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We expore pattern formation for the GM model on thin domains. If the domain is sufficiently thin,5

the pattern consists of a stripes which are nearly one-dimensional. We analyse patterns consisting6

of one, two or many stripes. We find that a single stripe can be located either at the thickest or7

thinnest part of the channel, depending on the choice of parameters. In the limit of many stripes,8

we derive an effective pattern density description of the equilibrium state. The effective density is9

easily computable as a solution of a first order ODE subject to an integral constraint. Depending on10

problem parameters, the resulting pattern can be either global spanning the entire domain, or can11

be clustered near either thickest or thinnest part of the domain. In addition, instability thresholds12

are derived from the continuum density limit of many stripes. Full two-dimensional numerical13

simulations are performed and are shown to be in agreement with the asymptotic results.14

1. INTRODUCTION15

In this paper we explore pattern formation for Gierer-Meinhardt (GM) model on thin domains. The standard GM16

model is [1, 2]:17

at = ε2∆a− a+ ap/hq, 0 = d2∆h− h+ am/hs, (1)18

and, as with most of studies of this model, we assume that the activator a diffuses much slower than the inhibitor h,19

so that ε ≪ d. As is well known, in this regime the solution consists of spikes (localized concentrations, or spots) that20

exhibit a wide variety of phenomena that have been intensively studied over the last 3 decades. We refer the reader to21

books [3, 4] and references therein. Similar spot patterns have been studied in many other reaction-diffusion models.22

Some prominenet examples include Gray-Scott model [5–9] the Schankenberg model [10–12], vegetation patches in23

arid environments [13–18], a model of crime hot-spots in a model of residential burglaries [19–22] and animal skin24

patterns, [23–28].25

A motivating biologically relevant example for this work, is the research by Franz-Odendaal and colleagues, that26

models the development of the conjunctival placodes within the embryonic eye of birds [29–32]. These placodes are27

transient structures that induce underlying bones within the sclera of the eye (Figure 1). Comparative morphological28

studies show that there is a specific conserved and universal sequence to the appearance of the placodes [31, 33].29

Experimental evidence to-date points to a Turing mechanism of pattern formation [34–36].30

One of the key results going back to [2, 37] is that the parameter d can be used to tune the number of spikes:31

increasing d can trigger the so called competition or coarsening instability threshold, which decreases the total number32

of spikes; the maximum allowed number of spikes is a decreasing function of d. Similar thresholds exist in other models33

as well [9, 11, 21] and in more general contexts, such as in the presence of precursor [38–40] or spatial heterogeneity34

[41, 42].35

Here, we study spike dynamics and stability for the GM model inside thin channels. See Figures 2,3,5 for examples.36

We are interested in the regime where the pattern is quasi-one-dimensional, in the sense that the concentration of37

either activator or inhibitor is nearly constant in the direction that is perpendicular to the channel. We will refer to38

such a pattern interchangeably as a stripe or a spike. In particular, stripes occur when the channel cross-sectional39

thickness is of O(ε): when the domain is too thick, the stripe will break up into spots [43–47].40

In the case where domain is very thin in one direction, a standard reduction – see Appendix C – results in a41

one-dimensional version of the GM model, but with an additional inhomogeneous drift term which encodes the cross-42

sectional area along the domain. This reduction results in the the modified diffusion operator as follows:43

∆ → ∂xx +
A′(x)

A(x)
∂x. (2)44

Here, x denotes the arclength coordinate along the boundary of the channel, and A(x) is the cross-sectional length45

of the domain at location x, and is assumed to be small. For convenience, we also rescale a = âεe, h = ĥεf with46

e = −1/ (m− (1 + s) (p− 1)/q) , f = −1/ (mq/(p− 1)− (1 + s)) , so that after dropping the hats the GM model47
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FIG. 1. The placode system in the eyes of embryonic birds induces the formation of underlying bones, the scleral ossicle ring.
A) chicken embryo showing the conjunctival placodes at embryonic day 8, B) the scleral ossicle bones within the sclera of a
cleared eye at post-hatching day 15, C) a schematic showing the scleral ossicle ring in an adult chicken.

becomes48

at = ε2 (axx + α(x)ax)− a+ ap/hq, (3a)49

0 = d2 (hxx + α(x)hx)− h+
1

ε
am/hs (3b)50

with α = A′/A. The presence of inhomogeneities α(x) in both a and h equations introduces novel features to the GM51

model, and the rest of the paper is dedicated to the study of these. A similar model in the context of a convective52

flow for the Schnakenberg model, but with a constant α, was studied in [12].53

Throughout this paper, for concreteness we will take the domain such as shown in Figure 2. It is a region whose54

outer boundary is a unit circle, and whose inner boundary is an off-center circle such that minimum and maximum55

distance from the outer boundary is dmin and dmax, respectively, with dmin ≤ dmax ≤ O(ε) ≪ 1. We will assume that56

the inner circle is closest to the outer circle on the left. In the limit dmin, dmax ≪ 1, we find the corresponding α(x)57

to be58

α(x) ∼ 1

2

−
(
κ2 − 1

)
sinx

1 + κ2 + (κ2 − 1) cosx
; κ = dmax/dmin (4a)59

(see Appendix C) where x = θ is the arclength coordinate along the outer circle. The equations (3) are then posed60

on x ∈ [0, 2π] with periodic boundary conditions. For concreteness, we will fix61

κ = 3 (4b)62

for the remainder of the paper; the graph of the resulting α(x) is illustrated in Figure 3(c).63

Figures 2,3,5 illustrate main results. We study either a single stripe, a configuration involving two stripes, and N64

stripes where N is large. We are primarily concerned with stripe locations. For large N , we also recover instability65

thresholds as a function of d (Proposition 3.2). We compute asymptotic stripe locations for 1 or 2 stripes, as well as66

effective density distribution for N spikes. It turns there are two distinct regimes: the location as well the extent of a67

cluster changes depending on whether q < p− 1 or q > p− 1. The “standard” parameter set (p, q,m, s) = (2, 1, 2, 0)68

is on the boundary q = p− 1 and is exceptional in that sense.69
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FIG. 2. Stable equilibrium solutions of the full 2D system (1) consisting of a single spike inside an annular region of uneven
thickness. The outer boundary is unit circle. The inner boundary is a circle which is at a minimum distance of 0.05 and a
maximum distance of 0.15 from the outer boundary. Full 2D time-dependent problem was solved using an initial condition
consisting of a single spike at x = π/2. Snapshots show the solution after it converged to a (stable) equilibrium. Parameters
d and q are as shown, while other parameters are ε = 0.1, p,m, s = 2, 2, 0. Note that the spike is expected to be stable at
the thinnest part of the domain when d is large, regardless of q. When d is small, the spike is stable at the thinnest part if
q < p− 1, but is stable at the thickest part when q > p− 1.

2. REDUCED SYSTEM; ONE OR TWO STRIPES70

We consider a solution consisting of N stripes, as illustrated in Figure 5. Let xk(t) denote the stripe location71

along the channel. This location changes slowly in time. In Appendix A, we use the standard quasi-steady-state72

approximation to derive the following system of algebro-differential equations for evolution of spike centers xk, coupled73

with heights Vk ∼ h(xk). We summarize the result as follows.74

Proposition 2.1. In the limit ε ≪ d, a quasi-equilibrium solution to (3) consisting of N stripes has the form75

a(x, t) ∼
∑

V
q/(p−1)
j w

(
x− xj(ε

2t)

ε

)
, (5)76

H(x, t) ∼ bm
∑
j

V γ
j G (x, xj) (6)77

where w(y) is a standard ground state solution which satisfies78

wyy − w + wp = 0; w′(0) = 0; w (y) → 0 as y → ±∞, (7)79

the constant bm is given by80

bm =

∞∫
−∞

wm(y)dy, (8)81

G(x, ξ) is the Green’s function satisfying82

d2 (Gxx + α(x)Gx)−G = −δ(x− ξ), (9)83
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and xj(tε
2) is the time-dependent location of j-th stripe which is coupled to weights Vj and solves the following84

differential-algebraic system:85

x′
k = −α(xk)− 2bm

q

p− 1

1

Vk

∑
j

V γ
j Gx(xk, xj) (10a)86

Vk = bm
∑
j

V γ
j G(xk, xj); (10b)87

γ =
qm

p− 1
− s; (10c)88

where Gx(xk, xk) =
1
2

(
Gx(x

+
k , xk) +Gx(x

−
k , xk)

)
.89

Note how the thickness α(x) of the domain appears in both the Green’s function (9) as well as in equation (10).90

For a general α(x) and d, the Green’s function equation (9) does not have an explicit solution. However in the limits91

of large or small d, further asymptotics are possible. We now consider one and two-stripe configurations.92

Single stripe. We begin by considering a single stripe, whose center we denote by x0. In this case, equations (10)93

reduce to94

x′
0 = −α(x0)− 2

q

p− 1

Gx(x0, x0)

G (x0, x0)
. (11)95

First, suppose d is sufficiently large. This is the so-called near-shadow limit [48]. In this case it is easy to show that96

Gx(x0,x0)
G(x0,x0)

= O(d−2), so that −α(x) in (11) is dominant and we obtain97

x′
0 ∼ −α(x0), d ≫ 1 (12)98

Consequently, equilibrim location for x0 then correspond to zeros of a = A′/A, with stable equilibrium corresponding99

to the minimum of cross-sectoional area A(x).100

Next, we consider the case of small d. We use WKB techinques to estimate G in this case – see Appendix B,101

equations (46), (47). As a result, we obtain the following equation of motion for a single spike:102

x′
0 ∼

(
−1 +

q

p− 1

)
α(x0), d ≪ 1. (13)103

Equations (12) and (13) show that in the cases of d either small or large, the equilibria locations x′
0 = 0 correspond104

to zeros of α (x) = A′(x)/A(x), but their stability can switch depending on the sign of q + 1− p : if p > q + 1, stable105

equilibria correspond to the minimum of A, and unstable to the maximum of A; this is reversed when p < q + 1.106

The four cases (q ≶ p − 1, d large or small) are illustrated in Figure 2. Interestingly, the case p = q + 1 (which107

includes the so-called “standard” GM exponents p = 2, q = 1) is on the boundary q = p − 1: higher-order analysis108

(outside the scope of this paper) would be required to analyse the dynamics of a single spike in this case.109

Two symmetric stripes. Figure 3 illustrates our results for symmetric configurations consisting of two stripes.110

Here, we only consider the case where d is asymptotically small, and the two stripes are symmetrically located with111

respect to domain as shown in Figure 3: either near the minimum or the maximum (when d is large, two spikes are112

unstable due to a competition instability).113

More generally, suppose that the channel has a reflection symmetry with the axis of reflection perpendicular to the114

channel. We will then look for a two-stripe symmetric solution close to the axis of symmetry. Take x to be transversal115

coordinate with x = 0 located at the symmetry point. Then A(x) is an even function so that α(x) is odd. We look116

for a symmetric solution with respect to x = 0. Setting r = x1 = −x2 and V1 = V2, equations (10) then become117

r′ = −α(r)− 2
q

p− 1

Gx (r, r) +Gx (r,−r)

G (r, r) +G (r,−r)
.118

For small d, we use the WKB approximation (48), (49) to estimate119

Gx (r, r) +Gx (r,−r)

G (r, r) +G (r,−r)
∼

− 1
2β(r) + exp

(
− 2r

d

) (
− 1

d − 1
2β (r)

)
1 + exp

(
− 2r

d

) .120

so that121
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FIG. 3. Two spikes inside an annular region of uneven thickness. The outer boundary is unit circle. The inner boundary is the
a circle through points −1 + 0.05, 1 − 0.15 (i.e. κ = 3 in (4)). The first column shows the equilibrium state for the full 2D
system (1). Second column shows the corresponding equilibrium in the 1D system (3), approximating the solution along the
boundary of the domain. (a-c) Parameter values are ε = 0.07, D = 0.2, p,m, s = 2, 2, 0, and with q as indicated. (c) The
sketch of α(x) given by (4) with κ = 3, which was used in computations of the second column. (d) Equilibrium spike positions
as a function of q for two-spike configurations; other parameters as in (a). Curve “pde 2D” is obtained by simulating the full
2D problem (1). Curve “pde 1D” simulates the reduced 1D problem (3). Curve “asympt q < 1” is the spike locations as given
by Proposition 2.2 with expansion near x0 = π. Curve “asympt q > 1” is the expansion near x0 = 0.

r′ ∼
2q
p−1

1
d exp

(
− 2r

d

)
1 + exp

(
− 2r

d

) + α (r)

(
−1 +

q

p− 1

)
. (14)122

In the case q = p − 1, the term having α completely disappears from the equation. In this case the two spikes123

locally repel each other regardless of the choice of α, and there is no equilibrium near r = 0.124

More generally, we seek a steady state of (14) for small r. We may then expand in Taylor series α(r) ∼ rα′(0), so125

that (14) becomes126

r′ ∼
2q
p−1

1
d exp

(
− 2r

d

)
1 + exp

(
− 2r

d

) + rα′(0)

(
−1 +

q

p− 1

)
. (15)127

The steady state with r small exists and is stable with respect to the ODE (15) if and only if α′(0) (q − p− 1) < 0.128

We summarize as follows129

Proposition 2.2. Suppose that α (x) has a root at x = x0 and suppose that α′(x0) (q − p− 1) < 0. Then there is a130

two-spike steady state with spike positions at x ∼ x0 ± r, where r = O(d log d−1) asymptotes to the small solution of131

e2r/d ∼ 1

r

1

d

2q

α′(x0) (p− 1− q)
. (16)132

No such solution exists if q = p− 1 or α′(x0) (q − p− 1) > 0,133
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FIG. 4. (a-c): Solutions of ODE (21) for the density ρ(x) = 1/u(x) corresponding to different admissable initial conditions (for
which ρ(x) < ρc) with q as indicated, and with α(x) as in (4) and p = 2,m = 2, s = 0. (d) Plot of ρmax(x) as a function of q,
other parameters are as in (a-c). (e) Nmaxd and cluster size Rmax as a function of q, see text.

Figure 3 shows a direct comparison between the full 2D model (1) and its one-dimensional reduction (3) with α(x)134

given by (4). Note that135

α′(0) = −
(
κ2 − 1

)
4κ2

< 0, α′(π) =

(
κ2 − 1

)
4

> 0 (17)136

Consequently, according to Proposition 2.2, two stripes appear on the right q > p− 1, and on the left when q < p− 1.137

This is confirmed with direct simulations.138

3. MANY STRIPES139

For more than two spikes, equations of motion (10) and its equilibrium become too complex to solve exactly.140

However as the number N of spikes increase, it becomes possible to gain insight by looking at the limit of large N,141

as was done in [39, 40], in the limit d = O(N−1). In this section, we use the ideas introduced in [39] to compute the142

effective spike density in the limit of large N .143

Let us first define what we mean by spike density ρ(x). We first sort spike positions in increasing order, x1 < x2 <144

. . . < xN . As we will show, the typical inter-spike will be of O(d). We therefore introduce a continuous function x (s),145

s = 0 . . . dN , such that xk = x(s), where s = kd. Finally, define146

u(x) := x′(s); (18)147

and note that then xj+1 − xj ≈ u(xj)d. The effective density is then defined by ρ(x) := 1
u(x) Note that ρ(x)dx =148

1
x′(s)

dx
ds ds = ds, so that

∫ b

a
ρ(x)dx = s|ba. In particular,

∫
D
ρ(x)dx = Nd, where D is the support of ρ(x).149

To obtain a continuum approximation, we shall use the fact that the Green’s function decay exponentially fast for150

small d, which makes it possible to simplify the sums in (10). Let j = k + l and expand151

xk = x(s) = x;152

xj = x (s+ dl) = x(s) + dlx′(s) + d2
l2

2
x′′(s) + . . . .153
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FIG. 5. Simulations of (1) starting with random initial conditions ε = 0.018, p = 2,m = 2, s = 0 and with q and d as shown.
First column is the colour plot the eventual equilibrium state of a(x). Second column shows the comparison of the steady
state along the outer boundary with the continuum limit of many spikes as well as the equilibrium state profile as given by
Proposition 3.1. Third column shows the time-space plot along the outer boundary of a(x, t) as well as the cluster radius in
the case of q = 0.75 as given in Figure 4(e).

We then estimate x′′(s) = uxu so that154

xk = x; xj = x+ dlu+ d2
l2

2
uux + . . . (19)155

We now expand
∑

j V
γ
j G(xk, xj). Introduce a continuum variable V (x) with the property that Vk = V (xk). Using156

(??) we estimate157 ∑
V γ
j G(xk, xj) ∼

1

2d
V γ(x)

∞∑
l=−∞

e−|l|u ∼ 1

2d
V γ(x) coth(u/2);158

so that159

V (x) =

(
1

d

bm
2

coth (u/2)

) 1
1−γ

. (20)160
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Next, we compute
∑

j V
γ
j Gx(xk, xj), which requires a two-order expansion due to cancellation at the leading order.161

We have:162

2d2Gx(xk, xj) ∼ sign le−|l|u + d

{
β(x)

2
(|l|u− 1) e−|l|u − l2

2
uuxe

−|l|u
}

163

164

V γ
k = V γ(x); V γ

j ∼ V γ (x) + dluγV γ−1(x)V ′(x)165

so that166

2d2
∑

V γ
j Gx ∼ dγV γ−1V ′(x)

∑
|l|ue−|l|u + dV γ

{
β

2

∑
(|l|u− 1) e−|l|u − ux

∑ l2

2
ue−|l|u

}
167

where all the sums are
∑

=
∑∞

l=−∞ . We further compute:168

V γ−1(x) = d
2

bm
tanh (u/2) ;169

V γ−2V ′(x) = d
1

bm (γ − 1)
sech2 (u/2)ux170

so that171

1

Vk

∑
V γ
j Gx ∼ ux

bm
F1 +

β

bm
F2172

where173

F1 =
u

2

{
γ

γ − 1
sech2 (u/2)

∑
|l| e−|l|u − tanh (u/2)

∑
l2e−|l|u

}
,174

F2 =
1

2
tanh (u/2)

{∑
(|l|u− 1) e−|l|u

}
175

Using
∑

e−|l|u = coth (u/2) ,
∑

|l| e−|l|u = −∂u coth (u/2) and so on we obtain, after some simplifications,176

F1 = u

(
γ+1
γ−1 − cosh(u)

2 sinh2(u)

)
, F2 =

u

2 sinh(u)
− 1

2
.177

The steady state then satisfies −α(x)− 2p−1
q (uxF1(u) + α(x)F2(u)) = 0, or178

ux = α(x)

((
p−1
q − 1

) sinhu

u
+ 1

)
sinh(u)

cosh(u)− γ+1
γ−1

. (21)179

This is a separable ODE and determines the effective effective inter-spike distance ud in the limit of large N. We180

summarize as follows.‘181

Proposition 3.1. Suppose that N ≫ O(1) and Nd ≤ O(1). Let x1 . . . xN be the equilibrium state of (10), sorted in182

increasing order. Its density distribution is given by ρ(x) = 1/u(x), where u(x) satisfies (21) subject to an integral183

constraint184 ∫
D

ρ(x)dx = Nd. (22)185

where D is the support of ρ(x).186

Note that the right hand side of (21) has a singularity when cosh(u) − γ+1
γ−1 . As in [39], it is observed numerically187

that when u is below this critical value, the solution is unstable, and in fact the reduced system (10) does not converge188

to a steady state. This is summarized as follows.189
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Proposition 3.2. Let190

uc := arccosh

(
γ + 1

γ − 1

)
, ρc := 1/uc. (23)191

Any stable equilibrium solution must satisfy ρ(x) ≤ ρc or equivalently, u(x) ≥ uc for all x in the support of ρ(x). In192

particular, the inter-spike distance must be larger than ucd.193

This threshold has simple interpretation in terms of the original model (3): ucd is the minimum possible distance194

between the spikes; spikes that are closer than that distance are unstable. Formula (23) generalizes the famous195

instability thresholds of a homogeneous GM system first derived in [2]. To see the equivalence between uc and results196

in [2], consider a homogeneous problem (α = 0) on the domain of size L. Then ux = 0 so the density ρ(x) is constant,197

and (22) yields ρ(x) = 1
NdL . The instability threshold (23) then becomes NL = d arccosh

(
γ+1
γ−1

)
. Some algebra shows198

that this is equivalent to the formula (4.65) in [2]. This equivalence was first observed in [39] for the “standard” case199

(p, q,m, s) = (2, 1, 0, 2) .200

Let us now define201

Definition 3.3. We call the density ρ(x) = 1/u(x) “admissable” if ρ(x) ≤ ρc for all x, where ρc is given by (23).202

We call ρ(x) maximal admissable density, denoted it by ρmax(x), if ρmax(x) ≥ ρ(x) for any admissable density ρ(x).203

Figure 4(a) shows different possible admissable solutions for ρ(x), all below ρc with parameters as specified in the204

figure. Since ρ(x) solves an ODE whose solution is unique, the different solutions cannot intersect. As such, ρmax(x)205

must touch ρc at its maximum. To solve (21) we fix initial conditions u(π) and then integrate (21) numerically, until206

either u(x) blows up or entire domain is filled. (in figure 4(c), we took initial conditions u(0) instead of u(π), in order207

to capture solutions supported near x = 0). The corresponding value of Nd can then be recovered from (22). The208

different curves in each subfigure correspond to different initial conditions u0 = u (π) (or u0 = u(0)). Depending on209

parameters, either u(x) will blow up at some points x = a, b (in which case ρ(x) is compactly supported on [a, b]210

with ρ(a) = ρ(b) = 0), or else the solution u(x) exists on the entire domain of definition (x ∈ [0, 2π] periodic in our211

example).212

In the case of a blowup at x = a, b, the density ρ (x) = 1/u(x) is compactly supported on the domain D = (a, b) .213

This happens, for example in Figure 4(a) (q = 0.7) for any admissable ρ. Due to symmetry of α(x), we find that214

D = (π −R, π +R) for some R that depends on the choice of initial conditions u(π). In this case, the solution is said215

to have a cluster, with spikes inside D and no spikes outside of D.216

Let Rmax be the radius of the cluster corresponding to ρmax. Figure 4(d) gives the values of Rmax corresponding to217

umax, as well as Nmaxd =
∫
D
ρmax(x)dx, for a given value of q. Note the transition from a cluster to a global solution218

around q ≈ 0.82. In the absence of the blowup for u, the spikes are globally distributed throughout [0, 2π] and no219

cluster forms.220

When q = 0.7, note that as ρ(π) is decreased, the corresponding radius R approaches to zero, and Nd defined221

through (22) also approaches zero. As a consequence, the cluster becomes localized near x = π as d → 0 (and with222

fixed N) in this case.223

Definition 3.4. We call N -spike equilibrium a “cluster” solution on (a, b) if the corresponding density ρ(x) is com-224

pactly supported on x ∈ (a, b), that is u(x) blows up (has vertical asymptote) at x = a, b. If u(x) is defined on entire225

domain, we call it a “global” solution.226

An important special case is q = p− 1. In this case the blowup is not possible: for large u, equation (21) reduces to227

ux ∼ α(x) which does not have vertical asymptote. As illustrated in Figure 4(b), the density approaches constant as228

Nd → 0 in this case (this corresponds to the solution of ux ∼ α(x) subject to initial conditions u(x0) = u0 ≫ 1; the229

solution is indeed u(x) ∼ u0 +
∫ x

x0
α(s)ds ∼ u0).230

The situation is very different for q ̸= p− 1: the cluster solution appears for sufficiently small d, either at x = π (if231

q < p− 1) or at x = 0 (if q > p− 1) as we will now show.232

Suppose α(0) = 0 and we look for cluster solution localized near x = 0, with ρ(x) small (i.e. u(x) big). Assuming233

u(x) is large and the cluster is near x = 0, equation (21) can be written as234

ux ∼ 2α1xe
u/u, u ≫ 1, (24)235

where236

α1 := α′(0)
1

4

(
p− 1

q
− 1

)
(25)237
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Assuming α1 > 0, this ODE is integrable and after some algebra, its solution ρ = 1/u is approximated by238

ρ ∼ 1

−2 logRα1 − log
(
1−

(
x
R

)2) ∼
{

1
−2 logRα1

, |x| < R

0, |x| > R
. (26)239

Equation (22) then yields an estimate240

Nd ∼ R

− logRα1
.241

More generally, we summarize as follows.242

Proposition 3.5. Supplose that α′(x0) = 0 and let α1 be as in (25) but with α′(0) replaced by α′(x0). Moreover243

suppose that α1 > 0. Then there exists a stable cluster of spikes centered at x0 of radius R ≪ 1 having N ≫ 1 spikes244

when245

d ∼ 1

N

R

log (1/(Ra))
. (27)246

The corresponding spike density inside this cluster asymptotes to (26).247

Starting from random initial conditions. The existence of a maximal admissable density ρmax(x) has impli-248

cations for coarsening phenomenon widely observed for GM systems. Define249

Nmax :=
1

d

∫
ρmax(x)dx. (28)250

Given a solution with N spikes corresponding to a density ρ(x), we have that Nd =
∫
ρ(x)dx ≤

∫
ρmax(x)dx = Nmaxd.251

It follows that an equilibrium state can have at most Nmax spikes. However, it is possible to have a quasi-equilibrium252

state with more than Nmax spikes; in this case, coarsening is observed whereby some spikes are gradually eliminated253

until at most Nmax remain. In particular this occurs naturally as a result of a Turing bifurcation when starting with254

random initial conditions as we illustrate below.255

Figure 5 shows the dynamics and the steady state of (1) for three different values of q (either q < p− 1, q = p− 1256

or q > p − 1), and starting with initial conditions which consist of small random perturbations off a constant.257

Turing analysis reveals that the most unstable mode scales like O(1/ε), and as such, very high-mode instability is258

triggered. This is followed very quickly by a development of numerous spikes – in fact, more than than the domain259

can support. As a result, the initial spike pattern undergoes a coarsening process, whereby several spikes are killed260

in a succession, until N ∼ Nmax. The coarsening process eventually terminates and the pattern converges to an261

equilibrium configuration. As shown in Figure 5 (first row), when q = 0.75, the resulting equilibrium conists of a262

cluster of four spikes, concentrated near the thinnest part of the domain. By contrast, when q = 1 or 2, the resulting263

equilibrium spans an entire domain. The number of spikes in each case is is predicted by Nmax as given in (28) and264

indicated in the figure. It agrees very well with actual observations.265

Our theory approximates both the maximum number of stable spikes supported by the domain, whether the266

resulting steady state consists of a cluster of spikes or spikes distributed (non-uniformly) throughout the domain, as267

well as the actual spike density within the cluster. In all three cases, the resulting equilibrium is well approximated268

by the continuum limit. This is true even for a relatively small number of spikes (N = 4 in Figure 5).269

Decreasing d. Figure 6 shows a sequence of admissable densities with q = 2. Note that ρmax(x) is global and has270

a maximum at x = π. On the other hand, a smaller ρ(x) forms a cluster around x = 0 and has a maximum there.271

Inbetween, there is a value of d for which the density is constant. This corresponds to a constant solution of (21) which272

satisfies
(

p−1
q − 1

) sinhu

u
+1 = 0 or

sinhu

u
= 2 or u ≈ 2.1773. The corresponding value of Nd =

∫ 2π

0
1

2.1773 = 2.8857.273

Setting N = 8 as in the figure, yields the value of d = 0.361. And indeed, the solution is observed to have uniform274

distribution of spikes at that value as shown in the figure. Similarly, according to the theory, the cluster first appears275

(near x = 0) when d = 0.221. As d is further reduced, the cluster radius decreases. Excellent agreement between the276

theory and the full 2D numerical PDE simulations is observed throughout entire range of d.277

Increasing d. Increasing d generally results in a sequence of coarsening thresholds, as illustrated in Figure 7.278

For parameters in this simulation, we find that dNmax =
∫ 2π

0
ρmax(x)dx = 3.708. Since dNmax is a fixed constant,279

increasing d will decrease Nmax, the maximum possible number of spikes. The location where the coarsening takes280

place corresponds to the corner in the plot of ρmax(x), i.e. at x = π in this case (c.f. Figure 4). The continuum limit281

prediction d ≈ 3.708/Nmax compares well with the full PDE simulation (Figure 7(b)).282
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FIG. 6. Simulations of (1) starting with random initial conditions, with ε = 0.018, p = q = m = 2, s = 0 and with slowly
decreasing d according to d = 0.447 + 10−7(0.153 − 0.447)t, t = 0 . . . 107. Snapshots show direct comparison with continuum
density for d as indicated as well as the corresponding steady state. Note that the spike distribution is uniform when d = 0.361
(see text); and a cluster starts to form around d = 0.221, in full agreement with the theory.

4. DISCUSSION283

We have described stripe evolution and their equilibrium distributions on thin channels for GM model. We found a284

rather intricate interplay between exponents p, q, the inhibitor diffusion d, and the domain thickness. Unlike interface-285

minimizing systems as Allen-Cahn, where the dynamics push the interface to minimize its length and therefore be286

located at the thinnest part of the channel [49–52], in the GM system it is possible for stripes to be clustered near the287

maximum of the channel thickness when q > p− 1 and d is sufficiently decreased. However even in the case q > p− 1,288

the spike density that arises as a result of a Turing bifurcation is typically higher at the thinner part. It is only when289

d is sufficiently decreased that the spike density “switches” to the thicker part.290

In our analysis and in simulations, we took the domain thickness to be sufficiently small so as to avoid the breakup291

instability of a stripe into spots [43–47]. For thicker domain (or smaller ε), spots and stripes can coexist, as illustrated292

in Figure 8. The analysis of this hybrid pattern is left for future work. In particular it would be interesting to293

construct solutions where the activator is fully two-dimensional, but the inhibitor is is nearly one-dimensional except294

near the spot. We mention related works [53, 54] which studied the stability and motion of boundary spikes for the295

GM model.296

An interesting “degenerate” case is what happens when a channel is curved but has uniform thickness. Numerical297

experiments reveal that the stripe will move at a much slower speed in this case, and a rich variety of steady states298

and equilibria positions is possible; the curvature of the channel seems to play a crucial role. It is an open question299

to study the motion in this case.300
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FIG. 7. Simulations of (1) starting with random initial conditions, with α(x) as in (4), ε = 0.03, p = q = m = 2, s = 0 and with
slowly increasing d according to d = 0.16 + (3 − 0.0.16)10−6t, t = 0 . . . 106. Left: Full solution to the PDE. Right: N , number
of spikes, as a function of d : comparison between the full PDE and the continuum theory (see text)

APPENDIX A: EQUATIONS OF MOTION304

In this appendix we derive the equations of motion (10) starting with the PDE system (3). Let xk denote the305

position of k-th spike. In the inner region near xk we expand,306

x = xk(ε
2t) + εy,307

α(x) = α(xk) + α′(xk)εy . . .308

a(x, t) = U0(y) + εU1(y) + . . . ,309

h(x, t) = V0(y) + εV1(y) + . . . ,310

Then to leading order we have311

0 = U0yy − U0 +
Up
0

V q
0

, 0 = V0yy (29)312

and at the next order we obtain313

(−x′
k − α (xk))U0y = U1yy − U1 + p

Up−1
0 U1

V q
0

− q
Up
0

V q+1
0

V1 (30)314

0 = V1yy + U2
0 (31)315

Then V0 is a constant which we denote by V0 = Vk and therefore U0 can be written as316

U0 = w(y)V r1
k , r1 = q/(p− 1) (32)317

where w is the unique ground-state solution to318
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FIG. 8. Coexistence of stripes and spikes. Full simulation of (1) inside a channel whose outer boundary is a unit circle and
whose inner boundary is a smaller circle with d1 and d2 is the minimum and maximum thickness of the channel. Parameters
are (p, q,m, s) = (2, 0.75, 2, 0) with other parameters as indicated. First row: for ε = 0.1, four stripes first appear but only
two survive and move towards the thinnest part of the channel. Second row: ε = 0.05, the eventual equilibrium consists of
one-dimensional stripes and two-dimensional spots. Third row: Thicker channel and smaller d allows for more spots and stripes
to co-exist.

wyy − w + wp = 0; w′(0) = 0, w → 0 as |y| → ∞ (33)319

whose explicit solution is given by320

w(y) =

(
p+ 1

2
sech2

(
p− 1

2
y

)) 1
p−1

. (34)321

In the outer region, we write322

h(x) ∼
N∑
j=1

SjG(x, xj) (35)323

where G is the Green’s function solution to324

d2 (Gxx + α(x)Gx)−G+ δ(x, y) = 0. (36)325

The weights Sj are computed as326

Sj =

x+
j∫

xj−

um(x)

hs(x)

1

ε
dx ∼ V mr1−s

j

∫
wmdy.327
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Matching inner and outer region we have Vk ∼ h(xk) so that328

Sk ∼ V mr1−s
k bm, where bm =

∫
wmdy, (37)329

Vk ∼
N∑
j=1

SjG(xk, xj) (38)330

Finally we formulate the solvability condition to determine xk. Multiplying (30) by U0y and integrating by parts,331

we then obtain332

(−x′
k − α (xk))

∫
U2
0y = −

∫
qU0y

Up
0

V q+1
0

V1 (39)333

0 = V1yy + Um
0 /V s

0 (40)334

We compute335

−
∫

qU0y
Up
0

V q+1
0

V1 =
q

V q+1
0

1

p+ 1

∫
Up+1
0 V1y336

∼ q

p+ 1
V

−q−1+r1(p+1)
0 ⟨hx⟩k

∫
wP+1 (41)337

where ⟨hx⟩k denotes the average of the slopes in the outer regions for h(x), ⟨hx⟩k :=
hx(x

+
k )+hx(x

−
k )

2 .338

Finally, we multiply (33) by w′ or w and then integrate to obtain the identities339

0 = −
∫

w2
y −

∫
w2 +

∫
wp+1

340

0 =
1

2

∫
w2

y −
1

2

∫
w2 +

1

p+ 1

∫
wp+1

341

so that342 ∫
wp+1∫
w2

y

= 2
p+ 1

p− 1
;343

this yields344

x′
k(ε

2t) = −α (xk) + 2
q

p− 1
v−1
k ⟨vx⟩k . (42)345

Finally we have346

⟨hx⟩k = bm

N∑
j=1

V mr1−s
k Gx(xk, xj). (43)347

where Gx(xk, xk) = limε→0
Gx(xk+ε,xk)+Gx(xk−ε,xk)

2 . Substituting (43) into (42) yields the system (10).348

For a single spike, this reduces to:349

x′
0(ε

2t) = −α (x0)− 2
q

p− 1

Gx(x0, x0)

G(x0, x0)
. (44)350

Finally for small D, this simplifies (see Appendix B) to351

x′
0(ε

2t) =

(
−1 +

q

p− 1

)
α(x0). (45)352



15

APPENDIX B: GREEN’S FUNCTION AND WKB THEORY353

We are looking for solution to the equation354

d2 (Gxx + a(x)Gx)−G = −δ(x− ξ); d ≪ 1.355

We use the standard WKB anzatz:356

G ∼ Y (x)e
ϕ(x)
d357

to obtain358

ϕ′2 = 1;
1

Y

(
Y 2ϕ′)′ + Y ϕ′β = 0.359

Since we require decay at infinity, we take ϕ′ = − sign (x− ξ) and equation for Y yields360

Y = C exp

−1

2

x∫
ξ

α (s) ds

 .361

Applying the jump condition d2Gx|ξ
+

ξ− = −1; then yeilds362

G(x, ξ) ∼ 1

2d
exp

−1

2

x∫
ξ

α (s) ds

 exp

(
−|x− ξ|

d

)
.363

In particular we have:364

G(ξ, ξ) ∼ 1

2d
(46)365

Gx(ξ, ξ) ∼
Gx(ξ

+, ξ) +Gx(ξ
−, ξ)

2
= −α (ξ)

4d
; (47)366

and two-order for x = ξ + dy yields367

G(ξ + dy, ξ) ∼ 1

2d
e−|y| − α (ξ)

4
ye−|y|; (48)368

369

Gx(ξ + dy, ξ) ∼ − 1

2d2
sign ye−|y| + d

α(ξ)

4d
(|y| − 1) e−|y| (49)370

APPENDIX C: THIN CHANNEL REDUCTION371

Reduction to 1D. We now show the derivation of (2). Assume a channel has cross-sectional area A(s), where s is372

the acrlength coordinate along one of the boundaries. We will show that the general equation ∆u+ F = 0 inside the373

channel with Neumann boundary conditions reduces to uss+
A′(s)
A(s) us+F = 0. Here, u is a multi-component variable,374

and F = F (u, ut) is the remaining nonlinearity.375

In curvilinear coordinates, Laplacian is written as:376

∆u = uηη −
κ

1− κη
uη +

1

1− κη

(
1

1− κη
us

)
s

(50)377

Here, s is the arclength coordinate along a boundary, and η is the coordinate ornonormal to s, pointing inside the378

domain, and κ = κ(s, η) is the curvature along the curve s = const. as illustrated in the following figure:379
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380

We have:381

κ(s, η) =
κ0(s)

1 + ηκ0(s)
382

so that (50) becomes383

∆u = uηη − κ0uη + (1 + ηκ0) ((1 + ηκ0)us)s .384

The boundary condition ∂nu = 0 at η = δf(s) becomes, to leading order:385

δf ′(s)us ∼ uη at η = δf(s) (51)386

Rescale η = zδ. We have:387

∆u =
1

δ2
uzz −

1

δ
κ0uz + (1 + zδκ0)

2
uss + (1 + zδκ0) zδκ

′
0(s)us388

and (51) yields389

uz ∼ δ2f ′(s)us at z = f(s).390

The equation is ∆u+ F = 0. Integrate in the z = 0 . . . f(s) to obtain, to leading order,391

f ′(s)us + f(s)uss + f(s)F = 0392

or uss +
f ′(s)
f(s) us + F = 0.393

Annular region. Consider an annular domain as in 2 where the outer boundary is a unit circle and the inner394

boundary is circle such that minimum and maximum distance from the outer boundary is m and κm, respectively.395

Assume without loss of generality that the distance is at the minimum at θ = π and is maximum at θ = 0. The396

length of cross-section corresponding to angle θ is given by L(θ) =
∣∣c+ reiθ − eiθ

∣∣ , where r = 1 − m
2 (1 + κ) and397

c = 1− κm− r = m
(
1
2 − κ

2

)
. We we find that:398

L(θ) =
m

4

(
1 + κ2 +

(
κ2 − 1

)
cos θ

)1/2
399

so that α = β = L′/L:400

α = β =
1

2

−
(
κ2 − 1

)
sin θ

1 + κ2 + (κ2 − 1) cos θ
;401

here, κ is the ratio of maximum versus minimum.402
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