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Abstract. In the present work, we motivate and explore the dynamics of a dissipative variant
of the nonlinear Schrödinger equation under the impact of external rotation. As in the well estab-
lished Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that
the most unstable mode leading to this instability scales with an appropriate power of the chemical
potential µ of the system, increasing proportionally to µ2/3. The precise form of the relevant for-
mula, obtained through our asymptotic analysis, provides the most unstable mode as a function of
the atomic density and the trap strength. We show how these unstable modes typically nucleate a
large number of vortices in the periphery of the atomic cloud. However, through a pattern selection
mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially
from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex config-
urations with far fewer vortices than the original unstable mode. These results may be of relevance
to the experimentally tractable realm of finite temperature atomic condensates.
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1. Introduction. Vortices are persistent circulating flow patterns that occur in
many diverse scientific and mathematical contexts [1], ranging from hydrodynamics,
superfluids, and nonlinear optics [2, 3] to specific case examples in sunspots, dust
devils [4], and plant propulsion [5]. The realm of atomic Bose-Einstein condensates
(BECs) [6, 7, 8] has produced a novel and pristine setting where numerous features
of the exciting nonlinear dynamics of single- and multi-charge vortices, as well as of
vortex crystals and vortex lattices, can be not only theoretically studied, but also
experimentally observed.

The first experimental observation of vortices in atomic BECs [9] by means of
a phase-imprinting method between two hyperfine spin states of a 87Rb BEC [10]
paved the way for a systematic investigation of their dynamical properties. Stirring
the BECs [11] above a certain critical angular speed [12, 13, 14] led to the production
of few vortices [14] and even of robust vortex lattices [15, 16]. Other vortex-generation
techniques were also used in experiments, including the breakup of the BEC super-
fluidity by dragging obstacles through the condensate [17], as well as nonlinear in-
terference between condensate fragments [18]. In addition, apart from unit-charged
vortices, higher-charged vortex structures were produced [19] and their dynamical
(in)stability was examined. To these earlier experimental developments, one can add
in recent years: the formation of vortices through a quench of a gas of atoms from
well above to well-below the BEC transition via the so-called Kibble-Zurek mecha-
nism [20]; the dynamical visualization of such “nucleated” vortices [21] and even of
vortex pairs, i.e., dipoles consisting of two oppositely charged vortices; the nucleation
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of dipoles via the dragging of a laser beam through the BEC [22]; the systematic
experimental exploration of dipole dynamics [23]; the generation (via instabilities) of
3-vortex configurations of same or opposite signs in Ref. [24] and the “dialing in” of
arbitrary numbers of (few) same-charge vortices and the visualization of their intrigu-
ing, potentially symmetry-breaking dynamics [25]. Naturally, the above developments
suggest that the study of vortices and of their nucleation in BECs is a theme of broad
and intense ongoing interest.

On the other hand, another topic receiving increasing attention has concerned
the role of finite-temperature induced “damping” of the BEC [26]. A wide range
of recent examples has indicated that this leads to anti-damping motion of the co-
herent structures such as solitary waves (dark solitons) and vortices. Early soliton
experiments of about 15 years ago observed the motion of a dark soliton towards
the edge of the trap [27, 28, 29]. It is interesting to note, however, that this type
of anti-damping effect has been observed in a far more pronounced way in recent
experiments of dark soliton oscillations in a unitary Fermi gas [30]. A number of the-
oretical studies have provided relevant explanation for this phenomenology in atomic
BECs [31, 32, 33, 34, 35, 36, 37, 38, 39]. In particular, it has been identified in these
works that the dark soliton follows an anti-damped harmonic oscillator behavior, lead-
ing to trajectories of growing amplitude around the center of the trap, until expelled
from the BEC. This motion has been observed in the context of the so-called dissipa-
tive Gross-Pitaevskii equation model (DGPE). The DGPE was originally introduced
phenomenologically by Pitaevskii [40] as a way to use a damping term to account for
the role of finite temperature induced fluctuations in the BEC dynamics; see, e.g.,
Refs. [41, 42, 43, 44] for discussions and microscopic interpretations of such a term.
Comparisons [33] of its results with more elaborate models such as the (averaged
quantities of) the stochastic Gross-Pitaevskii equation (SGPE) [45, 46] offered good
reason for exploring the simpler DGPE model, as regards coherent structure (such as
soliton) dynamics.

More importantly for our theme of vortex dynamics, an increasing volume of
literature has been exploring the role of thermal effects [47, 48, 49, 50, 51]. Here,
too, and in accordance with theoretical predictions [52] (see also Ref. [53] and for a
recent discussion [54]), an outward, in this case spiraling, trajectory is found for the
single vortex motion which leads to its expulsion from the trap. While important
aspects of the vortex dynamics in the presence of the thermal component such as
the single vortex motion [52, 53] and even the vortex-pair interaction [54] have been
explored theoretically (and numerically), to the best of our knowledge, the predictions
of the DGPE model in the context of vortex nucleation under rotation have not been
previously examined.

The principal scope of our study will, thus, be to provide some insight on the
instability and dynamics that leads to the emergence of vortices in the presence of
“thermal dissipation”, i.e., in the DGPE framework. In fact, to facilitate the analy-
sis, we will go one step further in simplifying the problem and will also explore the
“imaginary time” analogue of the GPE. This choice will be suitably explained and
motivated in the next section. Subsequently, in Section 3, we will provide the analysis
that identifies the most unstable eigenmode and its scaling with the system parame-
ters (most notably, the chemical potential µ). Finally, in Section 4, we will summarize
our findings and present a number of directions for future study.

2. Model Setup: the NLS Equation Under Rotation and its Dissipative

Variant.
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2.1. Dissipationless case. The standard GPE model valid at T = 0 for describ-
ing the the quasi-2D condensate wavefunction u(x, y, t) in the presence of rotation is:

iut = −1

2
∆u +

1

2
Ω2

trapr
2u− µu+ |u|2u+ iΩrotuθ, (2.1)

where (·)t = d(·)/dt and (·)θ = d(·)/dθ and (r, θ) are the polar coordinates. Here
the potential is assumed as representing a parabolic (typically induced magnetically)
trap of strength Ωtrap, while an external rotation of strength Ωrot is assumed to be
imposed. We have also explicitly included the chemical potential µ in the model
(although it can be factored out by a gauge transformation), as it will be relevant
in the DGPE variant of the system. Notice that here we use the dimensionless form
of the pancake-shaped, 2D BEC model that has been well established in a variety of
archival references in the field [7, 8, 55].

Before we move to the DGPE variant of the model, we should note a remarkable
implication of Eq. (2.1). In particular, when analyzing the spectrum of a particular
state u0, by performing Bogolyubov-de Gennes (BdG) analysis to explore its stability,
the equation obtained for u = u0(x, y) + ǫv(x, y, t) is of the form:

ivt = −1

2
∆v +

1

2
Ω2

trapr
2v − µv + 2|u0|2v + u20v

⋆ + iΩrotvθ, (2.2)

where (·)⋆ denotes complex conjugation. Now, decomposing the perturbation as
v(x, y, t) = a(r)eimθeiωt + b(r)e−imθe−iωt, it is straightforward to see that for a ra-
dial state (such as the ground state of the system), the sole influence of the rotation
frequency Ωrot is to shift the frequencies ω → ω ±mΩrot.

This is illustrated, e.g., in Fig. 2.1 by direct numerical computations involving
the BdG linearization around the ground state for the case of Ωtrap = 0.2 for 2
different values of µ = 5 (left) and µ = 10 (right). The lowest, well-known modes of
the condensate dynamics namely the dipolar, quadrupolar, and hexapolar modes at,
respectively, ω = Ωtrap, ω =

√
2Ωtrap, and ω =

√
3Ωtrap (all with double degeneracy),

are shown by thick green, orange and yellow lines respectively, showcasing the validity
of the above eigenfrequency shift statement. However, there are numerous additional
intriguing features to observe in the figure. For one thing, we note that since the
ground state is stable and its imaginary eigenvalues (real eigenfrequencies) shift along
the imaginary axis of the complex spectral plane (Re(λ),Im(λ)), the ground state
will never become dynamically unstable. Instead, what happens is that it becomes
energetically unstable acquiring what is known as negative energy modes [56] or in the
mathematical literature as negative Krein signature modes [57]. These modes indicate
that while the solution may not be dynamically unstable, it is no longer the ground
state of the system. Moreover, if a pathway, such as the presence of dissipation,
becomes available for relaxing to the ground state of the system then it would do
so [58].

Some additional observations are also in order. In particular, it is worthwhile
to note that among the modes crossing zero to become negative energy or signature
ones, it is neither the m = 1, nor the m = 2 ones that do this the first. Instead,
modes associated with higher m (but which start at larger ω) values move faster and
cross 0, spearheading the energetic instability of the present state. For instance, as
is depicted in Fig. 2.1, the modes with m = mc = 15 and m = mc = 23 are the first
modes to cross the energetic stability threshold for, respectively, µ = 5 and µ = 10.
This instability occurs at Ωrot = Ωrot,c ≈ 0.349Ωtrap for µ = 10 and at Ωrot =
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Fig. 2.1. (color online) The spectrum of imaginary eigenvalues (normalized to the trap fre-
quency) of the Hamiltonian linearization problem of Eq. (2.2) in the presence of rotation. The left
panel is for µ = 5, while the right one is for µ = 10; Ωtrap = 0.2 was chosen. The thick green,
orange and yellow lines correspond to the lowest three modes of m = 1, 2, 3, giving the theoretical
prediction of how they depend as a function of frequency according to λ = i(ω(m = 0) ± mΩrot).
The thick pink line corresponds to the m = mc mode that first becomes unstable as the rotation is
increased. mc = 15 for µ = 5 and mc = 23 for µ = 10.

Ωrot,c ≈ 0.28Ωtrap for µ = 5. Notice that the critical rotation threshold for µ = 5 is
larger that the one for µ = 10, an important feature to which we will return below.
The reason why the above observations are especially interesting is the following. As
proved rigorously in Ref. [57], the inclusion of dissipation in a Hamiltonian model
leads modes of different energy (Krein signature) to move differently, due to their
distinct topological characteristics. More specifically, modes with positive signature
move to the left of the spectral plane becoming stable/attracting eigendirections for
the dynamics. However, modes with negative Krein signature move in the opposite
direction of the spectral plane, namely to the right hand plane, becoming immediately
unstable as soon as the dissipation is turned on. This statement goes hand-in-hand
with the opening of relaxation channels through which the solution can now revert to
its preferred ground state equilibrium, given its energetic instability.

2.2. Dissipative Gross-Pitaevskii Equation. Now, let us project the above
conclusions to the case of the DGPE which is of the form [40]:

(i− γ)ut = −1

2
∆u+

1

2
Ω2

trapr
2u− µu+ |u|2u+ iΩrotuθ, (2.3)

where γ (> 0) refers to the temperature dependent parameter that has been discussed
extensively in this context [26, 41, 42, 43, 44]. Exploring a nearly realistic (although
slightly higher than relevant, for illustration purposes; see, e.g., the discussion of
Ref. [54]) value of γ = 0.01, we obtain the results for µ = 10 illustrated in Figs. 2.2
and 2.3. The former one shows the spectral planes for 4 values of the ratio Ωrot/Ωtrap,
two below, one (approximately) at, and one above the energetic instability threshold of
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Fig. 2.2. (color online) Spectral planes increasing rotation: (a) Ωrot = 0, (b) Ωrot/Ωtrap = 0.2,
(c) Ωrot/Ωtrap = 0.28 and (d) Ωrot/Ωtrap = 0.35, all for γ = 0.01 and µ = 10. Eigenvalues with
positive and negative Krein sign are depicted, respectively, with blue (dark) and orange (light) points
and zero-Krein eigenvalues are depicted with black points. The successive panels clearly illustrate the
instability due to the collision of opposite Krein signature modes that starts at Ωrot,c = 0.28Ωtrap

[see panel (c)].

the ground state. In the presence of the γ term (irrespectively of however small), when
all the modes are positive energy ones, i.e., below the threshold of Ωrot,c = 0.28Ωtrap,
all of the eigenvalues are on the left half plane [see Figs. 2.2(a) and (b)], hence the
configuration is dynamically stable as well (in the DGPE case). However, above the
energetic instability threshold for the Hamiltonian problem, the existence of negative
Krein signature modes immediately leads to the bifurcation of unstable eigenmodes in
the right half of the spectral plane [see Fig. 2.2(d)] and the configuration is dynamically
unstable for the DGPE. This instability is manifested as a function of Ωrot/Ωtrap for
the DGPE case in Fig. 2.3 showcasing that the nontrivial real parts of the relevant
eigenvalues emerge as the threshold is crossed. To complement the instability picture,
we depict in Fig. 2.4 the most unstable modes for rotations just above the instability
threshold. For µ = 5 [see Fig. 2.4(a)] the most unstable eigenfunction for Ωrot/Ωtrap =
0.3495 (i.e., just above the threshold Ωrot,c/Ωtrap ≈ 0.349) is the mode with m = 15
as expected from Fig. 2.1. Similarly, for µ = 10 [see Fig. 2.4(b)], the most unstable
eigenfunction for Ωrot/Ωtrap = 0.2802 (i.e., just above the threshold Ωrot,c/Ωtrap ≈
0.28) is the mode with m = 23 as expected from Fig. 2.1.

The above stability considerations allow us to understand the bifurcations (insta-
bilities) of steady states bearing no initial vorticity as the rotation of the BEC cloud
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Fig. 2.3. (color online) The largest eigenvalues leading to the instability beyond the critical
value of Ωrot/Ωtrap, in the DGPE case with γ = 0.01.

Fig. 2.4. (color online) The most unstable eigenfunction just past the rotation threshold. The
left and right subpanels corresponds, respectively, to the real and imaginary parts of the most unstable
eigenfunction. (a) For µ = 5 and Ωrot/Ωtrap = 0.3495 > Ωrot,c/Ωtrap ≈ 0.349 the most unstable
eigenfunction corresponds to m = 15. (b) For µ = 10 and Ωrot/Ωtrap = 0.2802 > Ωrot,c/Ωtrap ≈

0.28 the most unstable eigenfunction corresponds to m = 23.

is increased. In particular, a number Nv of vortices will be nucleated at the periphery
of the cloud through an unstable eigenfunction invariant under rotations by 2π/Nv.
See for example the eigenfunctions depicted in Fig. 2.4. However, it is crucial to note
that this analysis only captures the initial stages of the dynamical evolution and the
eventual asymptotic behavior may well be different. This can be due to symmetry-
breaking effects generated by infinitesimally small, non-symmetric, perturbations that
will generically be present in physical (and numerical) setups. Therefore, we now ex-
plore the dynamics of the above mentioned unstable modes towards understanding
what they actually nucleate as the instability sets in. For this purpose we have pro-
duced long-term simulations of the DGPE (2.3) starting from the stationary state
bearing no vorticity. Two typical evolutions are depicted in Figs. 2.5 and 2.6 for, re-
spectively, µ = 5 and µ = 10. We invite the interested reader to see the full movies at
this address: http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html [Movies#1 and
#2]. The simulations were chosen for rotations that are slightly above critical so that
the steady state with no vortices is (weakly) unstable. Let us describe in detail the

http://nonlinear.sdsu.edu/~carreter/RotatingBEC.html
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Fig. 2.5. (color online) Evolution of an initial steady state without vortices under rota-
tion. The parameters are µ = 5, γ = 0.01, Ωtrap = 0.2, and Ωrot/Ω = 0.37. For each
of the times indicated, we depict the density (top sub-rows) and phase (bottom sub-rows). The
windows for density and phase are, respectively, (x, y) ∈ [−16, 16] × [−16, 16] and (x, y) ∈

[−29.5, 29.5] × [−29.5, 29.5]. We invite the interested reader to see the full movie at this address:
http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html [Movie#1].

full evolution for the first case with µ = 5 for Ωrot = 0.37Ωtrap > Ωrot,c ≈ 0.349Ωtrap

that is depicted in Fig. 2.5. As it is clear from the figure, for the chosen parameter
values, the steady state with no vortices is unstable towards a mode with m = 17
vortices initially growing at the periphery of the cloud (see snapshot at t = 7, 000).
This mode is not apparent in the density distribution since it is outside the Thomas-
Fermi radius where the density is too low to be able to be picked up. However, the
phase distribution clearly shows a series of 2π windings that are nucleated at the
periphery. It is clear that the growth of this unstable mode is prone to asymmetries
since it is generated numerically from the noise inherent in the computation due to its
finite precision. This effect would be similar in the physical experiments where small
variations in the initial density and the trapping break the symmetry of the solution.
This asymmetry is responsible for one of the vortices to be closer to the center of the
cloud than its siblings. This selection mechanism is responsible for one of the vortices
to start spiralling inwards (see snapshots t = 9, 000–11, 000). It is interesting that, as
the chosen vortex rotates close to its siblings, it “pushes” the other vortices outwards
and thus further contributes to this selection mechanism. After the chosen vortex
relaxes at the center of the trap, another unstable mode at the periphery grows and,
by the same selection mechanism explained above, spirals inwards (see snapshots at
t = 12, 000–17, 980). Then, the two central vortices arrange themselves into a steady
state configuration (see snapshot at t = 17, 000) with a small perturbation that re-
mains at the periphery. However, in this case, this state is no longer unstable and
hence the dynamics is eventually attracted to it (see snapshots at t = 17, 000–20, 000).
In fact, the resulting state with two corotating vortices in completely stable and thus
the configuration relaxes towards it and remains there.

A similar evolution is observed in the case of µ = 10 and Ωrot = 0.3Ωtrap >

http://nonlinear.sdsu.edu/~carreter/RotatingBEC.html
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Fig. 2.6. (color online) Same as in Fig. 2.5 for Ωrot/Ωtrap = 0.3 and µ = 10. The win-
dows for density and phase are, respectively, (x, y) ∈ [−22.5, 22.5] × [−22.5, 22.5] and (x, y) ∈

[−35.8, 35.8] × [−35.8, 35.8]. We invite the interested reader to see the full movie at this address:
http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html [Movie#2].

Ωrot,c ≈ 0.28Ωtrap that is depicted in Fig. 2.6. In this case, the state with two
vortices in the bulk of the condensate is still unstable and thus a third vortex needs
to be pulled from the periphery inwards to finally create a corotating tripole that is
spectrally stable.

The final fate of the above selection mechanism can be, at least in part, be at-
tributed to the fact that stationary corotating vortex polygons with different numbers
of vortices have different stability properties for fixed parameter values. For instance,
in Fig. 2.7 we depict the steady states, their stability spectra and their most unstable
eigenmode for the case of µ = 5 for zero, one and two central vortices. As it is evident
from the figure, the configurations bearing zero vortices and one vortex are unstable
while the configuration with two vortices is stable. This corroborates the dynamical
evolution depicted in Fig. 2.5 where the initial state with zero vortices destabilizes
towards a transient state with one vortex that, in turn, destabilizes towards the final,
stable steady state with two vortices. A similar stability analysis for µ = 10 (results
not shown here) indicates that indeed the steady states with zero, one and two vortices
are all unstable, while the state with three is perfectly stable; corroborating what is
observed in the dynamical evolution depicted in Fig. 2.6.

The above results prompt the question of stability for configurations bearing an
increasing number of vortices. For instance, as previously described, the configuration
without vortices destabilizes when the rotation is increased, while configurations with
one or more vortices become stable. However, polygonal configurations have a limit
to the number of vortices that they can hold before becoming unstable (see Ref. [59]
and references therein). This is depicted in Fig. 2.8 where the stability for polygonal
vortex states with 3, 4 and 5 vortices for the case µ = 5 is examined. As it is clear
from these results, the polygonal configurations with 3 and 4 vortices are indeed stable
while the one with 5 vortices is unstable. Interestingly, the instability responsible for
the breakup of the 5-vortex configuration is not an angular mode as in all the cases

http://nonlinear.sdsu.edu/~carreter/RotatingBEC.html
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Fig. 2.7. (color online) Stability of steady states with different number of vortices for µ = 5,
γ = 0.01, Ωtrap = 0.2, and Ωrot/Ω = 0.37. (a)–(c) Stability spectra for configurations with 0, 1 and 2
vortices respectively. (d)–(f) Corresponding density (left subpanels) and phases (right subpanels) for
these configurations. (g),(h) Most unstable eigenfunctions for configurations with 0 and 1 vortices,
respectively. The left and right subpanels corresponds, respectively, to the real and imaginary parts
of the most unstable eigenfunction.

presented previously. In fact, it is clear that all the angular modes are stable as
it can be seen from the zoomed-in version of the spectrum depicted in panel (d) of
the figure where only the eigenvalues associated with angular modes are depicted.
Nonetheless, the 5-vortex state is indeed unstable as is evident by the small cluster
of unstable eigenvalues enclosed in the small circle in panel (c) of the figure. The
eigenmodes associated with these unstable eigenvalues are depicted in panels (h)–
(j). These symmetry breaking modes bring some of the vortices closer and others
further apart from each other. It is precisely this mechanism that is responsible for
the destabilization of the 5-vortex polygonal state as it is depicted in the snapshots
of its evolution in Fig. 2.9. We invite the interested reader to see the full movie
at this address: http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html [Movie#3].
Here, the initial steady state bearing a 5-vortex polygonal state destabilizes around
t = 8200, via a mode that pushes some vortices inward and other outward, eventually
resulting in a stable 4-vortex polygonal state after one vortex is ejected towards the
periphery of the cloud.

We have checked that the above phenomenology persists for other values of the
dissipation coefficient γ. For instance, although the stability thresholds and the order
(m) of the unstable modes for the vortex-less configuration are independent of γ,
the growth rates for these instabilities are indeed dependent on dissipation (see also
discussion below in Sec. 3.1). In particular, the larger γ is, the larger the instability
growth rates will be. Therefore, for larger values of γ the instability will set in earlier

http://nonlinear.sdsu.edu/~carreter/RotatingBEC.html
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Fig. 2.8. (color online) Stability of steady states with different number of vortices for µ = 5,
γ = 0.01, Ωtrap = 0.2, and Ωrot/Ωtrap = 0.37. (a)–(c) Stability spectra for configurations with
3, 4 and 5 vortices respectively. Note the unstable eigenvalues inside the circle for 5 vortices in
panel (c). (d) Zoomed-in version of the stability spectrum for 5 vortices showing the eigenvalues
corresponding to angular modes. (e)–(g) Density (left subpanels) and phases (right subpanels) for
the configurations with 3, 4 and 5 vortices respectively. (h)–(j) Three most unstable eigenfunctions
for the configuration with 5 vortices. The left and right subpanels corresponds, respectively, to the
real and imaginary parts of the most unstable eigenfunction.

Fig. 2.9. (color online) Evolution of an unstable 5-vortex configuration. The initial state
corresponds to the one in Fig. 2.8(g) (namely Ωrot/Ωtrap = 0.37, µ = 5, γ = 0.01 and Ωtrap =
0.2). The windows for density and phase are, respectively, (x, y) ∈ [−17.5, 17.5]× [−17.5, 17.5] and
(x, y) ∈ [−19, 19] × [−19, 19]. We invite the interested reader to see the full movie at this address:
http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html [Movie#3].

and, more importantly, the pattern selection mechanism for the setlling of a cluster of
vortices at the center of the cloud will be different. This is a direct consequence from
the fact that the spiraling experienced by a vortex due to dissipation has a faster radial
rate as γ is increased [54]. A key effect of the slow down in the radial spiraling rate as γ
is decreased is that the pattern selection mechanism has “more time” to select votices
and thus a smaller number of vortices is eventually pulled in from the periphery.
This is precisely what we observe in numerical simulations where smaller values of γ
give rise to final configurations with a smaller number of vortices (results not shown
here). For instance, for µ = 5 we find that for values of γ of 0.5, 0.2, 0.1, and 0.01,
a vortex-less configuration evolves towards a stable steady state configuration with,

http://nonlinear.sdsu.edu/~carreter/RotatingBEC.html
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Fig. 2.10. (color online) Steady state configurations with N+1 vortices for Ωrot/Ωtrap = 0.37,
µ = 5, γ = 0.01, and Ωtrap = 0.2. (a) 4+1 configuration, (b) 5+1 configuration, and (c) 6+1
configuration. All these configurations are stable for the chosen parameter values.

respectively, 9, 7, 3, and 2 vortices. The same setup but for µ = 10 yields, respectively,
15, 11, 5, and 3 vortices. We invite the interested reader to see the full movies for all
of these cases at this address: http://nonlinear.sdsu.edu/ carreter/RotatingBEC.html
[Movies#4–11].

Finally, let us briefly touch upon the existence of other relevant vortex config-
urations. The fact that polygonal configurations with large number of vortices lose
stability prompts the important question: what are the remaining stable configura-
tions of the system? For instance, in the absence of rotation, it has been shown
that polygonal configurations become destabilized towards asymmetric configurations
in a symmetry-breaking pitchfork bifurcation [60, 59] that has been observed in ac-
tual BEC experiments [25]. This instability occurs when the polygonal configuration
increases its radius, namely, when the angular momentum of the vortex cluster is in-
creased. In a similar manner, as we increase the rotation in the DGPE model (2.3) or
as we increase the number of vortices, polygonal configurations lose stability. These
instabilities can be manifested through angular modes (cf. the case of one vortex in
Fig. 2.7) or through symmetry breaking modes (cf. the case for 5 vortices in Figs. 2.8
and 2.9). However, on the other hand, if ones starts with a polygonal state with
an extra vortex at the center, the so-called N+1 vortex configurations, new stable
states are produced [59] that might even be the ground states (i.e., the minimal en-
ergy states) of the system [60]. In Fig. 2.10 we depict three examples of these N+1
configurations for 4+1, 5+1, and 6+1 vortices. It is important to mention that these
three configuration are indeed stable for the chosen parameter values. In fact, as
the rotation increases and the number of vortices increases as well, more complex
configurations relating to triangular (Abrikosov) vortex lattices arise.

Although our principal emphasis in this work lies in the identification of the
most unstable mode that results in the instability of the state bearing no vortices in
the context of Eq. (2.3), clearly numerous additional issues emerge from the above
simulations. These concern the identification of the minimal energy state and the
transition pathways resulting in different types of local or global attractors. We will
briefly return to these questions in the context of future challenges in Section 4.

3. Overdamped NLS Model.

3.1. Model and Numerical Results. Now a crucial observation allows us to
explore the principal question raised above (about the dominant instability mode)
in the context of slightly different and somewhat simpler model. The topological
nature of the observed stability characteristics (i.e., of positive and negative energy
modes) of the stationary state without vortices renders them robust and independent
of the precise value of γ. In particular, for different values of γ, the actual size of
the growth rates will change (in fact, the higher γ is, the more unstable the relevant
modes are). However, as can be also numerically checked, the ordering of the relevant

http://nonlinear.sdsu.edu/~carreter/RotatingBEC.html
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Fig. 3.1. (color online) Top: snapshots of the simulation of (3.1) with slowly varying Ωrot (as
indicated) and with other parameters given by Ωtrap = 0.3538 and µ = 16.1 (cf. Ref. [25]). Top
row: Ωrot is slowly increased from 0 to 0.25 according to the formula (3.2). Middle row: Ωrot is
slowly decreased from 0.25 to 0 according to the formula (3.3). Bottom row: number of vortices as
a function of Ωrot.

eigenmodes will not be modified by the precise value of γ. That is to say, the same
mode will become unstable at the same critical point (but with a different slope of
Re(λ) vs. Ωrot/Ωtrap in Fig. 2.3) for a different value of γ. Given this feature, we
will hereafter choose to explore the “overdamped” limit of large γ, where in fact the
Hamiltonian term in the left hand side of Eq. (2.3) is neglected in comparison to
the γ-dependent dissipative one (and subsequently a time rescaling to absorb γ is
performed). Hence, we will work below with the “imaginary time” variant of the
equation

ut =
1

2
∆u− 1

2
Ω2

trapx
2u+ µu− |u|2u− iΩrotuθ, (3.1)

which, based on the above arguments, should be sufficient to provide us with a pre-
diction for the above instability when focusing on the vortex-less stationary state. In
fact, this very statement will be double checked a posteriori in the next section.

For motivational purposes, we start our presentation with two direct numerical
experiments of Eq. (3.1).
Experiment 1: Slow Increase in Rotation. Let us allow for the rotation Ωrot

to slowly increase from 0 to 0.25. More specifically, we start with Ωrot = 0, evolve
the system until t = 2000 (so that it effectively reaches its ground state under the
imaginary time integration), then start increasing Ωrot linearly from 0 to 0.25 as t
varies from 2000 to 4000, and then finally we keep Ωrot = 0.25 until t = 10000. In



Vortex Nucleation in a Dissipative Variant of the NLS Equation under Rotation 13

full, this experimental protocol can be summarized as:

Ωrot = 0.25*min(max((t-2000)/2000,0),1). (3.2)

We used FlexPDE to simulate Eq. (3.1) with a uniform mesh with around 13000
triangles and adaptive time stepping.
Experiment 2: Slow Decrease in Rotation and Hysteresis. Let us now slowly
decrease Ωrot from 0.25 to 0. In this complementary numerical experiment, we start
with Ωrot = 0.25, and dynamically evolve the system until t = 2000 to allow it to
relax to its preferred vortex-lattice ground state profile. Then, we start decreasing
Ωrot linearly to 0 as t varies from 2000 to 4000, then keep Ωrot = 0 until t = 10000.
Mathematically again, this procedure can be summarized as:

Ωrot = 0.25*(1-min(max((t-2000)/2000,0),1)). (3.3)

Figure 3.1 presents a series of snapshots for each of the described experiments. There
are a number of interesting observations to make here, as well as connections to pro-
vide with the discussion in the previous section. As Ωrot is ramped up, up to a critical
rotational frequency no vortices arise. However, when they do arise (and despite the
weak ramping), a considerable number of vortices seems to emerge asymmetrically (at
first) yet nearly simultaneously. Gradually, as the rotation frequency increases, addi-
tional vorticity is “elicited” from the boundary, eventually leading the configuration to
self-organize into a triangular vortex lattice as the final rotation frequency is reached.
On the other hand, while the frequency is decreased towards Ωrot = 0, we can see
that the process is clearly hysteretic, as for similar values of the rotation frequency
as in the top panel, a considerably larger number of vortices appears to survive. This
feature is most dramatic near the Ωrot = 0 (e.g. in the next to last panel of the
bottom row) where numerous vortices appear to survive in this metastable dynamics,
although clearly this is far from the ground state for that rotation frequency. Al-
though there are numerous features that one may wish to explore on the basis of this
dynamical simulation and the numerical results presented in the previous section, the
one that we will focus on below (following up on the discussion of the earliest part of
the previous section) concerns the instability dynamics of the dissipative variant of the
GPE for the vortex-less steady state configuration. In particular, our expectation on
the basis of the above direct simulation, as well as from the stability results presented
is that a large m mode is the one (predominantly) responsible for the destabilization
of the vortex-less state, as is indeed observed in Fig. 3.1. We now proceed to analyze
this trait mathematically in more detail at the level of Eq. (3.1).

3.2. Asymptotic Analysis. To start our analysis, we rescale Eq. (3.1) as fol-
lows:

x = x̂

√

µ
1
2
Ω2

trap

; u = µû; t =
t̂

µ
.

After dropping the hats, we obtain

ut = ε2∆u+
(

1− |x|2
)

u− |u|2 u− Ωiuθ, (3.4)

where

ε =
1

2µ

√

Ω2
trap; Ω =

Ωrot

µ
. (3.5)
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This is equivalent to the following real system of PDEs for the real and imaginary
parts of u = v + iw:







vt = ε2∆v +
(

1− |x|2
)

v − v3 − w2v +Ωwθ,

wt = ε2∆w +
(

1− |x|2
)

w − w3 − v2w − Ωvθ.
(3.6)

Let u = η0 be the radially-symmetric vortex-less state which satisfies:

0 = ε2
(

η0rr +
1

r
ηr

)

+
(

1− r2
)

η0 − η30 . (3.7)

We linearize Eq. (3.6) around η0, so that

v = η0 + eλtφ(r),

w = 0 + eλtψ(r),

to obtain the system

{

λφ = ε2∆φ+
(

1− r2 − 3η20
)

φ+Ωψθ,

λψ = ε2∆ψ +
(

1− r2 − η20
)

ψ − Ωφθ.
(3.8)

We now use the radial-polar decomposition for the perturbations of the form:

φ(r, θ) = eimθφ(r); ψ(r, θ) = eimθψ (r) ,

to obtain










λφ = ε2
(

φrr +
1
rφr − m2

r2 φ
)

+
(

1− r2 − 3η20
)

φ+ imΩψ,

λψ = ε2
(

ψrr +
1
rψr − m2

r2 ψ
)

+
(

1− r2 − η20
)

ψ − imΩφ,
(3.9)

Changing variables to ψ = iψ̂, and dropping the hat we then get a purely real system










λφ = ε2
(

φrr +
1
rφr − m2

r2 φ
)

+
(

1− r2 − 3η20
)

φ−mΩψ,

λψ = ε2
(

ψrr +
1
rψr − m2

r2 ψ
)

+
(

1− r2 − η20
)

ψ −mΩφ.
(3.10)

It is known that λ < 0 when Ω = 0 and λ > 0 for sufficiently large Ω, as corroborated
also by our numerical computations in the previous section. We therefore seek the
instability threshold value for Ω for which λ = 0. Thus, setting λ = 0 in the eigenvalue
problem, we obtain a modified eigenvalue problem for mΩ of the form:











mΩψ = ε2
(

φrr +
1
rφr − m2

r2 φ
)

+
(

1− r2 − 3η20
)

φ,

mΩφ = ε2
(

ψrr +
1
rψr − m2

r2 ψ
)

+
(

1− r2 − η20
)

ψ.
(3.11)

To obtain an intuitive understanding of the situation ahead of the detailed analysis,
let us solve this problem numerically and then plot the graph of m vs. Ω. This is
shown in Fig. 3.2(a) for ε = 0.04 and ε = 0.02. Recall that the large density/large
chemical potential limit is associated with ε → 0, hence the choice of suitably small
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Fig. 3.2. (color online) (a) Solution to Eq. (3.11) showing Ω as a function of m. For a given
mode m on the horizontal axis, the vertical axis shows the threshold value of Ω for which this mode
becomes unstable. The minimum of this graph is the overall threshold where the instability first sets
in as Ω is increased from zero. (b) The profile of η0, its Thomas-Fermi asymptotic approximation
η0 ∼ max((1 − r2), 0)1/2, as well as the profile of the eigenfunctions corresponding to the problem
(3.11). (c) Solution to the reduced system (3.13) as compared with the full system (3.11)

ε. We find that this graph has a minimum which corresponds to the smallest value
of Ω = Ωc for which the instability first manifests itself. Critically, for our discussion,
this minimum depends on ε. Our goal is to characterize this minimum analytically, as
well as to compute the corresponding wave numberm = mc which should approximate
the instability eigenmode that manifests itself as Ω increases and first crosses past Ωc.

Figure 3.2(b) shows the plot of the leading eigenfunction for ε = 0.02 with m = 15
(corresponding to the critical threshold Ωc = 0.01383). The relevant mode appears
to be localized near r ∼ 1. To capture this, we first have to resolve the corner layer
of the steady state η0 accurately near r = 1. To that effect, we zoom in at r = 1 and
rescale according to:

r = 1 + ε2/3y, η0 = ε1/3U.

To leading order then we get from Eq. (3.7)

Uyy = 2yU + U3, (3.12)

which is a rescaled Painlevé II transcendent. It is well-known [61] that Eq. (3.12)
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admits a unique solution of the form

U ∼
{

C Ai
(√

2y
)

as y → ∞
√−2y as y → −∞

where Ai is the Airy function and C is a constant. Next, we use the same change of
variables in the eigenvalue problem (3.11). We obtain then the reduced problem

{

m0Ω0ψ = φyy −m2
0φ+

(

−2y − 3U2
)

φ,

m0Ω0φ = ψyy −m2
0ψ +

(

−2y − U2
)

ψ,
(3.13)

subject to the boundary conditions {φ, ψ} → 0 as |y| → ∞, where

m = ε−2/3m0, Ω = ε4/3Ω0. (3.14)

The problem (3.13) is solved numerically. The solution is shown in Fig. 3.2(c).
Superimposed are the solutions to the full eigenvalue problem (3.11) for ε = 0.02 and
ε = 0.04. It can thus be clearly observed that the scaling (3.14) is indeed correct. From
Fig. 3.2, the minimum is attained at around Ω0,c ≈ 2.5 (using the ε = 0.02 curve).
We now state this result (a numerically assisted proof for the result in provided in
the appendix):

Main Result. There exist constants Ω0,c and m0,c whose approximate values
are

Ω0,c ≈ 2.529, m0,c ≈ 1.111

such that the following is true. Let

Ωc = ε4/3Ω0,c, mc = ε−2/3m0,c.

Then the vortex-less steady state (3.7) of Eq. (3.4) is stable when Ω < Ωc and be-
comes unstable as Ω crosses Ωc. The fastest-growing unstable mode corresponds to
the oscillations of the boundary with the mode mc.

Note that in terms of the original variables of Eq. (3.1), the critical threshold is
given by

Ωrot,c = Ω0,c2
−4/3µ−1/3Ω

4/3
trap ≈ 1.0036µ−1/3Ω

4/3
trap; (3.15)

mc = m0,c2
2/3µ2/3Ω

−2/3
trap ≈ 1.76µ2/3Ω

−2/3
trap . (3.16)

In Experiment 1 of the previous section depicted in Fig. 3.1, we had µ = 16.1
and Ωtrap = 0.3538; these numbers correspond to the experimentally relevant setting
of the work of Ref. [25]. This yields Ωrot,c ≈ 0.10 and mc ≈ 22.11. This is in
excellent agreement with the actual numerical simulations. In the top row of the
figure, the instability becomes apparent around Ωrot ≈ 0.11. The instability actually
sets in shortly prior to this, but it takes some time for it to fully mature. Once the
instability is fully developed (fourth snapshot from the left), it results in 24 vortices,
in fair agreement with the predicted value of mc ≈ 22 (it should be kept in mind that
some of these vortices may be in the periphery of the cloud and hence may not be
discernible in the density profile shown).

It is interesting finally to connect the results, e.g., with those of Figs. 2.1–2.3. In
particular, as indicated in these results the left panel, e.g., of Fig. 2.1 corresponds to
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µ = 5, while the right one to µ = 10. According to the above scaling in the former
case Ωrot,c ≈ 0.343, while in the latter case Ωrot,c ≈ 0.272. It can be seen that these
critical points are in excellent agreement with the crossing points (from positive to
negative energy modes) of the Hamiltonian system in Fig. 2.1, which involves the case
of γ = 0. They are also in excellent agreement with the stability thresholds of the
dissipative system used in Figs. 2.2 and 2.3, although the latter only use γ = 0.01.
This comparison is given to also, a posteriori, justify the use of the analysis in the
framework of the overdamped limit of Eq. (3.1) in the present context.

4. Conclusions and Future Challenges. In summary, in the present work,
we have explored the instability in the presence of rotation of a dissipative variant
of the GPE. We have connected this instability to the emergence of negative energy
(or Krein signature) modes and the phenomenon of energetic (but not dynamical)
instability of the radial vortex-less profile in the corresponding Hamiltonian system
in the absence of dissipation. We have also connected it to the emergence of a real
eigenvalue corresponding to suitably largem (i.e., azimuthal order) for the dissipative
system. Moreover, we have argued that this m should be independent of γ, but should
depend on the trapping frequency and on the chemical potential (i.e., the maximal
atomic density) of the system. We have systematically developed a scaling law that
provides the critical rotation frequency as a function of these parameters. We have
confirmed the connection of this scaling with (a) the imaginary time (“overdamped”)
model used; (b) the original Hamiltonian model and (c) the intermediate between
the two dissipative Gross-Pitaevskii equation (DGPE) model. Using direct numerical
simulations we have corroborated the prediction of our asymptotic analysis and ob-
served that these unstable modes with high mode number m indeed nucleate a large
number of vortices at the periphery of the atomic cloud. However, we have found that
despite the large number of vortices at the periphery, for the small values of γ chiefly
considered herein in the DGPE (yet somewhat larger than the ones that have been
claimed as relevant for realistic experimental settings; see for a recent discussion [54])
few isolated vortices are pulled in sequentially towards the center of the cloud. The
process whereby single vortices are singled out from the multi-vortex “necklace” at
the periphery is a pattern selection mechanism based on symmetry-breaking. This
sequential recruiting of peripheral vortices towards the cloud center saturates when
reaching a highly symmetric configuration with a few vortices at the center of the
cloud that is stable for the chosen parameters (chemical potential and rotation rate
normalized by trap strength).

These results open a number of interesting directions for further exploration.
Admittedly, our approach to the vortex nucleation problem is rather different from
that of earlier works; see e.g. [62] and the relevant discussion of Ref. [8]. Nevertheless,
it would be particularly interesting to explore in current experimental settings (such
as e.g. [25]) whether a value of γ can be “inferred” (e.g. from the spiraling motion
of a vortex; see e.g. the relevant discussion of [54]). Based on such a value, our
analysis and computation could provide diagnostics both for which eigenmode will
cause the instability of the vortex-less state and for which asymptotic state may be
experimentally observed.

Our observations also raise a related problem. Clearly, for different values of
γ ranging from the underdamped limit of Figs. 2.5–2.9 to the overdamped one of
Fig. 3.1, (for same trap strength and chemical potential) we have conclusively argued
that the same eigenmode and the same critical frequency are generically responsible for
the observed instability. Yet, the instability manifestation has dramatically different
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outcomes for the different limits. This naturally prompts the question: what is the
favored asymptotic state (depending on the value of γ) and how do we get there?
The first and perhaps simpler question (that has been previously considered; see
e.g. [63] for an early example) is presumably one of energetic comparisons of the
states containing different numbers of vortices (incorporating their angular momentum
contributions). The second and, arguably, more difficult question is one of transition
state pathways that enable the nucleation of different multi-vortex configurations.
The latter may be particularly worth exploring, especially since our results indicate
that they will be dependent on features such as the thermal coupling parameter γ.

Appendix. A Numerically Assisted Proof Of The Main Result.

Define the operators

{

L1(φ) := φyy +
(

−2y − 3U2
)

φ,

L2(φ) := φyy +
(

−2y − U2
)

φ.

As the first step, we show that both L1 and L2 are negative operators. First, note
that that both are self-adjoint so it suffices to show that all eigenvalues are real non-
positive. To show that L2 is negative, simply note that L2(U) = 0. Since U is
positive, Sturm’s eigenvalue oscillation theorem then implies that λ = 0 is the largest
eigenvalue of L2, hence L2 is negative. The negativity of L1 follows from the fact that
2y + 3U2 > 0 for all y; see Ref. [64].

The problem (3.13) may then be reformulated as

m0Ω0 = ±√
µ; µφ = (L1 −m2

0) · (L2 −m2
0)φ. (A.1)

It follows by the negativity of L1−m2
0 and L2−m2

0 that µ is real and positive so that
the curve Ω0 = Ω0(m0) is well defined.

Finally, we show that the curve Ω0 = Ω0(m0) has a minimum for some strictly
positive value of m0. For large m0 we find that µ ∼ m4

0 and hence Ω0 ∼ m0. On the
other hand, numerical computations of (A.1) with m0 = 0 yield µ = 0.1576654 > 0.
It follows that Ω0 ∼ 0.39707/m0 as m0 → 0+. Thus Ω0 blows up at the endpoints
m0 → 0+ and m0 → ∞, which shows that this curve indeed has a minimum.
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[25] R. Navarro, R. Carretero-González, P.J. Torres, P.G. Kevrekidis, D.J. Frantzeskakis, M.W.
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ena in Bose-Einstein Condensates, Springer-Verlag (Berlin, 2008).
[56] See for a detailed discussion of such modes: D.V. Skryabin, Phys. Rev. A 63, 013602 (2000).
[57] T. Kapitula, P.G. Kevrekidis and B. Sandstede, Physica D 195, 263 (2004).
[58] B. Wu and Q. Niu, New J. Phys. 5, 104 (2003).
[59] T. Kolokolnikov, P.G. Kevrekidis, and R. Carretero-González, Proc. R. Soc. A 470, 2014004.
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