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Motivation

Cnjunctival placodes within the embryonic eye of birds [Duench, Franz-Odendaal 2012;
Drake-Jourdeuil-Franz-Odendaal 2024, Franz-Odendaal 2008]. These placodes are
transient structures that induce underlying bones within the sclera of the eye. Comparative
morphological studies by Franz-Odendaal and coworkers show that there is a specific
conserved and universal sequence to the appearance of the placodes; experimental
evidence to-date points to a Turing mechanism of pattern formation.



Thin domains:

GM model:

at = ε2∆a− a + ap/hq, (1)

0 = d2∆h− h +
1

ε
am/hs (2)

Standard “quasi-1D” reduction:

∆ → ∂xx +
A′(x)

A(x)
∂x. (3)

GM model becomes:

at = ε2 (axx + α(x)ax)− a + ap/hq, (4)

0 = d2 (hxx + α(x)hx)− h +
1

ε
am/hs (5)

where α = A′/A, A is the cross-sectional area, x denotes the arclength coordinate along
the boundary of the channel, ε is small.



Example:

Consider area between two circles. Outer circle is unit disk; inner circle off-center such that
minimum and maximum distance from the outer boundary is dmin and dmax, respectively,
with dmin ≤ dmax ≤ O(ε) ≪ 1. Then

α(x) ∼ 1

2

−
(
κ2 − 1

)
sinx

1 + κ2 + (κ2 − 1) cosx
; κ = dmax/dmin (6)

For concreteness we will take κ = 3, p = 2, m = 2, s = 0. Examples of equilibria:



Reduced system

In the limit ε ≪ d, a quasi-equilibrium solution to (4) consisting of N stripes has the form

a(x, t) ∼
∑

V
q/(p−1)
j w

(
x− xj(ε

2t)

ε

)
, (7)

H(x, t) ∼ bm
∑
j

V γ
j G (x, xj) (8)

where w(y) is a standard ground state solution,

wyy − w + wp = 0; w′(0) = 0; w (y) → 0 as y → ±∞, (9)

bm =

∫ ∞

−∞
wm(y)dy, (10)

G(x, ξ) is the Green’s function satisfying

d2 (Gxx + α(x)Gx)−G = −δ(x− ξ), (11)



and xj(tε
2) is the time-dependent location of j-th stripe which is coupled to weights Vj

and solves the following differential-algebraic system:

x′k = −α(xk)− 2bm
q

p− 1

1

Vk

∑
j

V γ
j Gx(xk, xj) (12)

Vk = bm
∑
j

V γ
j G(xk, xj); (13)

γ =
qm

p− 1
− s; (14)

where Gx(xk, xk) =
1
2

(
Gx(x

+
k , xk) +Gx(x

−
k , xk)

)
.



Green’s function WKB theory in the limit d ≪ 1

d2 (Gxx + a(x)Gx)−G = −δ(x− ξ); d ≪ 1.

We use the standard WKB ansatz:

G ∼ Y (x)e
ϕ(x)
d

to obtain

ϕ′2 = 1;
1

Y

(
Y 2ϕ′)′ + Y ϕ′β = 0.

Since we require decay at infinity, we take ϕ′ = − sign (x− ξ) and equation for Y yields

Y = C exp

(
−1

2

∫ x

ξ

α (s) ds

)
.

Applying the jump condition d2Gx|ξ
+

ξ− = −1; then yields

G(x, ξ) ∼ 1

2d
exp

(
−1

2

∫ x

ξ

α (s) ds

)
exp

(
−|x− ξ|

d

)
.



In particular we have:

G(ξ, ξ) ∼ 1

2d
(15)

Gx(ξ
+, ξ) +Gx(ξ

−, ξ)

2
∼ −α (ξ)

4d
; (16)



Single spike

x′0 = −α(x0)− 2
q

p− 1

Gx(x0, x0)

G (x0, x0)
. (17)

� Large d limit (“shadow system”):

x′0 ∼ −α(x0), d ≫ 1. (18)

- Equilibrium location x0 then correspond to zeros of α(x) = A′(x)/A(x), with
stable equilibrium corresponding to the minimum of cross-sectional area
A(x).

� Small d : Using WKB for Green’s function we obtain

x′0 ∼
(
−1 +

q

p− 1

)
α(x0), d ≪ 1. (19)

- Equilibria still at zero of α (x) = A′(x)/A(x), but their stability can switch
depending on the sign of q + 1 − p : if p > q + 1, stable equilibria correspond
to the minimum of A, and unstable to the maximum of A; this is reversed when
p < q + 1.

- Borderline case: q = p − 1. This includes the “standard choice” p = 2, q = 1.
Then x′ ∼ 0 up to O(ε2). Higher-order expansion would be needed to capture
the motion.



Figure 1: Stable equilibrium solutions of the full 2D system (??) consisting of a single
spike inside an annular region of uneven thickness. The outer boundary is a unit circle.
The inner boundary is a circle which is at a minimum distance of 0.05 and a maximum
distance of 0.15 from the outer boundary. Full 2D time-dependent problem was solved
using an initial condition consisting of a single spike at x = π/2. Snapshots show the
solution after it converged to a (stable) equilibrium. Parameters d and q are as shown,
while other parameters are ε = 0.1, p,m, s = 2, 2, 0. Note that the spike is expected
to be stable at the thinnest part of the domain when d is large, regardless of q. When d is
small, the spike is stable at the thinnest part if q < p− 1, but is stable at the thickest part
when q > p− 1.



Two spikes
� Two symmetric stripes: x1 = r, x2 = −r :

r′ ∼ −α(r)− 2
q

p− 1

Gx (r, r) +Gx (r,−r)

G (r, r) +G (r,−r)
.

Assume that ε ≪ r ≪ 1, WKB yields

r′ ∼
2q
p−1

1
d exp

(
−2r

d

)
1 + exp

(
−2r

d

) + α (r)

(
−1 +

q

p− 1

)
. (20)

Boundary case: if q = p− 1, then r → ∞ regardless of α; no “cluster”

Otherwise, Expand near r ∼ 0, we get

r′ ∼
2q
p−1

1
d exp

(
−2r

d

)
1 + exp

(
−2r

d

) + rα′(0)

(
−1 +

q

p− 1

)
. (21)

More generally,

Suppose that α (x) has a root at x = x0 and suppose that α′(x0) (q − p− 1) < 0.
Then there is a two-spike steady state with spike positions at x ∼ x0 ± r, where r =
O(d log d−1) asymptotes to the small solution of

e2r/d ∼ 1

r

1

d

2q

α′(x0) (p− 1− q)
. (22)

No such solution exists if q = p− 1 or α′(x0) (q − p− 1) > 0



Figure 2: Two spikes inside an annular region of uneven thickness. The outer boundary
is a unit circle. The inner boundary is the circle through points −1 + 0.05, 1 − 0.15
(i.e. κ = 3 in (??)). The first column shows the equilibrium state for the full 2D
system (??). Second column shows the corresponding equilibrium in the 1D system (4),
approximating the solution along the boundary of the domain. (a-c) Parameter values are
ε = 0.07, D = 0.2, p,m, s = 2, 2, 0, and with q as indicated. (c) The sketch of
α(x) given by (??) with κ = 3, which was used in computations of the second column. (d)
Equilibrium spike positions as a function of q for two-spike configurations; other parameters
as in (a). Curve “pde 2D” is obtained by simulating the full 2D problem (??). Curve “pde
1D” simulates the reduced 1D problem (4). Curve “asympt q < 1” is the spike locations as
given by Proposition with expansion near x0 = π. Curve “asympt q > 1” is the expansion
near x0 = 0.



Many stripes

� We derive the effective spike density using methods from [Kolokolnkov, Xie, 2020]

� Idea: in the limit d small, the Green’s function interaction is exponentially weak. So
each spike only feels a local neigbourhood of spikes.

� Sort spike positions in increasing order, x1 < x2 < . . . < xN . Assume typical inter-
spike distance of O(d). Define u(x) such that xj+1− xj ≈ u(xj)d. Expand in Taylor
series. End-result: for equilibrium cluster,

ux = α(x)

((
p−1
q − 1

) sinhu

u
+ 1

)
sinh(u)

cosh(u)− γ+1
γ−1

, γ =
qm

p− 1
− s. (23)

This is a separable ODE and determines the effective inter-spike distance ud in the
limit of large N.

� The density distribution is given by ρ(x) = 1/u(x), where u(x) satisfies (23) subject
to an integral constraint ∫

D

ρ(x)dx = Nd. (24)

where D = (a, b) is the support of ρ(x) (i.e. u blows up x = a, b).



� Note that (23) has a singularity when cosh(u) = γ+1
γ−1. Competition instability occurs u

is below this threshold [K-X 2020]. Let

uc := arccosh

(
γ + 1

γ − 1

)
, ρc := 1/uc. (25)

This critical threshold agrees with known results about competition instability [Iron-
Ward-Wei, 2001]. In particular, the inter-spike distance must be larger than ucd.

� We call the density ρ(x) = 1/u(x) “admissible” if ρ(x) ≤ ρc for all x, where ρc is
given by (25). We call ρ(x) maximal admissible density , denoted it by ρmax(x), if
ρmax(x) ≥ ρ(x) for any admissible density ρ(x).

� Typically, Turing instability results in more spikes than ρmax can support due to large
unstable band (ε ≪ d). Therefore it is followed by coarsening process until ρ ∼ ρmax

(at the steady state)



Figure 3: (a-c): Solutions of ODE (23) for the density ρ(x) = 1/u(x) corresponding to
different admissable initial conditions (for which ρ(x) < ρc) with q as indicated, and with
α(x) as in (??) and p = 2,m = 2, s = 0. (d) Plot of ρmax(x) as a function of q, other
parameters are as in (a-c). (e) Nmaxd and cluster size Rmax as a function of q, see text.



Figure 4: Simulations of (??) starting with random initial conditions ε = 0.018, p =
2,m = 2, s = 0 and with q and d as shown. First column is the colour plot of the eventual
equilibrium state of a(x). Second column shows the comparison of the steady state along
the outer boundary with the continuum limit of many spikes as well as the equilibrium state
profile as given by Proposition ??. Third column shows the time-space plot along the outer
boundary of a(x, t) as well as the cluster radius in the case of q = 0.75 as given in Figure
3(e).



Figure 5: Simulations of (??) starting with random initial conditions, with ε = 0.018, p =
q = m = 2, s = 0 and with slowly decreasing d according to d = 0.447 + 10−7(0.153−
0.447)t, t = 0 . . . 107. Snapshots show direct comparison with continuum density for d
as indicated as well as the corresponding steady state. Note that the spike distribution is
uniform when d = 0.361 (see text); and a cluster starts to form around d = 0.221, in full
agreement with the theory.



Figure 6: Simulations of (??) starting with random initial conditions, with α(x) as in (??),
ε = 0.03, p = q = m = 2, s = 0 and with slowly increasing d according to d =
0.16 + (3− 0.0.16)10−6t, t = 0 . . . 106. Left: Full solution to the PDE. Right: N , number
of spikes, as a function of d : comparison between the full PDE and the continuum theory
(see text)



Discussion

� We have described stripe evolution and their equilibrium distributions on thin channels
for the GM model.

� We found clusters can concentrate either near thinnest or thickest part of the
channel, depending on parameters. This is in contrast to interface-minimizing systems
such as Allen-Cahn, where the dynamics push the interface to minimize its length and
therefore be located at the thinnest part of the channel [Kohn-Sternberg,1989; Chen,
1992; Iron-Kolokolnkov-Rumsay-Wei, 2009].

� When the domain is too thick (≥ O(ε)), stripes break up into spots [Doelman and
van der Ploeg, 2002]. Open question: analyse motion of spots (rather than stripes)
inside a thin channel. Study co-existing patterns – as in the picture.

� Reference: Leila Mohammadi, Theodore Kolokolnikov, David Iron, and Tamara A.
Franz-Odendaal, “Stripe patterns for Gierer-Meinhard model in thin domains”, to
appear, Physica D.

Thank you!



Figure 7: Coexistence of stripes and spikes. Full simulation of (??) inside a channel
whose outer boundary is a unit circle and whose inner boundary is a smaller circle with
d1 and d2 is the minimum and maximum thickness of the channel. Parameters are
(p, q,m, s) = (2, 0.75, 2, 0) with other parameters as indicated. First row: for ε = 0.1,
four stripes first appear but only two survive and move towards the thinnest part of the
channel. Second row: ε = 0.05, the eventual equilibrium consists of one-dimensional
stripes and two-dimensional spots. Third row: Thicker channel and smaller d allows for
more spots and stripes to co-exist.
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