem: each spike location is furthest away from all other spikes.

- No muti-spike steady state when € = 0 (spikes repell each other...)
e Here, ¢ |z|” acts as a confinement well.

e Multi-spike solutions exist when ¢ > 0.



Step 1: reduced system for spike centers

e “Standard” asymptotic reduction, obtain algebraic system

axr = —V,, ZK(‘I’j — 1) (2)
Ak
- Here, K () is Helmholtz Green'’s function: K (r) = e”"in 1D and K (r) = Ky(r)
(Bessel KO) in 2d.

- ais an O(g) constant.

e The sum is inter-spikes interacting through their tails; the term ax is due to trap
confinement.

e To solve (2) we solve the related ODE whose steady state satisfies (2)

dxy, Lj — Tk

2tk K'(lz: — =J " k=1...N. 3

= aa:zﬁ% (| xk’)|x]~—:€k!’ (3)
J



e System (3) is one of the simplest swarming models [Bernoff+Topas, 2013]. It leads to
compact swarms:
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e The key to our computations is that the kernel K (r) decays rapidly; its decay is
sufficiently fast so that the summation can be expanded in Taylor series locally.



1D system: > e 1B %l TN O gy k=1...N
7 k=]

e Key observation: due to exponential decay, assume that the sum is dominated by
nearby neighbours [similar to “Laplace integration”. Then expand everything in
Taylor series, to two orders.

- Parametrize: x;, = x(s),where k = s € [1, N|.

- Define inter-spike distance,
_dx

U= — R Tyy] — Ty (4)

ds

- Expand to two orders:
l2

Thil] — Tp ~ lu+ —u,u;
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e Obtain the ODE for the inter-spike distance u(x) :

du e "(e™"+1)
da;'u 1—c ) ~ ar, (9)

e Solution blows up at x = +R. Spike density is given by p = 1/u, so that

R
1
/ —dx = N; where u (+R) = oc. (6)
_RU

e Together, (5) and (6) fully determines u(x).
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Figure 1: Comparison with numerics a = 0.1 and N = 50.



e Ode (5) has an implicit solution

u a

1 ue
_ RQ_ 2 7
e“—1+(@u_1)2 2( :U), (7)

but integral in (6) does not appear to have an explicit form. So integrate (5, 6)
numerically instead.

e Scaling analysis: if we double /N, we can quarter a and retain the same spike density
but on the domain double the size. So the solution is in the “spreading” regime,
opposite of [Bernoff+Topaz 2013], [Fetecau-K-Huang, 2011]
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2D cluster: Z]#k[(’ |mk :13]‘ Tz — 0%k

e Numerics indicate that this steady state has a hexagonal latttice structure.

e While the overall density is clearly non-uniform, the local structrue is still nearly
hexagonal. So we assume:

(a) the lattice structure is nearly-hexagonal at every position xy: (b) Locally, the
lattice is a small conformal deformation of a perfect hexagonal lattice. (c) the
steady state is nearly radially symmetric in the limit of large /V.

e Define u(x;) to be the lattice spacing at zy, that is, the distance from x;, to its closest
neighbour:

u(wy) = minfa; — zi]

This allows to estimate:

> Kz = )=~ won(u)
J7k /
where

_ %Z S [ i Kyfull]) + ul Re(l) Ko(u 1))

where double sum is over lattice points: [ = I, + €™/?ly, (I;,15) € Z*\{0}



e Continuum limit becomes
() ®)
—oo(u) = —ar
dr 2

coupled to integral boundary condition for mass conservation:

2

2 ("1
N = ﬁ/o ) 2nrdr where u(R) = oo (9)
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e Scaling analysis: if we double [V, we can half a and retain the same spike density but
on a domain that has twice the area (whose radius is V2 larger).



GMin 2d

GM model:

at:sQAa—,u(x)aJra— 0=Ah— h+—, r € R?

Reduced equations:

Jw?

Hy ~ ﬂk}{k]; loge™ +—§E:Awffzfﬂ)ﬂiw:—'$jD

J7#k

2
T — 2 [w
HQK/ J
H Z'LLJ (e = 2l) |vp — x| 27
J7k

Here, x; is the location of j-th spike, 11; = p(x;) and H; ~ h(x;).

o

Vukl
pr 2

0=

As before, assume hexagonality and radial symmetry.

(10)

(11)

(12)



Continuum limit

Define w(xy) = min 4 [z; — x| . In the limit N — oo
o 1

(loge '+ n(u(x))) @)

() = 1 (r) (gbg(u) + (cbl(u) + log 6_1) /2) (log e+ (u))
pu(r) ((loge™" + @1 (u)) P2 (u) — 26 (u) @5 (u))

ZZKO 1))
ZZ wKo 1)) + ul Re(l) Ko(u|l])]

—uZZRe W (wll]),
)= > K (i),

H(x) ~

where

where double sum is over lattice points: [ = I} + ™31, (I1,15) € Z*\{0}; and,

2 R\’
N = —/ (—) 2rrdr;  wu(r) - occasr — R,
v3Jo \ulr)

(13)
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Figure 2: LEFT: Steady state for (34) with N = 500, u(z) = 1 + 0.0252% and ¢ =
0.08. Dots represent the steady state x;; their size and colour are proportional to H;.
Dashed line represents the theoretical boundary of the steady state in the continuum limit
N > 1. MIDDLE: scatter plot of the average distance u(x;) from a point to any of its
neighbours, as a function of || . Solid curve is the analytical prediction of the continuum
limit as given by (??). RIGHT: Scatter plot of the H; as a function of |z ;| and comparison
to theory.
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Figure 3: Cluster steady-state solution to GM pde consisting of 20 spikes. Contour plot
of a and h are shown in (a) and (b) respectively. Parameter values are ¢ = 0.15 and
i(z) = 1+0.02 |z|° . Computational domain was taken to be € (—15, 15)%; increasing
the computational domain did not change spike locations. (c): Centers of spikes from the
PDE simulation compared with centers generated by the reduced system. Dashed line
denotes spike boundary computed asymptotically. (d): Spike height h(z;) versus |z;|.
Comparison between full numerical simulation, the reduced system (34) and theoretical
prediction (??).



GM with precursor y(x) in 1D

Equations:
2

a
a; = apy — p(x)a+a*/h, 0= Dhyy —h+ —
€

Reduced dynamics: Assume that

d2
D = N d=0(1), N> 1lande < 1/N.

Then
N

3 —_ .
h(wg,t) ~ v alx,t) ~ Z%‘M () §SeCh2 ( S— ) :

= 2ep~12(x5)

ixk 0 () (<’U_x>k N 50 (:Ck)) |

v 4 (xg)

where Sj. = 6%/ () v?

(14)



Mean-field limit

d
let p(x)) = (o — ) N then

dp _ p/(w)3p°sinh(1/p) — 3p?sink” (1/p) (" o
dr p(x) cosh(1/p) — 3 ) /& pdr =d, p(a)=p(b) =0,

1
~ 12N tanh | ——— | u=/%(x.).
Vg, an (2,0(5%))“ ()

D =1/100, £=0.002, p(xr)=1+022"

0.045
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Existence of maximum density

dp

W (2)3p*sinh(1/p) — 5psinh” (1/p)

das:

()

cosh(1/p) — 3

)

w(xr) =1+ 0.222

b

pdx =d, p(a)=p(b)

L = oo L=038
061 pl0) = 0567, d = 1.14 061 p(0) = 0.567, d = 0.766
P ” ~ ~ - - - =~ ~ ~
051 (@ = 0.474, d = 0987 051 . <pl0) = 0474, d = 0.68T~ _
e =SS - - -~ ~
. s o ~ S N - - - - ~ ~ ~
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e Singularity when p = ppax :
—_ A
Pmax ~ (0.5673

~ arccosh(3)



e Main result: Suppose that m[aag] P(x) = pmax and let dyax = fab pdx. Then the spike
r€la,

cluster solution exists when d < d,,.x and disappears when d > dax.

e Corollary 1: for any choice of ;(x), we have:

min |z; — x;_;| > VD arccos(3). (15)

e Corollary 2: For constant ji(x), |z; — xj_1| = 2L/N and (xxx) becomes

L/N > famcos( ) — Jog (1 + \f2> vD. (16)

This recovers (and generalizes) instability thresholds for /N spikes derived by [lron,
Ward, Wei 2000].

e OPEN QUESTION: 2D instability thresholds...
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Piecewise constant precursor

o, <<l
] e, [ <x <L

Then:

o, O<x <l
’0<$>{p2, l<x <L

where /pl cosh(1/p) — 3 dp = log (ﬂ) :
0 p?sinh(1/p) (3p — 2ginh (1/p)) 2
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Theory: 64% of spikes on the left, or 6.7 out of 10.5.
Numerics: 6.5 out of 10.5 on the left!



Cluster formation, piecewise constant

& cosh(1/p) — 3 e (M
/,)2 P2 sinh(1/p) (3p — Seinh (177)) 0 (u) '

Since p1, p2 € [0, Pmax] , We have:

maX(LHS):/OpmaX cosh(1/p) — 3

p*sinh(1/p) (3p — 2sinh (1/p))

Consequence: If 11 /5 < 0.7046 then p, = 0. Example:

dp = log (0.7046)

06

(0.7046, p__)

05

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
11/ e

1 =1, po = 2;
/s = 0.5 < 0.7046



Schnakenberg (vegetation) model

e2uy = e*uyy —u+uv, x € (=L, L)

”UJQU

0=vy +alx) ——, € (—L, L)
£
u, =0=v,atex ==+L

e This model is among the simplest prototypical reaction-diffusion models.

e Fast-diffusing water v is consumed by a slowly diffusing vegetation u, which decays
with time.

e Water precipitation has space-dependent feed rate a(x).

e This model is also a limiting case of the Klausmeyer model of vegetation (where
u represents plant density, v represents water concentration in soil, a(x) is the
precipitation rate, and v,., is replaced by v,, + cv, — dv) as well as the Gray-Scott
model (where v, is replaced by v,, — dv).

e GOAL: compute the effect of space-dependent a(x) on spike distribution and
stability thresholds



Numerical experiment 1: increasing a(z)

e a(r) =ag(l+0.5cos(x)), L = .

e Start with ag = 2 and very gradually decrease a

u(x,l)
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e Movie: increase



Numerical experiment 2: decreasing a(xz)

e a(z) =ag(l+0.5cos(x)), L = .

e Start with ag = 80 and very gradually decrease q

i a0=57.0101, N=22

R =
1ol L j J ] 7r u (numerics)
l‘____ ‘_‘l_‘.uﬁﬁ{ l? ﬂ) J}{/}j‘_’l’ 6l - -&L}?Taes:rcn?;}:u‘tm;cs}
20} ‘_\ | n ] ) IR ® x,_(asymptotics
L HH m_ﬂ_ d - -
| n ) ] _ | 4
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e Movie: decrease




Reduction to interacting particle system

Proposition. Consider the Schankenberg system with NV fixed and with € — (. Suppose

that
a(x) = apA(x)

Assume that A(x) is even on interval [— L, L]. Define P(x) and b by

P"(x) = A(z) with P'(0)=0; b:=6N"/aj. (20)
Assume ¢ N < 1. The dynamics of /V spikes are asymptotically described by ODE system
da:;{; S;{; 1 Sj Tk — Iy /
e e = o p 21
it BN N 2~ 2 |ap — (i) @)
1=1...N
j#k
subject to [V + 1 albegraic constraints
N
b 1 1 |z, — x| '
j:
g L
NZSj _/ A(z)dz. (23)
j=1 —L
Near xj, the quasi-steady state is approximated by
x— T\ Sk 6N
~ sech? ( ) ~—. 24
U ~ sec =) IN v(zp) S (24)



Steady state

1 S X
- — P
J7k
Zs‘x’“ P(xy) + ¢



Continuum limit

e Spike locations x; define density distribution p(x).

:%Zé(x—xj)

- Formally, take

- More precisely, define p(x) using

z; = x(j) where z(j) : [1, N] = [-L, LJ;

de 1
dj  Np(z)

e Spike “heights” define height distribution: S; = S(z;)

e | eading order approximations:

f

Tr — X
NQSk st‘k il pay

— S

r—y Sy

z — y|

( / [z —y| @p(y)dy ~ P(z)
|/

py)dy =~ P'(x)



e Problem the second equation is just the derivative of the first!
d S5(y) z—y Sy)
A (/‘l‘ Y| 5 p(y)dy iz —y| 2 p(y)dy

d? —
e However, note that — (’ y!) = §(x — y) so that

dx

s ([ 1002 otmas ~ Pio))

/ 9)S(y)ply)dy ~ P'(x) = Alz)
S(@)p() ~ Alz)

e Need to estimate the difference between continuum and discrete!



Key ingredient:

e The Euler-Maclaurin formula
= [ 10N+ S+ FOV) + 55 () = £+ 0"

e to get next-order terms:

Z 1517/<;—37] _/Ls(y)pcy)l fk_ydy_F%(iS’(l’k)) +O(N_4).

7 j2’5'7k — ;]

w25 [ s o iy g5 (-5 + 6o ) rol

ik L

Expand S(z) = Sy(x) + 5=51(z) + ... .End result is

/ 2SO SO 2 . t
p=—cp- 12b53p subject to Syp = A, ply)dy =1 (25)
0 —L




e General solution is

2 L

A
r + 12blog (p/A) = C' subject to pr)dr =1, S=A/p.
L

e This describes the steady state!

e Example a(x) = ag (1 + 0.5cos )

a0=57.0101, N=22 a0=10, N=6 a0=8, N=4
7 " 4.5 - -
u (numerics) u (numerics) 5 u (numetics)
v (numerics) 4 v (humerics) v (numerics)
6 - - u(xk) (asymptotics) - - u{xk] (asymptotics) 4.5 - - "'(xk) (asymptotics)
e x, (asymptotics) 35 e ¥, (asymptotics) 4 e x_(asymptotics)
5 - - - -
- ~- -
- ~
- ~
4 4 ~
> s SN
S ’ ‘ .
3 L~ ’ S -
2 \
1 Y e Al A AR Al Al Al ' 1 I
L] . .
-3 -2 -1 0 1 2 3 0 0




Large feed rate: self-replication

o Ifag > 1then A?/p> ~ C, Sp = A, so that

L

p~coAY3(x), S~ gt AY3 (), o = / A2 (z)d.
-

e Self-replication is initiated when S; becomes “too large”.

Main result. Suppose that a(x) = agA(z) and define
2.70

max Al/3(x;) (f A2/3( )da:)

Then NN spikes undergo self-replication if a is increased past

age - — 6N6_1/2.



Example

A=1+05cosx, ¢ =007 then 8 = 0.3809, ag. = 4.5536N. (when A = 1,
B = 0.430)
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Small feed rate: coarsening

Solution does not exist if a( is too small.

Main stability result. Suppose a(x) = agA(x). Let . be the solution to the following
problem:

A2(£C) E 0 plz) = % —lo % , ' ) =
P o (A(:L«)) o (1 8 (%Amm» ’ /LP< )= e

where Ay = min,e_ 17 A(x). Then N spikes are stable if ag < N3/ and are
unstable if ay > a,N3/2.

If A(z) = 1then a. = /3L73/2.



Example

a(x) = ag with L = m. Then o, = 0.3111. Start with ag = 70 and N = 22 and very
gradually decrease a

u(x,t) a0=50, N=22

T - . . . 250 oa e :
N . . . .
| 5 u (numerics) N -
> h v (numerics) - . ao = 0311N3X2
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Example

a(x) = ap(1+0.5cos(x)) with L = 7. Then «,. = 0.504. Start with ay = 70 and
N = 22 and very gradually decrease ay

< :
(S S ad=57.0101, N=22 ~
L_ - J Y \
; u (numerics)
ﬂj v (numerics) 207
- = =u(x,) (asymptotics) ag = 0504N3/2
e X (asymptotics)
- 15
o =
«
10
5 F
Al Al PDE numerics
1 | = = = Large-N asymptotics
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60 50 40 30 20 10 0
b3 X a,



Example

0.5, <0
1.5, >0

with L = m. Then «,. = 0.474. Start with ag = 70 and N = 22 and very gradually
decrease ag:

a(x) = ag

u(x,t) a0=54.5001, N=22
5t __l ] u (numerics)
'“ l v (numerics)
10 .__q . 1 6 - — —ufx,) (asymptotics)
15} J &J ] ® X, (asymptotics)
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Grand conclusion

Suppose that a(z) = agA(x). Suppose that
Ne <« 1.
Then N spikes are stable provided that
Niin < N < Npax

where 2/3
1/2
9 Qa
Nmin = ap———; Nmax = (_)

5 Qe

Alternatively, N spikes are stable when
a0,coarse < @n < A split

where
3/2. _ —1/2
Q0. coarse — a.N / 3 Qg split — 5N€ / .

When A = 1then 8 = 1.35/L, o, = /3L73/>.



Creation-destruction loop

X

e a(x) =20(1+0.5cosx), e =0.05, x € [—m, 7]
e Self-replication near the center; coarsening near the boundaries
e Creation-destruction feedback loop

e Movie: chaos



Vortex lattices in Bose Einstein Condensates

Observation of Vortex Lattices

in Bose-Einstein Condensates ALY VOUME MR
J. R. Abo-Shaeer, C. Raman, |. M. Vogels, W. Ketterle

Fig. 1. Dbservation of
vortes lattices. The
examples shown con-
tain  approximately
(A) 16, (B) 32, (C) 8O,
and (D) 130 vortices.
The wvortices hawve
"crystallized” in a tri-
angular pattern. The
diameter of the cloud
in () was 1 mm after
ballistic  expansion,
which represents a
magnification of 20
Slight asymmetries in the density distribution were due to absorption of the optical pumping light.

e Model: Gross-Pitaevskii Equation with rotation, anisotropic trap and small damping

. 1 .
(v — Ki)wy = Aw + = (V(z) = |w’) w+iQ (zow,, — 11w,,)  (28)
V(z)=1—2*— b2} (29)



e Describes the quasi-2D condensate wavefunction w(x,y,t) in the presence of
rotation (i€2); inhomogeneous anisotropic trap (b # 1)

e Well-established BEC model [Pitaevskii&Stringari, 2003; Pethick&Smith2002;
Kevrekidis,Frantzeskakis&Carretero, 2008]

e Generally speaking, vortices appear as {1 is increased.

e Small damping v ~ 0(10_3) is used to to account for the role of finite temperature
induced fluctuations in the BEC dynamics [Pitaevskii, 1958].

- Without dissipation (v = 0), all stable eigenvalues are purely imaginary (neutral
modes). Adding small amout of dissipation “kicks” eigenvalues off the imaginary
axis and leads to vortex crystals.

e More recently, thermal (non-zero) temperature effects were shown to play an
important role in vortex dynamics and [e.g. Jackson,et.al, 2009; Allen et.al. 2013;
Middlekamp et.al, 2010 and others]



Motivating example

. 1 .
(v — Ki)wy = Aw + = (V(x) — |w\2> w + 18 (Towy, — T1Wy,) (30)
Viz) =1 —ai = bz (31)

e ¢ = (0.0109; v > 1,b = 1. Start with zero rotation {2 = 0 and gradually increase ().

e Then gradually decrease () back to zero. Movies: up,down



Q=0 0.00689 0.00705 0.00714 0.01119 0.01552

0 otees  0.01107  0.00873 0.00630 0.00445  0.00106
8u

— = Experiment 1 (increasing Q )

60 - —c— Experiment 2 (decreasing Q)|+~

40+

20

Number of vortices

0 0.05 0.1 Q 0.15 0.2 0.25

e Question: Can we predict how many vortices form as a function of dynamics?



GPE Vortex dynamics [Xie+Kevrekidis+K, submitted]

Overdamped limit (7 — o0) :

1
= Aw + = (V(z) = [w]*) w +iQ (zow,, — z10,,) (32)

V(z)=1—2 — b2} (33)

e Vortex dynamics are approximated by ODE’s for their centers

e We follow direct method of [Weinan E, PhysD1994] to obtain

B 20 2 (&)
it = <_1+62+V(§7)) (0 b2>§7“ Z\ swv & Y

where

v=1/log(1/e). (35)

- The term V%; is novel. Previous works [e.g. Colliander,Jerrard, IMRN1998; Yan-
Carretero-Frantzeskakis-Kevrekidis-Proukakis,PRA2014] used “classical”’ vortex-
to-vortex interaction is Zk# (&=Cr) corresponding to homogeneous trap

1€ —Ekl*?
(V' = const.)

V(&)
" V(&)

is especially felt away from trap center (e.g. when [V is large).



Direct comparison: full PDE vs. ODE, isotropic case
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Isotropic trap (V (z) = 1 — |z|°) large N limit

ODE becomes

2 & —& 11§
= -0 ) .
= (04 g "2 TGPl 0

e Coarse-grain by defining the particle density to be
pla) =) oz —&). (37)

e Continuum limit N — oo becomes

pr(x,7)+ V- (v(x)p(x, 7)) =0, (38)

2 T —1y 1
v(r) = —v2+ x4+ 2v(l — x2/ o(y)dy, (39)
)= (e g ) e tt- ) [ et

/p—N. (40)

e Assume that the density is radial and has support a :



- Using key identity [, rmg(lyl)dy = 235 [ g(s)sds,yields

_ 2 r
v(x) = (—VQ + - + Amv{1 = 7 >/ ; 182p(8)8d8) T (41)
, 1—

1 — 2 r?

- Inside the support r < a, we set v = 0. Upon differentiating with respect to r we
obtain

() 1 2Qvr 4 N 8 - 40
r) — _ _
P 4y (1—7r2) 1-—12 (1—?“2)2 o hed (42)
- Radius a is determined using the constraint fo s)sds = , which yields
1
N =~ ((_1 — §Qu) In(l —a?)+2—2(1 — a2)1) (43)
v

N versus a with €=0.01, 2=40

157




. . N =2
- The curve a — N (a) attains the maximum a = oo With

Niax = % {(QV + 2) (% In(Qv +2) —In(2) — %) + 2} . (44)

This is the key formula for explicit upper bound on the number of vortices as a
function of rotation rate (2!



Direct comparison: particle system vs. density
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Figure 1. (a) Stable equilibrium of Eq. (2:4) with f(r) as in Eq. (2.2). Parameter values are NV = 500, w = 2.95139, a =
1 and ¢ = 0.001, The dashed circle is the asymptotic boundary whose radius /t = (0.6 is the smaller solution to Eq. (4.9).
(b) Voronoi diagram used Lo compute the two-dimensienal density distribution. {c) The corresponding density distribution
i obtained by setting p(x;) = 1 /area; and extrapolating, where area; is the area of the Voronoi cell that contains ;.
(d) Average of ||}/ p(0) as a functien of » = |x|. Solid curve comesponds to the numerical computation. The dashed

curve is the formula (4.10). The vertical line is the boundary » = .
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Figure 2. Top row: stable equilibrium of Eq. (2.4) with f({r) as in Eg. (2.2), with N as shown in the title and with c =
0.5/N, w=2.95139, a = 1. The dashed circle is the asymptotic boundary whose radius & = (1.6 is the smaller solution
to Eq. (4.9). Bottom row: average of p (|x|)/p(0) as a function of r = |x|. Solid curve corresponds to the numerical

computation. Dashed curve is the formula (4.10). Vertical line is the boundary r = H.



Direct comparison: N .«

N versus (2
max
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Minimum /V, isotropic case

e Vortices emerge near the trap boundary as the rotation rate (1 is increased

e [Anglin, PRL2001; Carretero-Kevrekidis-K,PhysD2015]: In the case of an isotropic
trap, a zero-vortex state becomes unstable as () increases past = 2.561e2/3

e Approximate /N vortices by a single vortex of degree /N at the origin. Then similar
computation yields = 2.53¢2/3 + 2.

e Solving for IV, this in turn yields the formula
Q
Nuwin = 5 = 1.28¢7%/3,

with Vi < N < Npax.



Anisotropy (b # 1) with two vortices

e Two vortices will align along the longer axis of the parabolic trap x> + b*y? = 1.
- x-axis if b > 1 and y-axis if b < 1

- Example: b = 0.9535

Two-vortex trajectory

’—--.

0.3 DT
03 02 01 0 01 02



e Fold as (? is decreased below

- ()

- Two-vortex configuration disappears as {2 is decreased below §)s.

Qz versus b with €=0.025

5 -
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Analysis
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High-anisotropy regime

e For high anisotropy (large b), multipe vortices align themselves along the long axis

e Suppose b > 1 and all vortices are aligned along the x-axis. The steady state is

. 1 1 l—a7 . 0
0—[—a+ . I0= . 45
( 1—:6?)56‘7 V;:Cj—xkl—azi V1+b2 (49)
j

e Continuum limit:

. 1 “© 1 1—22
0= = d 46
( +1_x2>2+v][ay_x1_y2p(y)y (46)

where a is lattice “radius”, and subject to mass constraint:

/ p(x)dr = N (47)

a




e To solve (46): use Chebychev polynomials! They satisfy:

Ml— ul ! T
][ @) = —7Ty(x), ][ Ly = wU, 1 (2)

1 (y—z)y/1—y

(48)
The solution is given by
0 =2 @ -1 o
P - T - 1Y —1 a CLZ.
where
2 1 A 1 ay 1
=2 7Y Ti(y)————=dy. (50
’ 7T‘/_1( +1—a2y2)u(1—a2y2) W) 1_y2y (50)
and

1 Qa’ (a® —2)? )
N == - ~+1. 51
v (2\/1 —a* vl —a?): o1

The function @ — N (a) has a unique maximum at a* = 2 (Q - 1) /(22 + 1), given by

A@mm:§<r+xw%ﬂ—4hky+x0 (52)
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Figure 6: (a) Steady state density of the ODE system (63), compared with the continuum limit (66). Here,
N =40 and Q = 10.8 (b) Maximal admissable number of vortices for the full PDE simulation of (1) versus
the ODE system (2), versus the versus continuum formula (67). Both PDE and ODE simulations are fully
two-dimensional. Parameters are 7y = 1,k = 0, = 0.0088, b = 2.83 and  is slowly decreasing according
to the formula Q = 150 — 10~#¢. (c) Comparison of the ODE (63) and continuum limit formula (67) with
ODE motion restricted to the x-axis, for larger number of vortices. Same parameters as in (b), except that

Q = 500 — 10~*¢.



Further research

e For anisotropic trap, creation and destruction may happen at different points of the
boundary, potentially leading to complex creation-destruction loops: Movie

e Papers discussed (available from my website)

- S. Xie, P. Kevrekidis and T.. Kolokolnikov, Multi-vortex crystal lattices in Bose-
Einstein Condensates with a rotating trap, Proceedings of the Royal Society A
(2017), 474, 20170553.

- T. Kolokolnikov, P.G. Kevrekidis, and R. Carretero-Gonzales, A Tale of Two
Distributions: From Few To Many Vortices In Quasi-Two-Dimensional Bose-
Einstein Condensates. Proceedings of the Royal Society A (2014), 470,
20140048.



Conclusions

Reduced dynamics of PDE’s lead to new swarming systems which sometimes require
new techniques

Techniques in swarming lead to new insights for PDE systems.

Good open problem: do stability of 2D GM clusters.
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