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Abstract

We consider the aggregation equation p;, — V- (0VK % p) = 0in R”, where the
interaction potential K models short-range repulsion and long-range attraction.
We study a family of interaction potentials for which the equilibria are of finite
density and compact support. We show global well-posedness of solutions and
investigate analytically and numerically the equilibria and their global stability.
In particular, we consider a potential for which the corresponding equilibrium
solutions are of uniform density inside a ball of R” and zero outside. For
such a potential, various explicit calculations can be carried out in detail. In
one dimension we fully solve the temporal dynamics, and in two or higher
dimensions we show the global stability of this steady state within the class of
radially symmetric solutions. Finally, we solve the following restricted inverse
problem: given a radially symmetric density p that is zero outside some ball
of radius R and is polynomial inside the ball, construct an interaction potential
K for which p is the steady-state solution of the corresponding aggregation
equation. Throughout the paper, numerical simulations are used to motivate
and validate the analytical results.

Mathematics Subject Classification: 92D25, 35165, 35Q92, 35B35

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper concerns the study of the following integro-differential aggregation equation in R":

o+ V-(pv) =0 (1a)
v=—VK *p. (1b)
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Here, p represents the density of the aggregation, K is the interaction potential and * denotes
convolution. The equation appears in various contexts related to mathematical models for
biological aggregations; we refer to [1, 2] and references therein for an extensive background
and review of the biology literature on this topic. It also arises in a number of other applications
such as material science and granular media [3—6], self-assembly of nanoparticles [3, 4] and
molecular dynamics simulations of matter [7]. In this work we are only interested in biological
applications, where equations (1a) and (1b) can be used to model aggregations such as insect
swarms, fish schools, bacterial colonies, etc [1]. The convolution kernel —V K incorporates the
endogenous forces arising from the interindividual (attraction and repulsion) interactions [8].

The study of solutions to aggregation models of type (1a) and (1b) has been a very active
area of study over the past decade. A significant component of this study has dealt with the
well-posedness of the initial-value problem for (1a) and (15) [9-13]. Another aspect, which
is very important due to the biological relevance of the model, is the long time behaviour of
solutions to (1a) and (1b). This issue has been addressed in various works. Most of this study
deals with solutions that blow up (either in finite or infinite time) by mass concentration into
one or several Dirac distributions. The one-dimensional case was investigated in [10, 14, 15]
and blow-up in the multidimensional aggregation equation with radially symmetric kernels
was studied in [16,17]. The common feature of these studies in that attraction is the
dominating social interaction and repulsion is either absent or too weak to prevent Dirac mass
concentrations.

It is essential for an aggregation model to be able to capture solutions with biologically
relevant features. As indicated by Mogilner and Keshet in their seminal work [1] on the
class of models discussed here, such desired characteristics include finite densities, sharp
boundaries, relatively constant internal population and long lifetimes. There is only a handful
of works that investigate solutions to (1a) and (15) which exhibit these realistic features. Topaz
and collaborators [8, 14] derived explicit swarm equilibria that arise in the one-dimensional
model with Morse-type potentials. Numerical simulations [8] indicate that these equilibria
are globally stable, but analytical results supporting this claim are lacking. Furthermore, the
explicit calculations from [8, 14] do not extend to higher dimensions. Other works illustrate
asymptotic vortex states in 2D [18] and clumps (aggregations with compact support) in a
nonlocal model that includes density-dependent diffusion [2].

The main motivation of this study is to provide a more systematic study of solutions to
the aggregation model (1a) and (15) which have the biologically realistic features discussed
above. To this purpose we design interaction potentials K for which equilibrium solutions
to the aggregation model (1a) and (1b) have these desired characteristics and we investigate
analytically and numerically the well-posedness and long time behaviour of solutions. In the
rest of this section we give a brief account of the potentials used in this paper and describe the
equilibria that they generate.

The analytical and numerical techniques used in this work are rooted in the individual-
based description of the model equations (1a) and (1b). More specifically, the PDE model (1a)
and (1b) can be regarded as the continuum limit of the following particle (individual-based)
model describing the pairwise interaction of N particles in R” [8, 19]:

dX; 1 )
= =% > ViK(X; - X)), i=1...N, )

j=1...N
J#

where X (¢) represents the spatial location of the ith individual at time ¢. In the PDE context,

the density p(x, t) represents a continuum approximation to the distribution of individuals as

N — oo.



Swarm dynamics and equilibria for a nonlocal aggregation model 2683

N=800, t=5000

N=200, t=0..10 N=200, 1=5000

seve e

Figure 1. Numerical simulation of (5) in two dimensions and with F(r) = 1/r —r. Random initial
conditions inside a unit square were used. (a) Evolution of N = 200 particles with t = 0. .. 10.
(D), (¢), (d) Snapshot of the system at t = 5000 with N as indicated in the title.

Throughout the paper we assume that social interactions depend only on the relative
distance between the individuals and not on their actual locations and hence, consider only
radially symmetric potentials,

K(x) = K(|x]). 3
Introducing the notation

F(r)=—K (), “
we can write the particle system (2) as

ax; _ 1 REIND .y o
dr _N';NF(’XI X]|)|X[_in, i=1...N. 5)
J=1...

J#i
Note that F (|X i—X; |) represents the magnitude of the force that the individual X; exerts
on the individual X;, along the direction from X; to X;. Therefore, the force F(r) must
be negative (i.e. attractive) at sufficiently large distances r (otherwise all particles disperse
indefinitely), whereas F () must be positive (i.e. repulsive) for sufficiently small r to avoid
particle collisions. A force that satisfies these conditions is the Morse function [2, 8, 14, 20],
where the attraction and repulsion terms are both in the form of decaying exponentials, but of
different signs, strengths and length scales. The forces studied in this paper also satisfy the
conditions, but are of different forms.
Consider the following repulsive—attractive force in the entire space R"(n > 1):

F(r)= — —r, a>0. (6)
ri—

The constant a entering the expression of the repulsion component could have been scaled to
unity but we leave it in for convenience. Figure 1(a) shows the evolution of the particle model
(5) in two dimensions (n = 2) with F (r) given by (6) with a = 1. The remarkable property of
this force function is that solutions approach a steady state for which the density p is uniform
inside a unit ball, and zero outside. Increasing the number of particles (see figures 1(b)—(d))
does not alter the shape or the radius of the swarm. In a biological setting, such a configuration
can be considered optimal, in the sense that no individual within a swarm is favoured over any
others, as all are roughly equidistant from their neighbours?.

3 See section 5 for a discussion of how the force (6) can be modified to avoid the biologically unrealistic growth for
large or small r.
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For convenience of calculations we use in the subsequent sections a = ﬁ, where
n

w, = #;1) is the volume of the unit ball in R*. The force (6) for this choice of the

constant a corresponds to the potential K (see (3) and (4)):
K(x) = ¢(x) +31xl%,

where ¢ (x) is the free-space Green’s function for the negative Laplace operator —A:

__|-x|» n=1
2
1
$(x) = —Elnle n=2 7N
1 1
n=3

nn — 2w, |x|"2’

We also consider an extension of this potential, where the repulsion component remains in
the form of the Newtonian potential ¢, but attraction is given by a general power law with
exponent g > 2:

K(X)=¢(X)+$IX|", q =2 (®)
Newtonian (attractive) potentials for model (1a) and (1b) were considered by Du and Zhang
[21] in the context of vortex motions in two-dimensional superfluids. Bertozzi et al [13] studied
the multidimensional aggregation equations (1a) and (1) with potentials whose singularity at
the origin is just ‘better’ than that of a Newtonian potential (i.e. K(x) ~ |x|% «a > 2 — n).
A more recent work [22] includes also the critical case « = 2 — n. These studies concern,
however, concentration and singularity formation in measure-valued solutions. The purpose
of our work is very different: we want to consider attractive-repulsive potentials that yield
equilibrium states of finite densities and compact support. The attraction component élx |7 of
the potential is specifically designed to counter-balance the singular Newtonian repulsion.
Let us summarize the main results of this paper. In section 2 we study the distinguished
case ¢ = 2 of (8), corresponding to the force (6) with a = ﬁ We first show that in this case

the equilibrium density of (1a) and (1b) is uniform inside the ball of radius R = (nw,)~"/" and
zero outside the ball. Furthermore, we use the method of characteristics to explicitly solve the
full dynamics in one dimension, as well as the dynamics corresponding to radially symmetric
initial conditions in any dimension. This shows directly the global stability of the equilibrium in
one dimension, as well as the global stability within the class of radially symmetric solutions
for any dimension. We also prove global well-posedness of solutions to (1a) and (1b) by
borrowing techniques used in the analysis of incompressible fluid flow equations. In section 3
we consider general potentials (8) with ¢ > 2. The explicit calculations from ¢ = 2 do
not extend to g > 2. We first prove global well-posedness of solutions. By reformulating
the equilibrium problem as an eigenvalue problem for an integral operator and applying the
Krein—Rutman theorem, we show the existence of a unique radially symmetric equilibrium of
compact support. We also derive some more explicit results for the special subcase when ¢ is
even. Finally in section 4 we solve the following restricted inverse problem: given a radially
symmetric density p that is zero outside some ball of radius R and is polynomial inside such
a ball, construct a corresponding force F'(r) for which p is the equilibrium state. Throughout
the paper, numerics are utilized to motivate and validate the analytical results.
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2. Constant, compactly supported steady states

We start by making a general observation that the model equations (1a) and (1) have two
important conservation properties. Denote the initial density by po:

px,0) = po(x), x € R".
The aggregation model (1a) and (1b) satisfies

(i) Conservation of mass:
/p(x,t)dx:M, forallt > 0, )

where the constant M denotes the initial mass M = f po(x) dx.
(i) Conservation of centre of mass:

/x,o(x, t)ydx =0, forallt > 0, (10)

where we assumed that without loss of generality, the centre of mass of the initial density

is at the origin: [ xpo(x) dx = 0.

Both properties follow directly from (1a) and (1b). Property (ii) uses the radial symmetry
of the potential. The two conservation properties apply to all potentials considered in this
paper and will be used frequently.

In this section we study the distinguished case ¢ = 2 of (8),

K(x)=¢(x)+1Ix*. (11)

The equilibria of (1a) and (1b) for this case correspond to constant densities supported on a

ball. We use the method of characteristics to solve explicitly the equation in 1D. The explicit

calculations extend to radially symmetric solutions in any dimension and yield results regarding

global stability of the equilibria. We also investigate the well-posedness of solutions. Only

the one and two-dimensional cases are discussed in detail. The higher (n > 3) dimensional

cases can be treated similarly and only the key differences to case n = 2 will be highlighted.
We introduce the notation:

f(x) =—=VK(x)
X
= F(x)—.
|x]
and write the aggregation model as
pr+ V.- (pv) =0 (12a)
v=fxp (12b)
1 1 X
J@) = ——= — Ixl ) —. (120)
nw, |x[" x|

2.1. One dimension (n = 1)

We will show that the following constant, compactly supported steady state is a global attractor
for solutions of (12a)—(12¢) whenn = 1:

_ M if |x] <3
p(x>={ x| < 3

0 otherwise .
It is easy to check that p defined above is a steady state. Indeed, calculation of v = f % p,
with f given by (12¢) (forn = 1, w; = 2), yields:

(13)

v(x) =0, for all |x| < 3.
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Note that p = O for |x| > %, which implies pv = 0 a.e. in R. It is then easy to check that p is
indeed a (steady) weak solution of the conservation law (12a)—(12c).

We show that p is a global attractor by calculating an explicit solution to (12a)—(12¢)
when n = 1. Indeed, compute v, with f given by (12¢). We find

v(x, 1) =/x p(y,t)dy—M(x+%), (14)

where we used conservation of mass (9) and conservation of centre of mass (10).
Using (14), the one-dimensional model equation (12a)—(12c¢) can be written as

Pi + VP = =P
=—p(p —M).
Define the characteristics X (¢, ¢) that originate from « at ¢t = 0:

%X(Ot, ) =v(X(a,1),1), X(o,0) =a. (15)

Along characteristics, p(X («, t), t) satisfies
b M
i = —p(p — M).
This ODE has a solution that asymptotically approaches the value M as t — oo. In fact,
p along characteristics can be computed explicitly:
M
1+ (i - 1) e—Mi

poler)

p(X(a,1),1) =

We solve now for the characteristic paths. Denote

w(x, 1) =/ p(y,1)dy.

—00

Use (14) and (15) to obtain

d 1
5X(a’ t) =wX(a,t),t) — M <X(oz, 1)+ 5) .

Integrate the one-dimensional version of the model equation (12a) from —oo to x to find that

w satisfies
1
w,+<w—M<x+§))wX=0.

Infer from the last two equations that w is constant along the characteristic paths:
w(X(a,t),t) = w(a, 0).

The characteristic equation can now be written as

dr
This ODE (with initial condition X (o, 0) = «) can be solved exactly. The solution is given by

X, t)=e Ma+ % (1—e™) <w(a, 0) — %> :

iX(oz, H)=w(, 0 —M (X(oz, 1)+ %) .

2
Ast — oo, X(a,t) — ﬁw(a, 0) — % Therefore, the real line (—o0, 0o) is mapped
into (%w(—oo,O) — % %w(oo,O) - %). From the definition of w, w(—o00,0) = 0 and

w(oo, 0) = M, hence the characteristics asymptotically approach the interval (—%, %). As p
along any characteristic path approaches the value M as t — oo, we conclude that p given by
(13) is a global attractor for the 1D model equation.
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2.2. Two dimensions (n = 2)

In this subsection we investigate the solutions to the model equation (12a)—(12c¢), forn = 2. We
derive a priori estimates and establish local and global existence and uniqueness of solutions.
Finally, assuming radial symmetry, we prove that solutions approach asymptotically a steady
state given by a constant density supported on a disc:

1
2M if —
) = il =< (16)

0 otherwise .
To show that p is a steady state of (12a)—(12c¢), note first that with K as given by (11),

1
A, K(x—y)6(y)dy ] =0 ' S
(/Rz x=yp®») y) in |x| < o

Using radial symmetry we conclude that

1
K(x —y)p(y)dy = const. in x| < —.
/R2 2
Hence, by differentiation, v = —V K * p vanishes inside the disc:
1
v(x) =0 in x| < —.

Var
Since p = O for |x| > \/#7, pv = 0 ae. in R%. Hence, /5 is a (steady) weak solution of
(12a)—(12c).
We prove at the end of this subsection that p is a global attractor for radially symmetric
solutions. Numerical results (see for example figure 1) indicate, however, that p is also a global
attractor for solutions that are not radially symmetric.

2.3. Properties of solutions to (12a)—(12c)

Bounds on the density. Calculate v from (12b) and (12¢) (n = 2, w, = ) using conservation
of mass (9) and conservation of centre of mass (10):

1 1 xX—y
— —|x =yl p(y)dy
r2 \ 27 [x — | |x — ¥

1 X —
- — yzp(wdy—x/ p(y)dy+/ yo(y) dy
2w Jre |x — y| R2 R2
=M =0
Hence,
v(x) = /zk(x —yp(y)dy — Mx, (17)
R
where
k) = — (L, 22 (18)
)=—|—,—]).
2 \|x)?7 |x|?

The convolution kernel k is singular, homogeneous of degree —1. A kernel with similar
properties appears in the Biot—Savart law for incompressible fluids, which provides a nonlocal
expression for velocity in terms of vorticity. The analogy with the Biot—Savart law will be
heavily used below to show existence and uniqueness of solutions to our aggregation model.
Analogies with incompressible fluid flow have also been made in the context of Keller—Segel
models, where the chemical concentration can be expressed as a convolution of the Newtonian
potential with the organism density [23].
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Using

k) =V, (% log |x|) ,
one can derive from (17):
V.-v=p—-2M. (19)
Expand V - (pv) = v - Vp + pV - v, and write the aggregation equation (12a) as
prt+v-Vp=—p(p—2M).

Along characteristics,

%X(a, 1) =v(X(a,1),1t), X(a,0) = ¢, (20)
p(X (o, 1), t) satisfies

b _ 2M 21

5P =—P(p —2M). @D

This ODE has a solution that approaches the value 2M as t — oo, along all characteristic
paths that transport non-zero densities. In fact, a solution of (21) can be computed explicitly.
Along characteristics, p is given by

2M
1.,.( M l)e—ZMz7

p(X(a,1),1) = (22)

po(@)

where py is the initial density.
There are two important conclusions that can be inferred from (22).

(i) (Bounds on density) Equation (22) provides an upper bound on the density p, for as long
as the particle map exists:

2M

_IM 1) e—2M1
llooll oo

oG DL~ <
L +<

We can also derive a uniform bound in time:
oG, DllL~ < max{llpollL~, 2M}, for all 7. (23)
(ii) (Bounds on Jacobian) The continuity equation (12a) expresses the fact that
p(X(a, 1), 1)J(a, 1) = po(a), (24)
where
J(a,t) =detV, X

is the Jacobian of the particle map ¢« — X («, t). Using (22), we compute

J(at) = p;}(;) + (1 - _p;}(;)) e 21, (25)

Note that
J(a,t) >0 for all ¢,

guaranteeing that the particle map @« — X (o, t) is invertible for as long as it exists.
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Bounds on the support. We show that solutions of (12a)—(12c) are compactly supported
provided the initial density pq is. The density is transported along characteristics according to
(24), so it is enough to show that the trajectories X (¢, ¢) that carry non-zero densities remain
within some compact set.

Calculate using (17) and (18):

X

) 1/ Y
v — . —
X X X 27‘[ |x_y|2

We isolate the singularity at the origin of the convolution kernel and estimate

p(y)dy — M|x|*. (26)

x—y x-(x—y x-(x—y
x-f 2p<y,t>dy=/ —2p<y,r)dy+/ S p(y.ndy
|X - y| ly—x|<1 |X - )/| |y—x|>1 |)C - y|
< oGy D)llpelx] dy + |x| p(y,t)dy
ly—x|<1 |x —)’| [y—x|>1
< @rllpC Olize + 11pCOllL) |x]. (27

Suppose that the solution p has remained compactly supported in a disc of radius R up to time
t (equivalently, the particle trajectories X (o, s), s < f, that carried non-zero densities have
been contained in the disc of radius R). Assume ¢ large enough such that |p(-, #)| L~ < 4M
(see comment (i) above regarding bounds on density). Hence, the previous inequality (also
use ||[p(-, 1)|lzr = M) yields

x / |x - y|2,0(y,t)dy < (87 + DHM|x|.
x—y

Use (26) for x = X («, t) and infer

d 1
—|X(a, )| < (44— | M — M|X(a, 1)].
3 X (@Dl <+2n> | X (e, 1)]

Hence, provided

1
4+ — < R,
2

the trajectories that carry non-zero densities will remain inside the disc of radius R.

Existence and uniqueness of solutions. Make the change of variable y = X (8, ) and use
(24) to write the characteristic equation (20) as

1 X(o, 1) — X(B. 1) B
EX(Ot, r) = 5/1;2 X1 —X(ﬂ,t)|2p°(ﬁ) dg — MX(a,1) (28a)

X(@, 0) =a. (28b)

We regard (28a) and (28b) as an ODE on a certain Banach space and show the local existence
and uniqueness by invoking the standard Picard theorem. The choice of the Banach space and
the setup of the ODE framework is the same as that presented in chapter 4 of [24] in the context
of incompressible flow. In [24], the particle-trajectory method is used to show existence and
uniqueness of incompressible Euler equations in 2 and 3 dimensions. The Biot—Savart law
for incompressible fluids expresses the velocity v as a space convolution of a kernel K with
vorticity w. The convolution kernel K is singular, homogeneous of degree 1 — n (n is the
number of dimensions), i.e. K (Ax) = A ™K (x), for all A > 0, x # 0. This property of the
kernel plays a central role in the analysis and the ODE setup from [24]. Another important
aspect of the analysis presented in [24] is how the global existence of solutions is linked to the
accumulation of vorticity fol lw(-, )| L=~ ds (Beale—Kato—Majda condition [25]). In particular,
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global existence can be inferred in 2 dimensions, since vorticity is preserved along particle
paths.

We describe below how the incompressible fluid framework extends to the particle system
(28a) and (28D). In (12b) the velocity is expressed as a convolution, where the role of vorticity
is played now by the density p. The first main observation is that the convolution kernel in
(28a) and (28b) is homogeneous of degree —1 (1 — n in n dimensions), as is the kernel in the
Biot—Savart law. The second main observation relates to the Beale-Kato—Majda condition.
Due to previous considerations, the density p is uniformly bounded in time (the result holds in
any dimension as well), guaranteeing global existence of solutions. To avoid an unnecessarily
long presentation of the existence and uniqueness results, we will make reference to [24]
for all technical lemmas and theorems. There are a few key aspects that are different from
incompressible fluids (the fact that the flow of (28a) and (28b) is not divergence-free for
instance) which will be highlighted appropriately.

Write (28a) and (28b) as

%X(a, 1) =F(X(a, 1)) (29a)
X(«,0) =a, (29b)

where the map F(X) is defined by

1 X(a,1) — X(B, 1)
F(X(a, 1) = E/Rz X@.1) —X(ﬂ,t)|2'00(’8

Following [24], we consider the Banach space

B = {X : R* — R?such that | X||;,, < 00},
where || - |1, is the norm defined by

X1,y = 1XO)]+ Vo XllL> + [VaX], . €29)
Here, | - |, is the Holder seminorm

Ve X (@) — Vo X (o
Va1, = sup Ve X (@ = VoX@)],
astel oo — /|7

ydB — MX (o, 1). (30)

Consider an open subset Oy, of B, defined by
O = [X € B|infdetV,X (o) > 1/L and || X|l;, < L} .
The local existence and uniqueness is stated by the following theorem.

Theorem 2.1 (Local existence and uniqueness). Consider a compactly supported initial
density py € L>®(R?), with lool, < oo, for some y € (0,1). Then for any L > 0, there
exists T(L) > 0 and a unique solution X € C'((—=T (L), T(L)); Op) to (29a)—(30).

Proof. The proof follows from Picard’s theorem, provided F is shown to be bounded and
locally Lipschitz continuous on Oy. The expression for F from (30) contains a linear term
(which presents no difficulties) and a convolution of a singular kernel of degree —1 with the
initial density po. To show that F is bounded and Lipschitz continuous one can follow the
same steps as in the proof of proposition 4.2, chapter 4.1 in [24]. The key ingredients used
in that proof are the degrees of homogeneity of the kernel and its gradient; the specific form
of the kernel is not used in fact. The gradient of the kernel is homogeneous of degree —2
and defines a singular integral operator (SIO). It is specifically the limited properties of these
singular kernels that bring the need for the Holder y-seminorm used in (31). See the appendix
for an outline of the proof. ]
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We now use a continuation result of solutions to autonomous ODEs on Banach spaces
(theorem 4.4 in [24]) to upgrade the result to global existence. Inspecting the set O we infer
that we cease to have a solution at a finite time 7, provided either inf,, detV, X (o) becomes 0
or || X]|l1,, becomes unbounded as t — T.

The first scenario is ruled out by the following proposition.

Proposition 2.2. At any fixed time t < 00, solutions of (29a)—(30) satisfy

inf detV, X (a, 1) > e 2M",
o

Proof. The proof is a direct consequence of the explicit calculation of the Jacobian J. From
(25) we derive, at any time ¢:

J(a, 1) = e M1 for all .

The conclusion of the proposition then follows. g

The second scenario for the break-up of the solution (finite-time blow-up of || X || ,) will
be treated as in chapter 4.2 of [24].

Proposition 2.3. Provided fot IVu(-, $)|lL has an a priori bound, ||VoX(-,t)||L~ and
Vo X (-, 1)],, are a priori bounded.

Proof. See the appendix. ]

For incompressible fluids, global existence of solutions is linked to the Beale—Kato—Majda
condition [25]. More specifically, a sufficient condition for global existence is an a priori control
on the time-integral of the supremum norm of vorticity. In the context of our aggregation model
(29a)—(30), this condition will be replaced by an a priori bound on fol lo(C, )L~ ds.

Lemma 2.4. A sufficient condition for fot IVV(-, 8)|| L~ ds to be a priori bounded is an a apriori
bound on fot lo(-, $)|lz= ds. More specifically,

t
f V(- $)|l 1 ds < eC@ o o€l ds
0

where C(py) is a constant that depends on the initial density only.

Proof. In the context of incompressible fluids, the corresponding statement, i.e.
fot lo(-, s)||z~ ds controls fot IVv(., s)|lL~ ds, is the key ingredient for linking the global
existence with the Beale-Kato—Majda condition (see [25] or theorem 4.3 in [24]). Its proof
can be trivially adapted to our problem, with density p now replacing vorticity w. We omit the
details. O

Finally, we have all the ingredients to prove global existence of solutions. The result is
given by the following theorem.

Theorem 2.5 (Global existence). Consider an initial density py as in theorem 2.1. Then, for
every T, there exists L > 0 and a unique solution X € CY([0, T); Or) to (29a)—~(30) (the
solution exists globally in time).
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Proof. The solution X is in the set O, provided
inf detV, X () > 1/L and X1, <L. (32)

Using proposition 2.2, the first condition is satisfied provided we choose L > e, We now
investigate the second condition in (32). Start by inspecting the first term in (31), | X (0, #)].
Integrate (20) to obtain

X(0.1) = / 2(X (0. 5). 5) ds. (33)
0

Recall that the expression for velocity v(x) in (17) has two components: the convolution of
the singular kernel k of degree —1 with p, and —Mx. To estimate the first component of v,
we use lemma 4.5 in chapter 4 [24] and find

k% pll = < cvVRIpllL~,

where c is a constant and R is the radius of the ball that contains the support of p—the existence
of such a ball was shown above, in the paragraph that discusses the uniform, compact support
of the density. Hence, from (33), we find

t t
1X0,0)] < C\/ﬁf oG, )l dS+Mf 1X (0, 5)|ds.
0 0
Gronwall’s lemma yields
t
X0, < VR f oG, 9)llz~e™ ™ ds. (34)
0

The control of || X||,, now follows from (34), (105), (108) and lemma 2.4. More precisely,
by redefining the constants appropriately, one can derive

C3 [31pC.9)l oo ds
X G, D)l < CeCrele 0™, (35)

Using the uniform bound (23) on || o (-, s)||L~ we observe that we can choose the constant L
large enough such that || X (-, #)|l1,, < L, forallz € [0, T). O

Asymptotic behaviour of solutions. We study the asymptotic behaviour of radially symmetric
solutions and prove the following result:

Theorem 2.6. Consider a radially symmetric initial density py satisfying the hypotheses of
theorem 2.5. Then, the global solution p of the 2D aggregation model (12a)—(12c) remains
radially symmetric for all times and approaches asymptotically, as t — 00, the steady
state (16).

Proof. It is easy to show that, due to the radial symmetry of the interaction kernel, the density
remains radially symmetric for all times. For radially symmetric solutions, the velocity at a
point x has magnitude that depends on |x| and direction ﬁ Consequently, the trajectory that
emanates from a particle « is a straight line in the direction «:

X(a,t) = A(la|, t)a, (36)

where A is a function that has to be determined.
Using (36), we compute the Jacobian J = detV, X:

J(a, 1) = A(el, HA(lal, 1) + A (||, D)),
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where the subindex r indicates the derivative with respect to the first (radial) coordinate. The
initial density is radially symmetric, po(«) = po(r), where r = |«|. Using the exact formula
(25) for J we arrive at an ODE for A:

32w angr = 200 (2D ou
" 2M 2M '

Multiply by the integrating factor 2r to obtain:

2 (2 =2 (’W) + (1 - —’W)> e_ZM’) .
dr 2M 2M

Integrate from O to r to find

1 r
=L f 5p0(s) ds + 2621 / s (1229 gy (37)
M Jy 0 M
Denote
R, = lim | X (e, 7). (38)
—0o0

Pass t — o0 in (37) and use (36) to obtain

1 Jor]
Ré = —/ spo(s) ds.
M Jo

Note, however, that the mass M can be written in polar coordinates as

M :27‘[/ spo(s) ds.
0

Therefore, R, < JLzTr for all @ and clearly, for « large, outside the support of py, R, = \#

This shows that the disc of radius 1/+4/27 is a global attractor for trajectories. From (22),
p — 2M ast — oo, along any particle path. Combining the two results we infer that radial
solutions to the 2D aggregation model (12a)—(12¢) approach asymptotically the compactly
supported steady state (16). (|

2.4. Higher dimensions (n > 3)

All calculations and results from the previous subsection extend to general n dimensions. We
mention briefly the key differences. The velocity v reads

v(x) = / k(x = y)p(y)dy — Mx, (39
where
1 x
k(x) = ) (40)
nwy |x|"

The convolution kernel k is singular, homogeneous of degree 1 — n. Existence and uniqueness
results follow as in 2D, via the analogy with incompressible fluid equations. Using

Viv=p—nM

we can write the model equation (12a) along characteristics as

= ( M)
—p=— —nM).
tp p(p
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This ODE has a solution that approaches the value nM as t — oo, along all characteristic
paths that carry non-zero density values. A solution can be computed exactly:

nM

L (20 p)enmtr
po(@)

p(X(a,1),1) =

where py is the initial density. The density is uniformly bounded in time:
loC, llre < max {|lpgllz~,nM}, for all z.

The Jacobian of the particle map @« — X («, t) can also be computed:

J(a 1) = p};’;‘;) + <1 - —p,(,);j)) e M1, @1

For radially symmetric solutions, using (36), one finds

J(, 1) = A" Mal, ) lal, ) + A (e, £)]ec]).

Use the exact formula for J to arrive at an ODE for A:

wr e r = P (P e
nM nM

Solve by integrating factor n7"~! to obtain:

1 [ "
At = —/ 5" oo(s) ds +ne’”M’/ s = Po(s) ds 42)
M J, 0 nM

Hence, we compute the asymptotic radius R, (see (38)):

1 Jet|
Rn —_ n—1 ds.
o M/o 5" po(s)ds

Since M = nw, fooo s" 1 po(s) ds, we find that R, < ( ')l for all . Particles at infinity are
nwy)n

(nw1 )"L ’

We conclude that radial solutions to the n-dimensional aggregation model (12a)—(12c¢)

approach asymptotically the compactly supported steady state given by

mapped on the n-sphere of radius R, =

_ nM if |x] < -
plx) = (nw,) 7 (43)

0 otherwise .

3. Non-constant, compactly supported steady states

In this section we study the aggregation model (1a), (1) and (8), with ¢ given by (7), for
exponents g > 2. Note that most of the explicit calculations from section 2 do not apply
for general ¢’s. We are able to show that, for exponents g > 2, the amplitude and support
of solutions to the aggregation model remain uniformly bounded in time. As a consequence,
existence and uniqueness results from the previous section extend to g > 2. We also investigate
the radially symmetric steady states. For every ¢ > 2, a unique radially symmetric, compactly
supported steady state can be shown to exist analytically. When ¢ is even we show that these
equilibria are polynomials of even powers of the radial coordinate r. Finally, we describe a
procedure to calculate numerically the radially symmetric steady states for general ¢ > 2 and
provide numerical evidence that these steady states are global attractors for the dynamics of
(1a) and (10).
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3.1. Properties of solutions

For convenience, we restate the aggregation model for general exponent g:

pr+V-(pv)=0 (44a)

v=fxp (44b)

foo) = (L — |x|q—1) =, (44c)
nw, |x|"! x|

Bounds on the density and its support. Calculate from (44b) and (44c):

V-v=p—m+q—m/‘u—ﬂ“%@Nw- (45)
Rn

Hence, along characteristics, the density p(X (¢, t), t) satisfies

D
DiP="F (/0 —(n+q—2) /Rn | X (o, 1) — X (B, t)l"_zpo(ﬁ)dﬂ) . (40)

Note that this is no longer a local equation, as for ¢ = 2 (see (21) for instance). The ODE
(46) now depends explicitly on the particle trajectories and in particular, on the support of the
density. Nevertheless, we can still show that, provided the density and its support are bounded
initially, they remain uniformly bounded for all times.

At time ¢, define the maximum density pmax(¢#) and the maximum radius of support
R(?) as

Pmax (1) = max p(«a, 1), R() = max |X(a,1)| 47)
a a:po(e)#0
From (46), an inequality for pmax can be easily obtained:
d
PEE < ((1+ g = DERM)YM = pmax)pmax. (48)

Regarding estimates on the support radius R(¢) we proceed similarly to the case g = 2
and calculate using (44b) and (44c¢):

X1 = / LI (v dy —/ x - (= ylx = ¥ p(y 1) dy. (49)
Rr MWy |x — Y| R

The first term in the right-hand side of (49) can be bounded similarly to (27). For any
fixed r, > 0, we have

/R Mp(y,t)dy:/ Mp(y,t)dy

n nwnl-x - }’|" |x—y|<ry nwn|x - )’|”
x-(x—y

+ / = p(y. 1) dy
X—y|>r na),,|x - Y|

< pmax (1)]x] 1

— _dy
h nwy |x—yl<ry |x - Y|"71
x|
0 p(y,1)dy
Ny T [x—yl>ry
M
< | pmax (Drs + ———= | Ix]
nwyry
ne (M (50)
= —_— X .
" P Pmax

where we chose r, = (M/(w, pmax))"/" in the last step.
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The second term in the right-hand side of (49) can be bounded by restricting to those
trajectories X («, ¢) on the boundary of the support, i.e. | X (o, t)| = R(t) > |X (8, t)| for any
B such that py(B) > 0. We need the following lemma.

Lemma 3.1. There exists a constant ¢, depending only on the dimension of the space such that
for any nonnegative, compactly supported measure (. on R" with total mass M and centre of
mass at the origin, we have

/ X (= y)lx =yl du@y) = clx|’M, (51)

for any x with |x| > R, where R is the radius of the support of [L.

Proof. Suppose there is no constant ¢ with such properties. Then there exists a sequence of
points {x,,} and nonnegative measures {{,,} of total mass M and centre of mass at the origin
such that

1
/ X G = D = 12 it () < LM, (52)

where |x,| > R, and R,, is the radius of the support. Since above inequality (52) is
invariant under the scaling on the space x,, — x,,/|xul|, ¥ = ¥/|x»| and on the measure
Ui (Y) = U (/1 Xm ) /1% |", we can assume that |x,,| = 1 and R,, < 1. By the compactness
of the sequence {x,,} and the weak compactness of the measures {u,, }, there exist subsequences
{xm,} and {s, } such that x,, converges to xo with |xo| = 1 and w,,, converges to . In
particular, 11 has the centre of mass at the origin. Passing the limit in (52) when m; goes to
infinity,

[ 300 =0 = 512 diao) = im0+ G0 = )l = 3102 i, )
n mg— R

1
< lim —|xo|?M = 0.

mg—>00 My

This implies that y is the delta measure concentrated at x( , and therefore has the centre of
mass at xo. This contradicts the fact that 1y has centre of mass at the origin. O

Remark. The constant ¢ can be calculated explicitly (although not always optimal) in the
special cases when ¢ is positive and even. For ¢ = 2,

/ x-(x = y)p(y)dy = [xI*M,

with ¢ = 1. For g =4,
/ X (x — )k — yPo(y) dy

= / (I + P Ply P +2Ge )% = (- »IyPp () dy > [x[*M,
Rn
with ¢ = 1 (although not necessary optimal).

Using (50) and (51) in (49) for x = X («, t) on the boundary of the support, we find the
differential inequality

dR _n+1 (M\"" |, 1

— < — p " —cMRI. (53)

dr n Wy




Swarm dynamics and equilibria for a nonlocal aggregation model 2697

Now inspect (48) and (53). If initially the maximum density pmax (0) and the radius of
the support R(0) are bounded, then there exist p > pmax(0) and R > R(0) such that

S n+l (MN" sq-1
n+q—-2)QR)T™"M —p <0, — p " —cMRT L0. (54)
n Wn
Therefore, the region [0, o] x [0, ﬁ] is invariant for the system of differential inequalities (48)
and (53) and for any ¢ > 0, the density p and the radius of its support are bounded by o and
R, respectively.

Existence and uniqueness of the solutions. Reformulate the PDE model (44a)—(44c) in terms
of particle-trajectory equations, i.e. system (29a) and (29b) with F given by

_ I X(a,t)— X(B,1) _ _ s _
FX(@ 1) = /R,,(nw”xm,t)_ g~ @D = XX xw,r)))

xpo(B)dp. (55)

Existence and uniqueness of the particle-trajectory system can be studied very similarly to
the analysis of the case ¢ = 2 from section 2. Using the same setup (Banach space B, open
subset ), one can show the Lipschitz continuity of the map F and infer local existence and
uniqueness. Then, similar to the case ¢ = 2, one can use the uniform bound on the density and
invoke a Beale-Kato—Majda type argument to extend the result globally in time. The uniform
bound on the support of the density is another key ingredient in the estimates. Also needed
for global continuation in time is a lower bound on the Jacobian J of the particle map X («, t).
For ¢ > 2 we do not have an explicit calculation of the Jacobian J («, t) as for case ¢ = 2, but
we can use the differential equation that J satisfies,

%J(a, 1) = J(a, H)div v(X (a, 1), 1),

and derive
t
J(a,t) =exp (/ div v(X (a, 5), 5) ds) .
0

Hence, using (45),
J(a, 1) = exp (—=(lpliL~ + (n +q — 2)QR)I > M)r)
> exp (—(,5 +(n+q— 2)(21§)q’2M)t> .
We summarize these results in the following theorem:

Theorem 3.2 (Global existence and uniqueness for q > 2). Consider the trajectory equa-
tions (29a), (29b) and (55) with the Banach space setup and notations from section 2, and
a compactly supported initial density pg € L*(R"), with |pyl,, < 0o, for some y € (0, 1).
Then, for every T, there exists L > 0 and a unique solution X € C'([0, T); ©L) to (29a),
(29b) and (55) (a unique solution exists globally in time).

3.2. Radially symmetric steady states

Numerical simulations indicate that the attractors of the dynamics of (44a)—(44c) are always
radially symmetric and compactly supported. Guided by this observation, assume the model
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(44a)—(44c) admits a radially symmetric steady state 5(r)* supported on the ball B(0, R). The
velocity v is zero in B(0, R), so its divergence also vanishes. Use (45) to find

p—(n+q—=2) | |x=yl"?p(»)dy=0 in B, R).
Rﬂ
Therefore, the density p satisfies the following homogeneous Fredholm integral equation
R
ﬂﬂ:c@Jﬂ/ )" I (r, ) dr, 0<r <R, (56)
0
where
G.n) nn+q—2)w,
g, n) = —m o
1 o sin"* 0 do
and

g
I(r,r) = / 2+ ()2 = 2rr' cos 0)> 1 sin" % 6 d6.
0

In other words, p is an eigenfunction of the linear operator Tk, where

R
T (r) = c(q. n) / Y B Y dr, (57)
0

that corresponds to eigenvalue one. Here the subscript is used to emphasize the dependence
of the integral operator on the radius R. This eigenvalue problem consists in determining
the eigenfunction p and the radius R of the support. The actual steady density is a constant
multiple of this eigenfunction, where the constant is determined from the initial mass.

We state below an existence and uniqueness result regarding the steady states and also
present an algorithm for computing them.

Theorem 3.3. For every g > 2 and M > 0, there exists a unique radius R (that depends
on q and n only) and a unique radially symmetric steady state p of the aggregation model
(44a)—(44c) that is supported on B(0, R), has mass M and is continuous on its support.

Proof. We use a scaling argument and consider the case R = 1 first. For ¢ > 2, since
the kernel c(g, n)(#')"~'1(r, ') is nonnegative, continuous and bounded, the corresponding
operator 7 is strongly positive and bounded. We apply the Krein—Rutman theorem [26] to
operator 7 in the following setup. Take the cone in C ([0, 1], R) consisting of all non-negative
functions. Tj is a linear, strongly positive, compact operator that maps the space of continuous
functions C ([0, 1], R) into itself. By Krein—Rutman theorem (see theorem 1.2 in [26]), there
exists a positive eigenfunction p; such that 710, = Ap;, where A (which depends only on ¢
and n) is the spectral radius of 7|. Moreover, the eigenvalue A is simple and there is no other
eigenvalue with a positive eigenvector. By making the change of variable

p(r) = pi1(r/R) (58)
in (57), we obtain

Trp(r) = R™723 5(r).
Now ask that p is an eigenfunction of Tk corresponding to eigenvalue one and find

R =", (59)

4 By abuse of notation, we write p(r) = p(x).
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Figure 2. (a) Plot of the radius of the support R of the steady states of (1a), (1) and (8), as a
function of the exponent ¢, for various space dimensions n. The plot suggests that the radius R
approaches asymptotically a constant, as ¢ — 00. (b) Normalized radially symmetric steady states
p(r) of (1a), (1b) and (8) in two dimensions for various values of the exponent g. For ¢ = 2 the
steady state is the constant solution in a disc. As g increases, the qualitative features of the steady
states change, as mass aggregates towards the edge of the swarm, creating an increasingly void
region in the centre. This suggests that, as ¢ — 00, the steady states in two dimensions approach
a ring solution of non-zero radius.

which gives the radius of the support as a function of g and n only. Once a mass M for p is
set, uniqueness can be inferred from the uniqueness properties of the spectral radius of 7} and
its associated eigenfunction p;. ]

This theorem also suggests an algorithm, called the power method [27], to calculate the
steady state p. Given an initial positive density 5® on [0, 1], consider the iterative scheme

ptl =Tip " /ITip ™,

where || - || can be any norm for functions on the unit interval [0, 1]. The sequence p
converges to oy, and the spectral radius of 7] is given by

A= Tim 716" /15"
m— 00

The steady state o can then be calculated from (59) and (58).

For numerical purposes we discretize the integral operator 7 by trapezoidal rule. Using
this numerical procedure we first investigate how the radii R of the support of the steady states
depend on the exponent g. In figure 2(a) we plot R as a function of g for various values of
the space dimension n. The plot suggests that R approaches a constant as ¢ — 00, but careful
asymptotics will have to support this claim. We plan to investigate this issue in future work.

Figure 2(b) shows the steady state densities p(r) in two dimensions, corresponding to
various values of the exponent ¢g. The plots represent p as a function of the radial coordinate r.
All steady states presented in figure 2(b) are normalized to have unit mass M = 1. For
g = 2 the steady state is the constant solution in a disc. As g increases, the qualitative
features of the steady states change: mass aggregates towards the edge of the swarm, creating
an increasingly void region in its centre. Combined with the numerical results presented in
figure 2(a), figure 2(b) suggests that, as g — 00, the steady states in two dimensions approach
a ring solution of non-zero radius, similar to equilibria investigated in [28].

In the next paragraph we consider the case when ¢ is even. In this case we are able to
determine the precise structure of the steady states. More specifically, we find that for ¢ even
the steady states are polynomials of even powers of 7.
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Case g even (polynomial steady states). 'When g is an even positive integer, the kernel I (r, )
is separable and the density po(r) is a polynomial of even powers of r, of degree ¢ — 2. To
show this, denote by m; the ith order moments of the density, defined by

R
m; = nw, / F 5 () dr. (60)
0

Note that the zeroth moment m coincides with the total mass M.
When g = 2, we recover the steady state investigated in section 2. Indeed,

I(r,r) = / sin" 26 do,
0
and, from (56) and (60),

R
p(r) =n’w, / )" p ) dr’
0
= nmy.

Using this in the definition of mg from (60) yields the identity
R
moy = nwn/ nmor" ! dr
0

= nw,moR".

The last two equations determine the radius of the support R = (nw,)~"/" and the constant
density p = nmy is determined by the initial mass m(. These are the steady states analysed in
detail in section 2.

For g = 4,

g
I(r,r) = *+ (r’)z)/ sin" 26 dg,
0
and

R
p(r) = n(n +2)w, / )"+ (HYHp) dr
0

= (n+2)mor’ + (n +2)mo. (61)

The steady state p is a polynomial of even powers of r, of degree 2, with coefficients given in
terms of the moments mg and m,. We compute R, m( and m; using the following procedure.
Using (61) in the definitions of m( and m, from (60) we find the linear system

nw, R"*? (n +2)w, R"
<m°> = [ nn+2) (m°> . (62)

my w, R nw, R™? my
n+4

The existence of nontrivial solutions for this eigenvalue problem yields a value for the radius R,

R— [w <n f+2) /n"ﬁﬂ " 63)

and a relation between moments
1 — nw, R™?
=—m
(n+2)w, R"
Given an initial mass M, my = M and the steady state can now be found from (61), (63)
and (64).
Note that system (62) is equivalent to

mo n mo
<m2/R2) =nn+2)w,R +2A4,n <m2/R2> s

myp 0- (64)
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where the matrix

1 1

| n+2 n

A4,n - 1 1
n+d n+2

is independent of R.

This pattern extends to arbitrary even ¢’s. Indeed, from the trinomial expansion of I (r, r’),
as any odd power of —rr’ cos @ vanishes, I (r, r’) is a polynomial of even powers of r and r’
with positive coefficients (note that the moments my,. ..,m,_, are positive). Therefore p(r)
is a polynomial of even powers of r, of degree g — 2, with positive coefficients, which can
be expressed in terms of the moments my,. . .,m,_». Then, the definitions of the moments 1y,
my,. .., Mgy yield the system

mo mo
my / R2 my / R 2
_ =n(n+q—2)w,R"™M*A,, ] , (65)
}’f’lq_z/R(]72 mq_z/Rq72
where A, , is a matrix independent of the radius R that has only positive entries.

Apply the Perron—Frobenius theorem [29] to the positive matrix A, , to conclude that
A, » has an eigenvector with all components positive and that this eigenvector corresponds
to the Perron—Frobenius eigenvalue. In addition, the Perron—Frobenius eigenvalue is simple
and no other eigenvalue has eigenvectors with only positive components. Since the desired
eigenvector in (65) has only positive entries, it has to correspond to the Perron—Frobenius
eigenvalue of A, ,. Recall that the matrix A, , does not depend on R, so nor does its Perron—
Frobenius eigenvalue. Hence, from (65), one can find R in terms of n and g only. Finally,
the steady-state density p can be found from its polynomial expansion, once a mass my = M
is set.

Remark. We want to emphasize that the polynomial states, that correspond to potential (8)
with g even, have support of fixed (in terms of g and n) radius R. In section 4 we consider
an arbitrary support radius R, arbitrary radially symmetric densities p of polynomial form
and find an interaction potential for which p is an equilibrium of the aggregation model (1a)
and (1b).

3.3. Dynamic evolution of the aggregation model: numerical results

We compute numerically the solutions to the aggregation model (1a), (1b) and (8), with ¢
given by (7). Several approaches can be taken to discretize the model equation. One is to use
its Lagrangian counterpart and evolve numerically the particle trajectories X; (¢),i = 1,..., N
according to (5). This method is suitable for general initial conditions. However, when initial
conditions are radially symmetric, this method is very inefficient in dimension n > 2 as it
does not take advantage of the underlying symmetry. For radially symmetric configurations,
we develop below a more suitable method which does take the radial symmetry into account.

The numerical results of this section are obtained from a discretization of the model
equations written in characteristic form (see (29a) and (290), (55) and (46)):

dx X—=y -
& / —————p(Ndy— | (x—ylx—yl"p()dy (66a)
e Jre nwylx —y| R

d
d—f =0 [(n +q=2) [ lx—yl" 7 p(y)dy— p} : (66b)
RH



2702 R C Fetecau et al

Assuming radial symmetry of solutions® we write system (66a) and (66b) as

d 1 !
- = / "oy dr’
0

dt rn=l

o T
— Wy_1 f p(r) / (r —r cos@)(r2+r"* —2rr' cos0)4* Lsin" 20 dodr’  (67a)
0 0

d

&) s
d_‘; =p |:(n +q — 2w, / p(r’)/ 2+ 1% = 2rr cos )7 sin" 2 0. do dr’ — ,0:| :
0 0

(67b)

Here the term associated with the singular repulsion in (67a) is calculated by taking advantage
of the fact that the corresponding kernel is the fundamental solution of the Laplace equation.
By introducing the following auxiliary functions,

Ii(s) = f (1 —scosO)(1+s>—2pcosd)’/>sin" 26 d6, (68a)
0
L(s) = f (s —cos@)(1+s>—2pcosh)*sin" 26 do, (68b)
0
T
L(s) = / (1+s%—=2pcosd)’> sin"26de, (68¢)
0

the angular integrals in 6 in (67a) and (67b) become products of powers of r, r’, and these
auxiliary functions with s = min(r, r’')/ max(r, r’). Hence the double integral in (67a) and
(67D) becomes a single integral in r’ and is evaluated by trapezoidal rule. This observation
reduces the total complexity in the computations of the right-hand-sides of the characteristic
equations (67a) and (67b) to O (N 2) per time step where N is the number of spatial grids in r.
Once the characteristic speeds in (67a) and (67b) are found, the equations are evolved in time
by the classical fourth order Runge—Kutta method.

Figures 3(a) and (b) show simulation results in two dimensions, corresponding to g = 2
and g = 4, respectively. We plot the solution against the radial coordinate r. The initial data
used in figure 3 are

p(x,0) = (0.1 — 10|x|* + 100]x|*) exp(—6|x|?)/c, (69)

where c is a constant chosen to normalize the mass to one. Recall that for both ¢ = 2 and
g = 4 we computed analytically the (unique) radially symmetric steady states. For g = 2 the
steady density p is uniform on a disc and zero elsewhere and in section 2.2 we proved that p
attracts all radially symmetric solutions. Further numerical investigations with using random
initial conditions (see figure 1) indicate that p is a global attractor for the dynamics of (1a)
and (1b),(8), that is, it attracts all solutions, not only those that are radially symmetric.

Figure 3(b) shows the time evolution for ¢ = 4. An analytic expression of the steady
density was calculated in section 3.2. Notice how the solution approaches this steady state
and at ¢+ = 16 is barely indistinguishable from it. Similar behaviours are observed for other
exponents g > 2 and higher dimensions n. All numerical experiments we performed suggest
that the radially symmetric steady states discussed in section 3.2 are global attractors for
solutions of (la), (1b) and (8). In future work to plan to address this issue in an analytical
study on the asymptotic dynamics of our aggregation model.

5 The method applies only to radially symmetric solutions. However, the claim we make, that the steady states
computed in section 3.2 are global attractors, was supported by numerical computations with methods which do not
assume radial symmetry, such as the discretization of the ODE particle system (5).
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Figure 3. Time evolution of a radially symmetric solution to the aggregation model (la), (1b)
and (8) with (@) ¢ = 2 and (b) g = 4, in two dimensions, starting from initial data (69). (a) As
predicted by the analytical results from section 2, the solution approaches asymptotically a constant,
compactly supported steady state. (b) The solution approaches asymptotically the steady state
computed analytically in section 3.2—see equations (61), (63) and (64).

4. The inverse problem: custom-designed kernels

We have shown in section 3 that for K of the form (8) with g even, it is possible to construct
an explicit procedure for computing the radially symmetric equilibria. It is then natural to
consider the following inverse problem: given a density p(x), can we find a kernel for which
p(x) is a steady state of (1a) and (15)? In this section we show that if p(x) is radial and
is a polynomial in |x|, then the answer is always yes. Indeed, the construction is a partial
generalization of the computations done for the case of even ¢ in section 3. The main results
are stated in theorem 4.1 (for n = 1) and theorem 4.2 (for n > 2). Some examples of the
construction are also given.

Throughout this section, we use the notation (4) which relates the force F with the radially
symmetric potential K. The results below are expressed in terms of F (r).

4.1. One dimension

In one dimension radial symmetry of the steady state is replaced by the requirement that p is
an even function. The result in one dimension is the following.
Theorem 4.1. In one dimension, consider an even density p of the form
_ bo + byx? + bax* + ...+ byyx*? x| < R
px) = { 0 otherwise.
Define the moments m; as in (60). Then p(x) is the steady state of (1a) and (1b) corresponding
to the force (see equation (4))

(70)

1 aj; 2i
F(x)=-— ) ———x! 71
@=3 ZO: 2+l D
where the constants ag, az, ..., ayq, are computed from by, by, ..., byq by solving the
following linear system:
d 2j
b2k = Zazj (2]() maj—k)» k=0...d. (72)
j=k

Moreover, system (72) has a unique solution.



2704 R C Fetecau et al

Proof. From (4), we find

|x]
K(x])) = —/ F(s)ds. (73)
0
Introduce the expression (71) of the force F' in the equation above to find
d

A 2i+2

K = + _— .
(1) = ¢(x) ;(2i+1)(zi+2)|x|

Here, ¢ represents Green’s function of —% defined by (7) (for n = 1). Calculate
K"(x) = =8(x) + H(|x|),
where H is given by
H@) =ap+ a2r2 +.o- a2dr2d. (74)
From (1b),
V(x)=—K"xp
o0
Zﬁ@)—/ilﬂu—yDﬂwdy
—o0

We want p given by (70) to be a steady state of (1a) and (15) corresponding to the force (71).
Since p is zero outside the interval |x| < R, the velocity v has to vanish inside the interval. In
particular, v = O in |x| < R, and the steady state p satisfies the integral equation:

ﬁ(x)=/ H(x—y)smdy  inlx| <R. 75)

Calculate using the binomial expansion,

_vl¥ 5 — 2(j—k) .2k ~
[ lx — I p(y)dy 2/0 > U Ry <2k> p () dy

J
o k=0

J .
2
2% (<]
X <2k> mg(j,k).
k=0

Here we also used definition (60) and the fact that p vanishes outside |x| < R. The integral
equation (75) now becomes

d J .
_ 2
= 3 3 (3
j=0 k=0
d d 2]
= Zka Z <2k> Mo(j—k)azj in |x| < R.
k=0 =k

By equating the coefficients in p(x) from the equation above with those from the expression

(70) we find (72). This is a linear system to be solved for coefficients ag, as, . . ., as in terms
of by, by, ..., byy. The existence and uniqueness of a solution is immediate since (72) is a
triangular linear system with non-zeros along the diagonal, since my = M # 0. ]

We illustrate theorem 4.1 with three examples. We take R = 1 and consider

(@ px)=1—x% (b) px) = x% () p(x) = %+x2—x4, (76)
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Figure 4. (a)—(c) Steady state solutions to (1a) and (1) in one dimension with force F(x) given
by (77). Filled circles along the x-axis represent the steady state for the corresponding dynamical
system (5) with N = 50 particles. Empty circles represent the density function as computed from
the filled circles, normalized so that max p = 1. The solid line is the analytical expression for p
given by (76), but normalized so that max p = 1. In all cases, excellent agreement is observed
between the asymptotic behaviour and the predicted steady states.

which represent a convex, a concave, and a two-bumped steady state, respectively. From
theorem 4.1, the corresponding forces are given by

()F()—1 AL (b)F()—1+9 Lo,
T R T R T
1 209425 2075 3
() F(x) = -+ x— ——x3 4 —x°. (77)

2 672182 2527 19

In figure 4 we plot p(r) as given by (76) (solid lines), as well as the numerically computed
equilibria obtained by evolving in time solutions of the aggregation model corresponding
to forces (77) (empty circles). To evolve the aggregation model numerically we used a
discretization of the ODE particle system (5) with N = 50 particles, starting from random
initial conditions in [—1, 1]. The system was integrated using Euler method with stepsize 0.1
until # = 5000, by which point the system settled to the equilibrium state. The approximated
continuum density p(x) was computed using the procedure described in [8]. Note the excellent
agreement observed in all cases.

The computations of this section can be generalized to some non-polynomial steady
states p. For example if p has a convergent Taylor series on [0, R], one can approximate
p by its truncated Taylor series of degree 2d, apply theorem 4.1, and then take the limit
d — oo. Alternatively, the integral equation (75) can sometimes be used directly to determine
the corresponding force F. To illustrate this, consider

p(x) = cos x, R=n/2, (78)

so that (75) becomes
/2
cosx = H(|x — y|)cosydy. 79)
—/2
Using the anzatz H(z) = a + b cos z, we find that (79) is satisfied for all x when a = 0 and
b =2/m. Therefore H(x) = 2/m cos x and

F(x)=1/2—2/msinx. (80)

Direct integration of the ODE system (5) using the force (80) confirms that the model admits
indeed the steady state given by (78).
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4.2. Higher dimensions

The construction in higher dimensions is analogous to 1D. We state the result only for n = 2
and n = 3, but the procedure generalizes easily to any dimension 7.

Theorem 4.2. In dimension n = 2 or n = 3, consider a radially symmetric density
p(x) = p (Ix|) of the form
by+b b bygr*? R
_()_{0+ 2F+4I‘+ .+ Dqr |X|< . (8])
otherwise.

Define the moments m; as in (60). Then p(r) is the steady state of (1a) and (1b) corresponding
to the force (see equation (4))

d
D2 24l
F(r)y=— — , 82
) nw, r"-! ;2i+nr (82)

where the constants ay, az, . . . , ayg are computed from by, by, . . ., bay by solving the following
linear system:

bzk = Zazjcn,j,kmz(j,k), k:O...d, (83)

j=k
with
~ 2
g e
Cn,j,k = (84)

1 2( +1) B
2(j+1)<2k+1>’ n=3

Moreover, system (83) has a unique solution.

Proof. The proof follows closely the argument from the one-dimensional case. From (73), we
find, using the expression (82) for the force F:

2i+2
K(|x|) = (x>+2m|| : (85)

Here, ¢ represents Green’s function of —A in R”, defined by (7)°. Calculate
AK(x) = —=8(x) + H(|x]),
where H is given by (74). Calculate from (1b):
V-o(x) = —AK * p(x)
=5~ [ Hlx =550y,

The steady state p from (81) must have zero velocity in the ball |x| < R, hence p satisfies the
integral equation:

p(x) = / H(lx = yDp(y)dy in|x| < R. (86)

6 The potentials of the form (85) include the family of potentials (8) with ¢ even. To see this, take 2d + 2 = ¢,
ayg #0and ap; =0forall0 < i <d.
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From radial symmetry p(y) = p(|y|), we have

x —vI¥ 5(yv)dy = nn /oo(/ns +r? —2rscosf)’ sin"~ 29d9>
/Rnl yI7 p(y)dy s 2046 0( )

xp(r)yr"~dr,
where s = |x|. Next we simplify as follows:
1 Tia o J oson=2 2j
_— s“+r°—2rscosf) sin" " 0d0 = Q,,i(s/r)r”’
[T sin" 26 do /0 ( ) Q2 (8/7)
where we define
1

On2j(t) = m

b .
/ (t* +1 — 2t cos§)’ sin" 2 0 do. (87)

From (87) it is easy to see that the polynomial Q, »; of degree 2j contains only even powers,
so that we may write

J
Quaj() =) C, it (88)
k=0

In terms of the coefficients C, ;x we then obtain

0o J
=y 5 dy = nw, / Y Coju s PO 5y dr
Rn 0 —

j
— 2k
=) G, umai b

k=0

We therefore obtain from (86),

p(r) = Zaz,ZCn,kmzu ot
j=0

d

d
2 : 2k 2 : :

= r Cn!j'kl’nz(j,k)azj m |x| < R.
k=0 Jj=k

Now match with the coefficients of p from (81) to find (83). The linear system (83) has a unique
solution, since the matrix is triangular and its main diagonal has non-zero entries (my # 0). It
remains to show (84). In the two-dimensional case, we expand

I |
020(t) = — (1 + 1= — 2t cos )’ db

. .
= ZZ T ' 2k~ 2)"/ cost 6 do.
— = (J —k)! 0
For the integral we have

| 0, k is odd
— / cosk0 do = k!
T Jo

TR k is even.
24[(3)]
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Therefore
J o LG=0/2] 27

Qz,zj(l) Z Z ,!(Zk)!(j 50 2i+2k(_2)2k cos2* 6 do

i=0 0
J
i=

LG—=0)/2]
For ! < | j/2], the coefficient of t21 is

,il'«l = (1) i( (=)= (;)2 o

1=

j! 2k+2i
t . 89
N2 — i —2k)! (89

=0

In the last step, we used the combinatoric identity

2;:(1]) (lj—_il) N (z]> ' 1)

This proves (84) with n = 2. The case n = 3 is much simpler as Q3 ,;(¢) can be integrated
explicitly for general j:

(1+1)%

1 [7 , .
Q3,2j(t):—/ (1+1> —2tcosf) sinfdd = — u’ du
2 Jo ar Ja—me
= iL [(1 +0)* — (1 -]
4¢ j
which leads to (84) with n = 3 after some algebra. O
Finally, we illustrate theorem 4.2 with two examples in n = 2 dimensions:
(@) p(r)=1; (b) p(r)=1+r 92)
According to theorem 4.2, density (a) in (92) corresponds to the force
11 1

(@ Fo)= 2tr 2R
Case R = 1/+/27, corresponding to the potential (8) with g = 2, was considered in section 2.2.
For R = 1, F(r) = 5-(X — r). Multiplying the force F by a constant does not effect
the equilibrium solution, as the constant can be removed by rescaling time. The dynamics
corresponding to F(r) = ; — r was presented in figure 1 in the introduction. Indeed, a
constant equilibrium on a unit disc is reached.

Corresponding to density (b) in (92) we have, according to theorem 4.2:

b) Fr)y= —— — —r — —r°.
&) Fir) 2w r 27yrr 6nr

Example (b) is illustrated in figure 5. The results show an excellent agreement between the
predicted steady state of (1a) and (15) and the asymptotic dynamics of the particle system.

5. Discussion

We have presented several new steady solutions to the aggregation equations (1a) and (1b),
in particular for two or higher dimensions. One of the key features of the potential (8) is that
the repulsion is proportional to a Newtonian potential. This property was critical for being
able to construct the steady states explicitly. In [8] the steady state for the Morse function
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(4]

o
LJ

Figure 5. Numerical simulation of (5) in two dimensions with the custom-designed force

F@r) = #% — %r — éﬁ, corresponding to the equilibrium density p(r) = 1 + r2 of (la)

and (1b) (see theorgm 4.2). (a) Evolution of N = 200 particles with t = 0...50, starting with
random initial conditions uniformly distributed inside a unit square. (b) Snapshot of the solution at
t = 5000. Dots represent the particle positions; lines represent the boundaries of the corresponding
Voronoi cells. (c) Estimate of the density p(x). Delaunay triangulation based on the Voronoi
diagram is shown. The density at x; is o(x;) = 1/a; where a; is the area of the Voronoi cell
around x;. (d) The scatter plot of the approximated density p(x;) versus |x;| for each particle x ;.
Dashed line is the analytical solution p(r) = 1 + r2.

F(r) =e™" — Ge™"/F was computed analytically in one dimension. It is an open question to
generalize this calculation to higher dimensions. In two dimensions, the Morse potential has
a much weaker repulsion at the origin (F(r) = O(1) as r — 0) than the Newtonian potential
(F(r) = O(1/r) asr — 0). For this reason, it is unclear whether the ideas presented here or
in [8] can be used to determine the steady states of the Morse function in two dimensions.

For the simple case when the attraction component of the potential is quadratic (K given
by (8) with ¢ = 2 or alternatively, force F given by (6)), we have proved that the density
given by the characteristic function of a ball is a global attractor for radially symmetric initial
conditions. However, numerics strongly suggests that this is true for all initial conditions
(see for example figure 1). It is an open problem to prove this. A related issue is that the
characteristic function of a ball is not the unique radially symmetric equilibrium solution that
corresponds to force (6). For example, in two dimensions, there exists an equilibrium solution
for which the density concentrates on a delta ring whose radius r satisfies (see [28])

/2
f F(2rg sin(®)) sin(0) d§ = 0.
0

In particular, for F(r) = 1/r —r in two dimensions, we obtain ro = 1/+/2 (whereas the global
attractor is the density that is uniform inside a unit disc). However, as was shown in [28], such
delta-ring solution is ill-posed whenever F(r) ~ 1/r asr — 0, in the sense that it is unstable
with respect to all sufficiently high Fourier modes.

For the more general potential (8) with ¢ > 2, we have shown that there exists a
unique, bounded and compactly supported radially symmetric equilibrium density. Numerical
experiments suggest that these equilibria are global attractors for the dynamics, but a proof
is lacking. Another interesting question is what happens when g < 2, the regime where the
estimates of section 3 are no longer valid. Numerical simulations indicate the existence of
concave steady states in this case. These are subjects of future work.

We also solved the restricted inverse problem: given a radially symmetric polynomial
density, we explicitly construct a corresponding force which admits the given density as its
equilibrium state. However, nothing is known about the stability of such steady states and in
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fact they are not generally expected to be globally stable. It would be interesting to provide
extra conditions to guarantee the stability of these states.

In a biological setting, stochastic noise often needs to be taken into account. As derived
for example in [3,4] (see also [30, 31] and references therein), this noise can be modelled by
adding a diffusion term so that the continuous model (1a) becomes

pr+ V- (pv) = DAp, 93)

where D represents the noise strength. We expect that for sufficiently small D, the effect of
the diffusion is to smooth out the edges of the swarm, without having a large effect on the
interior of the swarm. Some of the related results in one dimension are derived in [3,4]. The
proper study of (93) in higher dimensions is left for future work.

The interaction force (6) does not decay at infinity—a biological absurdity. However,
the dynamics remain unchanged if F(r) is modified in an arbitrary way for r > r;, where
r1 is some sufficiently large number that depends on the initial conditions’. This can seen
from the ODE formulation (5): the velocity X;(¢) of each particle only depends on F (r) with
r < max; ;| X; — X;|. Moreover, as was shown in section 3, the radius of the support of the
density p(x, 7) is bounded by R where R is given implicitly by (54) and depends only on the
initial conditions and not on time. In particular, F (r) can be taken to be zero (or exponentially
decreasing) for » > 2R, without changing the dynamics. Moreover R can be taken to be R, the
radius of the steady state, without changing the structure of the steady state or its local stability.
The interaction force (6) is also unbounded at the origin in two (or higher) dimensions, also
a biological absurdity. However, within a biological context, where the population size N is
finite, one can again truncate F(r) for r < ro where ry < min;; |X; — X;| = O(N~'/?).
This is because for a uniformly distributed steady state of an O (1) radius, the inter-particle
distance is at least O (N ~'/?), so F (r) can be taken to be arbitrary for r < ry without changing
the structure or local stability of the steady state.

To illustrate this, consider the following truncated force in two dimensions,

Cq, 0<r<n
1
Firy=1{--r, ro<r<2 O
r
—Crexp(—r), 2<r

where the constants C, C; are chosen to make F'(r) continuous; the truncation point r; = 2
is chosen to be twice the radius of the steady state of the untruncated force F(r) = 1/r —r.
The simulation of the ODE system (5) in two dimensions with N = 400 is shown in figure 6
for various values of r(. Initial conditions were chosen at random inside the unit square. For
ro < 0.09, the steady state is the same as taking rop = 0. On the other hand, as r is increased
further but still small, intricate grid defects are observed, such as concentric rings and irregular
tessellations, while the overall swarm radius and density remain roughly the same. The analysis
of these defects is an interesting open problem. Finally for 7y > 0.2, the uniformity of the
swarm breaks down leading to a very different steady state.

Uniform swarms are often observed in biology; however, the precise mechanisms of their
formation are rarely known (but see a recent study [32] which attempts to establish some of these
mechanisms through empirical measurements). Regardless, possible biological advantages of
uniform swarms may be avoidance of overcrowding and uniform resource distribution among
the swarm. We have shown mathematically that the model (1a) and (15) with the force (6) (or
its regularizations such as (94)) leads to the formation of such uniform swarms. However, a

7 The well-known Keller—Segel model for chemotaxis requires similar cutoffs of the chemotactic function in order
to avoid the unphysical blow-up in finite time of the solution [23].
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r,=0.0000 r,=0.0902

r,=0.1310

Figure 6. Equilibrium states for the truncated interaction force (94) with N = 400. The equilibrium
is computed by integrating the ODE system (5) to t = 5000, starting from random initial conditions
in the unit square. For rg < 0.09, the steady state is the same as for rp = 0 (uniform density in the
unit circle). As ro is increased further, intricate grid defects are observed, while the overall swarm
radius and density remain roughly the same. Finally, for ryp > 0.2, the uniformity of the swarm
breaks down leading to a very different steady state.

better understanding of the underlying biological mechanisms is needed before any conclusions
about the applicability of this model to biology can be made.
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Appendix

Proof of theorem 2.1.  'We present an outline of the proof and refer for details and complete
calculations to proposition 4.2, chapter 1 in [24].

First show that the operator 7 : Op — B is bounded, i.e. [|F(X)|, < oo, for all
X € Op. Write F(X) as

F(X)=voX.

To bound || F'(X)|l1,,, we need the following two results from [24], stated in lemmas 4.1 and
4.3, chapter 4:

(i) Let X, Y : R* — R” be smooth, bounded functions. Then, for y € (0, 1],
XY, < I XNeelY ]y + X[ 1Y (2. 95)

(i1) Let X : R" — R”" be an invertible transformation with detV, X («) > ¢ > 0, and let
f 1 R" — R™ be a smooth function. Then

|f o Xl < Iy IVaX 7 (96)



2712 R C Fetecau et al

Using these two calculus results one can estimate:

IFCONy = vx XO)] + [[(Vvo X)Ve X1 + |(Vvo X))V, X],
<Nl + 1Vl I X N1y + [Vl Ve XI5 97)
As | X|l1,, < L for X € O, it remains to bound ||v| z, |Vv||z~ and [Vv],.
The expression (17) for v(x) has two components: the convolution of the singular kernel
k with p, and —Mx. The latter term, due to attraction, presents no difficulties, so we focus on

the repulsion component only. The gradient of the repulsion term yields a principal-value SIO
that involves the convolution of P = Vk with p:

Plpl(x) = PV/ P(x —y)p(y)dy. (98)
R2

We have to estimate ||k * pll«, [| P[p]llz~ and | P[p]],.
The first of these terms can be bounded using lemma 4.5 [24]:

Ik * pliz= < CVRIplL. 99)

where c is a constant and R is the radius of the support of p. Normally R depends on ||V, X || 1~
and is bounded for X € O, but in our problem we have the stronger result that the support is
uniformly bounded in time.

To bound the other two terms we use lemma 4.6 (chapter 4 [24]) and estimate

IPLpllIL~ < ¢ (lplye” + ol log(R/e€)), Ve > 0, (100a)
|Plpll,  <clply, (100b)

where ¢ represent constants and R relates to the size of the support, as above.
Inspect (99), (100a) and (100b). Given that ||p|| .~ and R are uniformly bounded in time,
it remains to estimate the seminorm |p[,. Use (24) and calculus inequality (95) to obtain:

loly < llpo o XM l=ldet VX', +1pg 0 X7, det ViX M=, (101)
The following calculus inequality is stated in lemma 4.2 [24] (n is the space dimension):
1Y~y <cllyiy, ", (102)

Use (96) and (102) with n = 2 to estimate

oo o X7, < lpoly IV X7l
3
< clooly IXI77,
and
|det V. X', <clXI,.
As X € O, ||det V., X!~ < L and IX1l1,, < L. Return to (101) to find
1oy < CL) (Ilpoll= +lpoly)

Using the above bound on |p[, and the uniform bounds on || p|| .~ and R, we infer from (99),
(100a) and (1000) that the repulsion component of F yields a bounded operator. The attraction
component is regular and trivial to deal with. We conclude that F is bounded.
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To prove that F is Lipschitz continuous, we show that 7' (X) is bounded as a linear operator
from Op to B, i.e. | F'(X)| < oo, forall X € O. Calculate F'(X) using (55) and (12¢):

d
F(X)Y = —F(X +€Y)
de

e=0
= / VX () = X(B)X (a) = Y(B))po(B)dB, (103)

where we suppressed the time dependence for convenience.
To estimate the component of F'(X)Y due to repulsion one could follow the proof of
lemma 4.10 in [24]. The attraction component is trivial. It can be shown that

IF COY I, < C@) (lpolle= +1poly) 1Y 11,y

which proves the boundedness in the operator norm of F'(X).

A key observation is that the term Y (o) — Y (8) in (103) compensates for the singularity
of V f. To illustrate this point, we present here the estimate of | 7' (X)Y || .~. We do not present
the estimates of || Vo F'(X)Y ||~ and |V, F'(X)Y |, we refer instead to the calculations in [24].

Use a change of variable, x = X (), y = X (8), and split the repulsion component of
F(X)Y from (103)

/ Vik(x — )Y (X 'x) =YX 0))p(y)dy = + / :
—y|<1 x—y|>1
[x—=y] [x—y]
J Jr
From the mean-value theorem, we have
Y (X'x) =Y (XD < (VoY 0o X HV Xl |x — yl.

As VK| < clx| 72,

_ _ 1
1] < el(Va¥ 0 XYV, X ‘||Loo||p||m/ dy

[x—y|<l |.X - y|
< CD)IVaY I,

where we also used (102), X € Oy, and the uniform bound on || p|| .~ in the second inequality.
The outer integral satisfies

| 2] <c||(vaYoX—1)va—l||Lx/ p(y)dy
lx—y[>1

< C(LM|IVaY L,

where we used conservation of mass.
Combine the two estimates for J; and J,. The attraction component would not break these
estimates, hence

IF COY [l < CUY |1y

Proof of proposition 2.3. Take the gradient with respect to « of the characteristic equation
(20) to obtain

%VaX(oz, 1) = VoX(a, 1), 1) Ve X (@, 1). (104)

From (104), one can derive using Gronwall’s lemma (also use X (¢, 0) = «):

[Va X (-, 1)l < el IV0E) e ds. (105)
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Tobound |V, X (-, 1)],, we use calculus inequalities (95) and (96). Using these two calculus
results one can estimate:

IVO(X (. 1), OVaX (Dl < [VOC, Dl IVaX GO + V00 D0 [ VaX (0], (106)

As noted above, the expression (17) for v(x) has two components: the convolution of the
singular kernel k with p, and —Mx. The gradient of the second component yields —M I,
where I; denotes the identity matrix. The gradient of the first component yields a principal-
value SIO that involves the convolution of P = Vk with p—see (98).

Use lemma 4.6 (chapter 4 [24]) and estimate the y-seminorm of P[p]:

|Plplly < cllipliz=+1poly),

where c is a constant. Note that this result holds for functions of uniform compact support,
condition which the solution p does indeed satisfy. Collect the terms that comprise Vv and
use the uniform bound (23) on || p||z~ to find

IVu(, )], < C(+p(, Dly).
Using this estimate and (105) in (106), we derive

IVU(X (- 1), DV X (- D], < CA+ [, 1)), )e T o IVeCNds gy (1))l [V X (-, 1],

Below we estimate the term |p (-, #)], in terms of fot lv(-, s)|| L~ ds and show
lpC. Dy < lpolyeexp |:J/ /Ot V(. $)l Lo dS} . (107)
Hence,
IVO(X (1), DVaX C, D], ST+ |poly e eI IV 8 | 7y 1) 14| Va X C, 1)
Now integrate (104) and use Gronwall’s lemma to obtain:
VX (D)l < C f (14 Lol €112 IOVl dr 19Ul b g (108)
0

The two desired a priori bounds and hence, the conclusion of the proposition follow from
(105) and (108). We are left to prove (107). For fluids, an estimate similar to (107) is shown
(with vorticity w in place of density p) and the result is presented in lemma 4.8 (chapter 4 [24]).
Below we follow similar steps to show (107).

Write the aggregation equation (12a) in the form

pr+v-Vp=—pV-v.

Hence, using the inverse of the particle-trajectory map, we can re-write it as

p(x,1) =p0(x—1(x,z))—/ oV - v(X (x,1—s5),s)ds.
0

By estimating the Holder seminorm of p, one can show, as in lemma 4.8 [24], that

t
loC. DIy < lpolyexp [V/ Vo, )l dS]
0

t t
+/ |pV-v(~,s)|yexp[y/ ||Vv(-,s’)||pcds’} ds. (109)
0 K

To show the above estimate one has to use the fact that V, X ~! satisfies

t
IVeX 't = 9)llw < exp [/ Vo, s)llz= dS} :
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From (19), the calculus inequality (95) and the uniform bound (23) on || p|| .=, one can easily
derive

oV -v(, )l < Cilp(, $)l,- (110)

Denote

G(@) = |p(, 1)l exp [—V/(; IVo(, $)llz~ dS] .

Multiply (109) by exp [—y fot IVv(-, $)| Lo ds] and use estimate (110) to obtain

t
G() < |poly +C1/ G(s)ds.
0

The desired estimate (107) follows from Gronwall’s lemma.
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