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Motivated by the recent successes of particle models

in capturing the precession and interactions of

vortex structures in quasi-two-dimensional Bose-

Einstein condensates, we revisit the relevant systems

of ordinary differential equations. We consider the

number of vortices N as a parameter and explore

the prototypical configurations (“ground states”) that

arise in the case of few or many vortices. In

the case of few vortices, we modify the classical

result of Havelock [Phil. Mag. 11, 617 (1931)]

illustrating that vortex polygons in the form of a

ring are unstable for N ≥ 7. Additionally, we reconcile

this modification with the recent identification of

symmetry breaking bifurcations for the cases of

N = 2, . . . , 5. We also briefly discuss the case of a

ring of vortices surrounding a central vortex (so-

called N + 1 configuration). We finally examine the

opposite limit of large N and illustrate how a coarse-

graining, continuum approach enables the accurate

identification of the radial distribution of vortices in

that limit.
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1. Introduction

The advent of Bose-Einstein condensates (BECs) has offered intriguing twists to a number of

explorations regarding nonlinear waves, their dynamics and their mutual interactions [1–3]. The

realm of point vortices constitutes a canonical example of this type. Their exploration has been

a fascinating topic, garnering considerable attention starting from the fundamental contribution

of Lord Kelvin [4], extending to their critical role in turbulent dynamics proposed by Onsager [5]

and reaching up to more recent explorations in a diverse range of fields. The latter include (but

are not limited to) patterns forming in rotating superfluid 4He [6], electron columns confined in

Malmberg-Penning traps [7] and even magnetized, millimeter sized disks rotating at a liquid-air

interface [8]. Numerous theoretical advances have also been made by considering the ordinary

differential equations (ODEs) describing the vortex particles. Among them, we briefly note the

classical examination of the stability of vortices in ring formation [9], the consideration of higher

numbers of vortices, e.g., in Ref. [10] and even of asymmetric equilibria thereof, e.g., in Ref. [11].

Much of this activity has been summarized, e.g., in the review [12] and the book [13]. A more

recent exposition tying the classical fluid point vortex problem of Refs. [12,13] with the BEC-

oriented motivation of the present work is given in Ref. [14].

In the context of BECs, vortices have been one of the focal themes of numerous investigations

which have now been summarized in many reviews [15–19]. A considerable volume of associated

experimental efforts was concerned with the creation schemes of such structures [20–24],

especially in the form of unit charge vortices. However, there were also efforts to produce

the (dynamically unstable) vortices of higher topological charge [25] and observe their decay.

Furthermore, numerous studies focused on vortex lattices with a large number of vortices [26–

28]. Recently, the significant advancements of experimental vortex creation and visualization

techniques have led to a new thrust towards the study of small clusters of vortices. While this

direction was initiated early on with the creation of few same-circulation vortices in Ref. [29]

(and their theoretical examination in Ref. [30]), it has recently ignited considerable interest due

to the systematic formation and observation of counter-circulating vortex dipoles [23,31–33],

tripoles [34] and also sets of 2-, 3-, 4- (and more generally controllably few-) vortices [35].

One of the features that are especially interesting in connection to this BEC context concerns

the relevance and usefulness of the modeling of the vortices as point particles whose positions

are described by ODEs. Such an approach has been used in order to not only offer a detailed

quantitative description of the vortex dynamics (in comparison to the experiment) as in the case

of the vortex dipole [32,33], but also as a tool to unveil subtle bifurcation and symmetry breaking

phenomena as in the case of few co-rotating vortices [35] (again corroborating experimental

observations). It is in that light that we consider a deeper understanding of the features of

such ODEs of particular relevance and importance within this system. On the other hand, in

connection to the classical and intensely studied point-vortex problem, the BEC setting offers

an intriguing twist. Namely, not only should one consider the pairwise interaction between the

vortices, but the phenomenology is significantly affected by the precessional motion of each vortex

within the parabolic external trap confining the BEC atoms. It is the combination of these two

key features that gives rise to numerous unprecedented phenomena, such as the existence of an

equilibrium vortex dipole (with the vortices located at a suitable distance from the trap center),

or the destabilization of vortex ring formations for small vortex number N .

A natural question is the one concerning the applicability of this point vortex method to BECs

and the potential advantages that this approach may hold in comparison to the well-established

approach of the mean-field so-called Gross-Pitaevskii partial differential equation (PDE) model

of this setting. While works combining theoretical observations based on this method and

actual laboratory experiments and comparisons between the two [23,32,33,35] strongly suggest

the usefulness of the method, let us add a few more comments in that regard. In particular,

comparisons of the vortex-particle ODEs with the Gross-Pitaevskii PDE have been given not only

for simpler, oscillatory dynamics, but also for more complex chaotic dynamics; see, e.g., Ref. [36]
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as a recent example. Finally, not only cases where only condensate atoms are present have been

considered, but more recently cases with thermal atoms have also been studied [37]. From these

works, there is an emerging understanding of the settings where this point vortex approximation

may be most suitable. In particular, large chemical potentials make the vortex increasingly more

localized and hence its internal structure progressively less relevant. Furthermore, the quantum

pressure term is effectively accounted for in the form of these models and should not a priori

pose a problem. Perhaps the most intricate and less controllable aspect is that of the vortex-

sound interactions, which partially depends on the precise form and the symmetry of the initial

conditions; for a relevant, very recent discussion see Ref. [37] (and references therein).

The present work aims to explore some of these features in the case of co-rotating vortices (i.e.,

vortices of only one charge sign). This is the most typical experimental situation, given that most

setups create the vortices through the imparting of angular momentum to the system [17]. More

specifically, we intend to examine the two opposite limits of experimental tractability:

• On the one hand, we consider the case of small vortex numbers N . In this case, the

canonical expectation is that the vortices will lead to the formation of a polygonal ring,

given the dynamical stability of such a ring. Here, we will give a systematic stability

analysis of the ring formation generalizing the classical work of Ref. [9] (see also Ref. [38]).

However, this will have two important side conclusions. On the one hand, it will be

shown that while the classical result is that vortices become unstable for N > 7 in the

ring formation, here due to the precessional term, even the N = 7 case is always unstable,

non-trivially modifying the classical result. However, there are more surprises; we will

see that the eigenvalues of the ring formation critically depend on the ring radius and

may even lead to instability for the cases N = 2 to N = 6, whereas the work of Ref. [9]

predicts generic stability for the classical point-vortex problem. In fact, it will be argued

that these destabilization events are exactly the ones recently identified by varying the

angular momentum of the vortex system in Ref. [35].

• On the other hand, the opposite limit of large vortex number is equally interesting

(and experimentally accessible, per the vortex lattice experiments discussed above). In

that case, we present a coarse graining description developing a continuum model

for the vortex distribution and its stationary form. We identify the radial form of this

distribution. By finding the stable equilibrium of the ODEs for the case of large N and

developing a vortex counting algorithm that enables the identification (from the particle

results) of this distribution, we obtain excellent agreement with the prediction of the

coarse grained model.

We believe that these findings will shed light on the theoretical analysis of vortices in quasi-

two-dimensional BECs, identifying some of the complications and subtleties arising due to the

presence of the (critical for the present dynamics) precessional term. As an aside, we also show

how some of the relevant techniques can be generalized in other settings, e.g., by computing the

stability of the so-called N + 1 configuration, where N vortices form a ring, while 1 is located at

the trap center. It should be noted here that a principal motivation of this work concerns settings

other than the ones where the rotation of the entire condensate has rendered a multi-vortex state

the ground state of the system (minimizing its free energy due to the presence of the vortices).

More specifically, instead, we envision a situation such as that of Refs. [23,31–33] or Ref. [35]

where multiple vortices have been created through a suitable external driving or quenching of

the condensate, yet they represent an excited, potentially dynamically stable state of the system.

Our presentation is structured as follows. In Sec. 2, we offer the general theoretical setup

in line with the earlier works (such as Refs. [32,35]) that corroborated its correspondence with

experimental results. In Sec. 3, we present the analysis of the polygonal vortex ring and how it

connects to the stability conclusions of recent few vortex studies such as Refs. [35,39]. In Sec. 4, we

explore the opposite limit of large N and the corresponding coarse-grained, continuum model.

Again a comparison is offered, this time with numerical computations within that limit. Finally,

in Sec. 5, we summarize our findings and present a number of conclusions and possible future
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directions. The appendices present a number of technical details associated, e.g., with the stability

of the N + 1 vortex configuration.

2. Theoretical Setup

The starting point for our considerations will consist of the vortex equation of motion which can

be written in the form of a single complex-valued ODE for zj =Xj + iYj , where (Xj , Yj) denotes

the planar position of the j-th vortex. This equation reads:

żj = if
(∣

∣zj
∣

∣

)

zj + ic
∑

k 6=j

zj − zk
∣

∣zj − zk
∣

∣

2
, j = 1 . . . N. (2.1)

In the right hand side of Eq. (2.1) the first term represents the precession of the vortex around the

trap center. Here we consider only vortices of a unit charge (given their dynamical stability) and

assume that all have the same charge (without loss of generality we assume this to be S =+1),

as in the context of the recent experiments of Ref. [35]. While for many of our considerations, we

will keep this precession term as general as possible, for a number of concrete calculations we

will assume the same form as used in the recent experimental considerations of Refs. [32,35]; see

also the detailed analysis/comparison with single vortex precession experiments in Ref. [23]. In

particular, in line with these works, we will choose:

f(r) =
a

1− r2
. (2.2)

Here, the radius has been normalized to the Thomas-Fermi radius (roughly tantamount to

the spatial extent of the BEC), while the factor a representing the precession frequency of the

vortex very near the center of the trap can be absorbed into a rescaling of time (rendering time

dimensionless).

On the other hand, the second term in Eq. (2.1) represents the vortex-vortex interaction, i.e.,

the velocity field at the location of a vortex due to the presence of other surrounding vortices.

Our adimensionalization of the model follows that of Ref. [35], where it was explained that a

“typical” experimentally relevant value for c is 0.1. It should be noted here that this constant

is effectively taking into account the non-uniformity of the background density (due to the

presence of the trap) through which the vortices are interacting. However, one can consider more

elaborate (integral) functional forms, explicitly taking into account the density modulation, as

described, e.g., in Ref. [40]. Given the successes of the simpler set up in capturing the recent

experimental observations and the amenability of the corresponding functional forms to our

analytical considerations, we will indeed proceed to consider the precession and interaction terms

as presented in Eq. (2.1).

It is natural to expect in the considered case of co-rotating vortices that both the precession and

interaction effects lead to rotation of the vortices in the same direction. In that light, no genuine

equilibria may exist but instead we may seek relative (in a rotating frame) equilibria of the form

zj(t) = eiωtxj . These satisfy the equation

ωxj = f
(∣

∣xj
∣

∣

)

xj + c
∑

k 6=j

xj − xk
∣

∣xj − xk
∣

∣

2
, (2.3)

which will be the main focus of our considerations in what follows.

As a (partially numerical) aside, we will also consider the following “aggregation” equation:

ẋj =
(

f(
∣

∣xj
∣

∣)− ω
)

xj + c
∑

k 6=j

xj − xk
∣

∣xj − xk
∣

∣

2
. (2.4)

By construction, the relative equilibrium zj(t) = eiωtxj of Eq. (2.1) corresponds to the relaxational

equilibrium xj(t) = xj of Eq. (2.4) and vice-versa. Moreover there is an intimate connection

between the stability of the two models. In Appendix (a) we prove the following result.
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Theorem 2.1. Suppose that an equilibrium xj(t) = ξj of Eq. (2.4) is stable. Then the relative equilibrium

zj(t) = eiωtξj of Eq. (2.1) is (neutrally) stable. The converse is also true in the following two cases: (i)

f (r) = const. or (ii)
∣

∣ξj
∣

∣= const. for all j.

The case (i) of this theorem was shown in Ref. [41]; this is reproduced in Appendix (a).

However the proof in Ref. [41] does not work for a general case of non-homogeneous f(r),

and a more general approach is taken here. On the flip side, we can only show the stability of

Eq. (2.4) implies stability of Eq. (2.1); we do not know how to prove the converse (nor do we have

counter-examples).

3. Ring solutions

The prototypical configuration that one expects to identify as a stable equilibrium in the case of

small vortex number N (motivated by the corresponding result in the absence of precession [9,

10]) is the “ring” configuration with the vortices sitting at the vertices of a canonical polygon.

Assuming such a relative equilibrium to Eq. (2.1) with radius R, we can write it in our complex

notation as:

zj(t) =R exp (iωt) exp

(

2πi

N
j

)

. (3.1)

In this case, we can compute:

∑

k 6=j

zj − zk
∣

∣zj − zk
∣

∣

2
=

1

R
exp

(

iωt+
2πi

N
j

)

N − 1

2
, (3.2)

where we have used the identity

N−1
∑

k=1

1

1− exp
(

− 2πi
N k

) =
N − 1

2
.

Therefore the radius R satisfies:

ω= f(R) +
c(N − 1)

2R2
. (3.3)

As the case (ii) of Theorem 2.1 [of Appendix (a)] shows, the ring for the vortex model Eq. (2.1)

is stable if and only if it is stable for the aggregation model Eq. (2.4). The full characterization of

linear stability is given by the following theorem (following the procedure used, e.g., in Refs. [42,

43]).

Theorem 3.1. Consider the ring solution for Eq. (2.1), of radius R as given by Eq. (3.1), where the

frequency ω is given by Eq. (3.3). Suppose that N is odd. Then the ring is stable provided that

f ′(R)R+
c

8R2
(N − 1) (N − 7)< 0,

and is unstable if the inequality is reversed. Suppose that N is even. Then the ring is stable provided that

f ′(R)R+
c

8R2

(

N2 − 8N + 8
)

< 0,

and is unstable if the inequality is reversed.

The ring is generically unstable if N ≥ 7 and f(r) is an increasing function.

Proof. Because of Theorem 2.1 case (ii), it is sufficient to consider the stability of the steady

state xk(t) =R exp (2πik/N) of the aggregation equation (2.4). Consider small perturbations of
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this state, of the form

xk(t) =R exp

(

2πik

N

)

(1 + hk(t)) , |hk| ≪ 1,

where hk is a small, complex-valued, perturbation. After some algebra we obtain for the evolution

of the small perturbations

dhj
dt

=

(

f ′(R)
R

2
+ f(R)− ω

)

hj + f ′(R)
R

2
h̄j + c

∑

k 6=j

exp (2π (k − j) /N) h̄j − h̄k

4R2 sin2
(

π(k−j)
N

) , (3.4)

where the overbar denotes complex conjugation. Using the following Fourier mode

decomposition for the perturbation:

hj(t) = ξ+(t)eim2πj/N + ξ−(t)e−im2πj/N , m∈N, (3.5)

and collecting like terms in eim2πj/N and e−im2πj/N , the system (3.4) decouples into a sequence

of 2× 2 subproblems

ξ′+ =

(

f ′(R)
R

2
+ f(R)− ω

)

ξ+ + f ′(R)
R

2
ξ̄− + σ+ξ̄−, (3.6)

ξ′− =

(

f ′(R)
R

2
+ f(R)− ω

)

ξ− + f ′(R)
R

2
ξ̄+ + σ−ξ̄+, (3.7)

where

σ+ ≡ c
∑

k,k 6=j

ei2π(k−j)/N − eim2π(k−j)/N

4R2 sin2 (π (k − j) /N)
,

σ− ≡ c
∑

k,k 6=j

ei2π(k−j)/N − e−im2π(k−j)/N

4R2 sin2 (π (k − j) /N)
.

Using the following identity:

N−1
∑

k=1

e±im2πk/N

sin2 (πk/N)
= 2

(

m− N

2

)2

− N2

6
− 1

3
, m= 0 . . . N, (3.8)

it is possible to write

σ≡ σ+ = σ− =
c

2R2
(m− 1) (N −m− 1) . (3.9)

Taking the conjugate of Eq. (3.7), the system can be written as




ξ′+

ξ̄′−



=





f ′(R)R2 + f(R)− ω f ′(R)R2 + σ

f ′(R)R2 + σ f ′(R)R2 + f(R)− ω









ξ+

ξ̄−



 , (3.10)

whose eigenvalues are given by

λ±(m) = f ′(R)
R

2
+ f(R)− ω ±

(

f ′(R)
R

2
+

c

2R2
(m− 1) (N −m− 1)

)

, m= 0 . . . N − 1.

Using Eq. (3.3) this simplifies to

λ−(m) =
c

2R2
[−(N − 1)− (m− 1) (N −m− 1)] ,

λ+(m) = f ′(R)R+
c

2R2
[(m− 1) (N −m− 1)− (N − 1)] .

(3.11)

Note that λ−(0) = 0; this mode corresponds to rotation invariance. Moreover (m− 1) (N −m− 1)

is positive for all integers 1≤m≤N − 1 and attains its max at m=N/2. Therefore λ−(m)

correspond to stable eigendirections and the instability threshold is obtained by setting

λ+(⌊N/2⌋) = 0, where ⌊·⌋ denotes the floor function.
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Suppose that N is odd. Then we substitute m= (N − 1)/2 into Eq. (3.11) to obtain

λ+((N − 1)/2) = f ′(R)R+
c

8R2
(N − 1) (N − 7), N odd.

If N is even we substitute m=N/2 which yields

λ+(N/2) = f ′(R)R+
c

8R2

(

N2 − 8N + 8
)

, N even.

The ring is stable for the aggregation equation (and by extension for the actual vortex model) if

the right hand side of the above two equations (respectively, for N odd and even) is negative and

unstable otherwise. If f ′ = 0, this recovers the N = 7 threshold. �

Some observations are important to make here. In particular, we wish to examine the special

cases of N = 2, . . . , 7 which are well-known to be canonical examples where the polygonal ring is

of interest as a configuration even in the absence of precession.

We start with the N = 7 case. We can see that contrary to the case where the precession is absent

(wherein this case is critical with the corresponding eigenvalue being neutral), here the presence

of precession has a crucial impact. In particular, it adds a positive part [for f(R) increasing, as

is the case in our BECs] to the pertinent eigenvalue rendering the corresponding configuration

generically unstable. This is a particular trait of our BEC vortex ring configuration.

For the cases with N < 7, we can express the corresponding eigenvalue in the general form λ=

f ′(R)R+ c
8R2

(

N2 − 8N + s
)

, where s= 7 for N odd and s= 8 for N even. A key observation

now (which directly connects the present work with the experimental observations of Ref. [35]

and the computational/theoretical analysis of Ref. [39]) is that although for these N < 7 cases the

configuration is not generically unstable, nevertheless it may be unstable for sufficiently large R.

To phrase this differently, we can parametrize the vortex system by the angular momentum of

the vortex particles, which is a conserved quantity of the dynamics. The angular momentum is

defined as L=
∑N

j=1 |zj |2 and in the case of the ring configuration acquires the especially simple

form L=NR2.1 In that light and taking f(r) as in Eq. (2.2) with a= 1, the eigenvalue whose zero

crossing will determine the potential instability of a configuration with N = 2, . . . , 6 reads:

λ=
2L

N(1− L
N )2

+
cN

8L

(

N2 − 8N + s
)

.

It is then straightforward to infer that the critical angular momentum given by setting λ= 0

satisfies

16L2 + c(N − L)2(N2 − 8N + s) = 0

which yields a critical L of the form:

Lcr =
cN(N2 − 8N + s) + 4N

√

c(8N −N2 − s)

16 + c(N2 − 8N + s)
.

Remarkably, this expression yields the relevant critical angular momenta for all cases of N = 2

to N = 5 in direct agreement with the expressions given in Refs. [35,39] for the symmetry breaking

bifurcations due to the destabilization of the ring configuration. Using the notation

r21 ≡
√
c√

c+ 2
, r22 ≡

√
c√

c+
√
2
, (3.12)

1 It is worth noting here that while this is the standard form for the angular momentum in the context of point vortices,

cf. Eq. (2.13) in p. 514 of the review [14], this is not identical to the angular momentum of the Bose-Einstein condensate,

which is well-established, e.g., in the context of the corresponding PDE model of the Gross-Pitaevskii equation [1–3]. In our

considerations here, we will use the term for the former and not the one for the latter.
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we have that:

Lcr,N=2 = 2 r21,

Lcr,N=3 = 3 r22,

Lcr,N=4 = 4 r22, (3.13)

Lcr,N=5 = 5 r22,

Lcr,N=6 = 6 r21.

It is rather intriguing that the critical angular momentum for the different cases exhibits an

apparent pattern although not a clearly definite one. Interestingly, even for N = 7, while the

dominant eigenvalue is always positive (as indicated above), even the next one λ(N−3)/2 can

be seen to cross 0 at Lcr,N=7 = 7 r22 , extending this interesting pattern. We also note in passing

that for the case of N = 6, the relevant critical point had not been previously identified in Ref. [35]

or Ref. [39].

However, a final observation is also in order. As discussed in Ref. [39], the interval (of L) of

dynamical stability of the small N configurations does not coincide with the interval of L for

which these constitute the ground state of the system. In the case of N = 2, the stability threshold

and ground state asymmetry threshold coincide (this is a supercritical pitchfork point), but in

other cases such as N = 3 and N = 4, asymmetric configurations (such as isosceles triangles

for N = 3 or rhombic configurations for N = 4) acquire lower energy than the polygonal ring

distinctly before its loss of stability threshold [39]. Namely, the ring configuration becomes a local

(rather than global) minimum of the energy clearly before its destabilization. Unfortunately, these

asymmetric configurations which are stabilized by the presence of our precession term (in its

absence such asymmetric configurations are unstable, as discussed, e.g., in Ref. [11]), do not have

a general closed form that would enable their stability analysis. Nevertheless, another symmetric

configuration that emerges as relevant for the ground state of the system, at least in the case

of N = 5 examined in Ref. [39] (and obviously also for larger N ) is the so-called N + 1 vortex

configuration, consisting of N vortices on the polygonal ring and one more at the center. For the

classical vortex problem [f = 0 in Eq. (2.1)], the stability of this configuration was analyzed in

Ref. [44]; see also Ref. [45]. In Appendix (b) we show the following generalization to the full BEC

problem:

Theorem 3.2. Consider the N + 1 configuration of Eq. (2.1) consisting of N vortices uniformly

distributed on a ring of radius R and angular velocity ω given by Eq. (3.1) plus a vortex at the origin.

Then R satisfies

ω= f(R) +
c

2R2
(N + 1) . (3.14)

Let

λ∗+(m) = λ+(m)− 2c/R2 (3.15)

where λ+(m) as given by Eq. (3.11) and let

M0 =













f ′(R)R2 − c(N+1)
2R2 f ′(R)R2 − c

R2

c
R2

f ′(R)R2 − c
R2 f ′(R)R2 − c(N+1)

2R2 0

cN
R2 0 f(0)− f(R)− c(N+1)

2R2













. (3.16)

The N + 1 configuration is stable if and only if λ∗+ (⌊N/2⌋)< 0 and all eigenvalues of M0 are negative.

In particular, this theorem shows that the N + 1 configuration is stable if the N -ring is stable

and if in addition the matrix M0 is negative definite.

When f = 0, both 9 + 1 and 3 + 1 configurations are marginally stable [the former due to

λ∗+(4) = 0 when N = 9, the latter due to the eigenvalue of M0 crossing zero when N = 3];
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the N + 1 configuration is stable for 3<N < 7 and is unstable for N > 9 or N < 3. This is in

agreement with the results in Ref. [44]. When f is increasing as in Eq. (2.2), both 9 + 1 and 3 + 1

configurations lose their marginal stability and become unstable, so that N + 1 configuration

becomes unstable for any N ≥ 9 or N ≤ 3.

4. Continuum limit

Having considered the case of small N , we now explore the opposite limit of large N . Notice,

however, that our results for the ring and the N + 1 vortex configuration are entirely general and

the dynamical stability thereof is obtained for any N . Yet, these configurations can only be stable

when N is sufficiently small, as discussed above, e.g., N < 7 for the ring state (and even then

for sufficiently small L). Hence, in the opposite limit of large N , we expect that a substantially

different vortex distribution will arise. This expectation is confirmed not only by the well-known

vortex lattice observations of, e.g., Refs. [26–28], but also by the direct numerical evolution of the

aggregation equation (2.4); see the top left panel of Fig. 1. Recall that the aggregation equation has

the benefit of relaxing to equilibrium attractors corresponding to the marginally stable equilibria

of our original Eq. (2.1). It is then particularly relevant to attempt to identify the distribution of

such a large number of vortices N . Here, we will use techniques similar to Ref. [46] to derive the

limiting density profile.

Following, e.g., the discussion of Ref. [47], we coarse-grain by defining the particle density to

be

ρ(x) =
∑

k=1...N

δ(x− xk), (4.1)

where δ(x) is the Dirac-delta function. It is then straightforward to rewrite the aggregation

Eq. (2.4) as ẋj = v(xj) where we define the continuum limit of the velocity as

v(x)≡ (f(r)− ω)x+ c

∫
R2

x− y

|x− y|2
ρ (y) dy.

The term f(r) = a/(1− r2) is relevant, in particular, to the precessional dynamics of interest in

quasi-two-dimensional trapped BECs. Here r= |x| represents the radial variable and the density

normalization condition reads ∫
R2

ρ(x)dx=N.

In the limit of large N , conservation of mass then yields the following continuity equation:

ρt +∇ · (vρ) = 0. (4.2)

Assuming in this large N limit a radially symmetric density, we note that for any smooth radial

function g(r), we have the following identity:
∫
R2

x− y

|x− y|2
g (|y|) dy= x

2π

r2

∫r
0
g(s)s ds,

so that [with slight abuse of notation ρ(y) = ρ(|y|)],

v=

(

f(r)− ω +
2πc

r2

∫r
0
ρ(s)sds

)

x. (4.3)

Let V (r) be the bracketed expression in Eq. (4.3) so that v= V (r)x and note that

∇ · (vρ) =∇ · (V (r)ρx) =
1

r

(

V ρr2
)

r

so that ρt +∇ · (vρ) = 0 becomes

(rρ)t + (V rρr)r = 0. (4.4)

Now define

u(r) =

∫r
0
ρ(s)sds.
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Figure 1. (a) Stable equilibrium of Eq. (2.4) with f(r) as in Eq. (2.2). Parameter values are N = 500, ω= 2.95139, a=

1 and c= 0.001. The dashed circle is the asymptotic boundary whose radius R= 0.6 is the smaller solution to Eq. (4.9).

(b) Voronoi diagram used to compute the two-dimensional density distribution. (c) The corresponding density distribution

ρ obtained by setting ρ(xj) = 1/areaj and extrapolating, where areaj is the area of the Voronoi cell that contains xj . (d)

Average of ρ(|x|)/ρ(0) as a function of r= |x|. The solid curve corresponds to the numerical computation. The dashed

curve is the formula (4.10) and the vertical line is the boundary r=R.

Integrating Eq. (4.4) we obtain

ut + V rur = 0. (4.5)

Recall that we have

V r= r (f(r)− ω) +
2πc

r

∫r
0
ρ(s)sds

= r (f(r)− ω) +
2πc

r
u.

Thus we obtain the following characteristics for Eq. (4.5)

dr

dt
= r (f(r)− ω) +

2πc

r
u,

du

dt
= 0. (4.6)
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ρ
Figure 2. Top row: stable equilibrium of Eq. (2.4) with f(r) as in Eq. (2.2), with N as shown in the titles and c= 0.5/N ,

ω= 2.95139, and a= 1. The dashed circle is the asymptotic boundary whose radius R= 0.6 is the smaller solution to

Eq. (4.9). Bottom row: average of ρ (|x|)/ρ(0) as a function of r= |x|. The solid curve corresponds to the numerical

computation. The dashed curve is the formula (4.10) and the vertical line is the boundary r=R.

Now suppose that the initial density is radially symmetric and has finite support of radius R.

Then we have:

u(R) =

∫R
0

rρdr=
N

2π
; (4.7)

the corresponding characteristic r=R then evolves according to

dR

dt
=R (f(R)− ω) +

cN

R
. (4.8)

In particular at the steady state t→∞ and with f(R) = a/(1−R2), we obtain the equation for

the support radius,

ω=
a

1−R2
+

cN

R2
. (4.9)

From Eq. (4.6), at the steady state we have u=−r2 (f(r)− ω) /(2πc). From Eq. (4.7) we then

obtain ρ=− 1
2πc

1
r

∂
∂r

(

r2 [f(r)− ω]
)

or

ρ=
1

πc

(

ω − a

(1− r2)
2

)

. (4.10)

Note that for fixed ω, Eq. (4.9) has either zero or (one at the critical point or) two solutions for R.

If it has two solutions R− <R+, then R− is stable and R+ is unstable, as is easily deduced from

Eq. (4.8). The threshold occurs by setting ∂ω/∂R= 0 to obtain

ωc =
(√

a+
√
cN
)2

, R2
c =

√
cN

√
a+

√
cN

.
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Thus two solutions exist when ω >ωc : the one with smaller support is stable and the one with

bigger support is unstable. Interestingly, the density ρ(R) vanishes precisely at R=Rc. Hence,

among the two solutions only the stable one with R− <Rc is physically relevant, while the

unstable one with R+ >Rc cannot be computationally obtained (and presumably physically

observed since it would involve negative vortex densities for R>Rc). In order to compute

the steady-state distribution of the vortices, we first evolved Eq. (2.4) until it settled to an

equilibrium state [Fig. 1(a)]. We then computed the Voronoi tessellation of the plane using the

Matlab function voronoi [Fig. 1(b)]. This tessellation assigns to each vortex xj a region (Voronoi

cell) which consists of all points in the plane that are closer to xj than to any other vortex. We

then approximated the density distribution at xj by ρ
(

xj
)

= 1/areaj where areaj is the area of the

Voronoi cell associated to xj . The resulting distribution (extrapolated linearly between the points)

is plotted in Fig. 1(c). Finally, in Fig. 1(d) we plot the radial density ρ(r), which we computed by

taking the average of ρ(x) along |x|= r. We compare this to the distribution from the analytical

expression of Eq. (4.10). There is an excellent agreement between the two corroborating the value

of our theoretical prediction. Figure 2 shows that this agreement persists for smaller values of N

(e.g., N = 25) as well, although naturally it becomes progressively worse as N is decreasing.

In a future work, we plan to study the stability of the steady state (4.10). Numerical

computations of Eq. (2.4) show that solution (4.10) is indeed a stable equilibrium for the

aggregation model. The corresponding relative equilibrium of the BEC model (2.1) is then

neutrally stable and has vibrational or the so-called Tkachenko modes [27,48,49]. We plan to

extend the techniques in this section to compute the vibrational modes in the continuum limit

of large N .

5. Conclusions and Future Challenges

In summary, in the present work we have revisited two opposite limits of the quasi-two-

dimensional co-rotating vortex dynamics in Bose-Einstein condensates. Motivated by the recent

success of particle models in capturing experimental features of both the counter- and co-rotating

vortex case, we have attempted to examine in detail (fully analytically, wherever possible) both

the small N and the large N limit of such N -vortex configurations. In the former case, we

obtained vortex configurations in the form of polygonal rings. We generalized the classical result

of Ref. [9] unveiling that the ring is generically unstable for N ≥ 7 in the case of monotonic

precessional frequency dependence on the distance from the trap center. Moreover, we showed

that the critical contribution of the precessional term creates the potential for stable asymmetric,

as well as other configurations even for N = 2, . . . , 6, for sufficiently high angular momentum.

In that light, we also mentioned in passing the N + 1 vortex configuration, whose stability is

analyzed in Appendix (b). The opposite limit of large N is quite interesting in its own right. Since

polygonal configurations are already highly unstable for sufficiently large N , a fundamentally

different distribution is expected for large N . This distribution was identified in a radial form, by

looking at the corresponding continuum equation and was corroborated numerically. An ongoing

collaboration with the group that has made critical earlier experimental contributions in this

theme (see Refs. [23,35]) suggests the feasibility of looking at controllably small numbers of N

(up to 11) as well as at the regime of large N regime experimentally.

The results in Sec. 4 generalize a similar computation for classical vortex dynamics [41]. The

methods used here and in Ref. [41] are borrowed from the literature on biological swarming, see,

e.g., Refs. [46,47]. Similar techniques were also recently used to study predator-swarm dynamics

[50]. It is hoped that further developments in the swarming literature will help to shed light on

the behavior of BEC (and in particular, the stability of vortex lattices) and vice-versa.

There are numerous directions in which we foresee that this activity can be extended. On

the one hand, it would be particularly interesting (since the experimental possibilities reported

in Ref. [35] allow the “dialing in” of different numbers of vortices, e.g., between 1 and 11) to

explore further the case of intermediate-size clusters i.e., between N = 5 and N = 11. There,

identifying the potential N -vortex ring polygons, or that of N + 1 rings or the examination of
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different ground state configurations would be relevant to examine. On the other hand, in the

case of large N , our preliminary computations (via fixed point iterations of a Newton scheme)

reveal a large number of excited state configurations. It will be interesting to explore in future

studies whether these are generically unstable or whether additional dynamically stable large N

limits could, in principle be accessible as well. Furthermore, examinations of multi-component

(e.g., pseudo-spinor) settings in Refs. [27,28], of potentials of different symmetry (such as square

optical lattices, which can again induce structural phase transitions [51]) motivate analogous

considerations/extensions at the level of our particle model.

While the mean-field theory is successful at predicting the large-scale vortex density

distribution, it does not capture the fine structure of the BEC lattice itself; see, e.g., Ref. [52] where

different lattices and where their dynamics and internal (Tkachenko) modes were observed [53].

The point vortex BEC model (2.1) is an approximation to the full system more accurately

described by a three-dimensional Gross-Pitaevskii model, while neglecting the vortex core

structure. The three-dimensionality can lead to more complex configurations such as “Olympic

rings”, see, e.g., Refs. [53,54]. It would be interesting to see if the techniques of this paper could

also be applied to such configurations. Finally, the examination of trapped, interacting vortex

rings in three dimensions both in the context of few [55–58] and in that of many such rings would

be a broad direction of considerable importance for future studies.
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A. Appendix

(a) Relation between stability of aggregation and BEC equations

We prove Theorem 2.1 here. Linearize Eq. (2.4) around the steady state xj(t) = ξj by using xj(t) =

ξj + ηj(t) with |ηj | ≪ 1. We then obtain the system

η̇=Dη + Lη̄. (A 1)

Here η= (η1 . . . ηN )T is the perturbation vector; overbar denotes the complex conjugate; L is a

symmetric complex matrix whose entries are

Ljk =



























c
(

ξj − ξk
)2

, j 6= k,

f ′
(∣

∣ξj
∣

∣

) ξ2j

2
∣

∣ξj
∣

∣

−
∑

k 6=j

c
(

ξj − ξk
)2

, j = k,

and D is a diagonal real matrix whose entries are

Djj = f
(∣

∣ξj
∣

∣

)

+ f ′
(∣

∣ξj
∣

∣

)

∣

∣ξj
∣

∣

2
− ω. (A 2)

By taking the complex conjugate of Eq. (A 1) we obtain a closed system of 2N ODEs given by







∂tη = Dη + Lη̄,

∂tη̄ = Dη̄ + L̄η.
(A 3)
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Linearizing around the steady state equilibrium, we find that the eigenvalues of the zero

equilibrium of Eq. (A 3) are given by the matrix

A=

[

D L

L̄ D

]

.

Performing a similar analysis the relative equilibrium zj(t) = eiωtξj of Eq. (2.1), we find that its

eigenvalues are given by the matrix

B = iJA=

[

iD iL

−iL̄ −iD

]

,

where

J =

[

I 0

0 −I

]

.

Next, we show that if all eigenvalues of A are strictly negative, then all eigenvalues of B are

purely imaginary. Since A is Hermitian, we may write A=UEŪT where E is a diagonal matrix

whose diagonal entries are the eigenvalues of A, and U is unitary. Assume that all eigenvalues

of A are negative. Then we can write E =−Q2 where Q is a real diagonal matrix, so that B =

−iJUQQŪT . Note that in general, the spectrum of matrices M1M2 and M2M1 is the same, so

that B has the same spectrum as the matrix −iQŪT JUQ whose eigenvalues are purely imaginary

since QŪT JUQ is Hermitian.

To show the converse, note that under either conditions (i) or (ii) of Theorem 2.1, the matrix

D given by Eq. (A 2) is a multiple of identity so we may write D= dI where d is a constant. In

this case, the eigenvalues of A are given by λA = d±√
ǫ where ǫ∈R

+ is an eigenvalue of LL̄;

whereas the eigenvalues of B are given by λB =±
√
ǫ− d2. It follows that λB is purely imaginary

if and only if ǫ < d2, which is if and only if λA = d±√
ǫ < 0. �

(b) N+1 state: ring solution with a vortex at the center

Here we prove Theorem 3.2. Similar to the ring steady state, we consider the relative equilibrium

of the aggregation model with N + 1 vortices; N on the ring and one at the center. As in Ref. [44],

we will actually consider a slightly more general problem where the central vortex has weight b

whereas other vortices have weight c; Theorem 3.2 will follow by taking b= c. The starting point

is































żj =
(

f
(∣

∣zj
∣

∣

)

− ω
)

zj + c
∑

k 6=j

zj − zk
∣

∣zj − zk
∣

∣

2
+ b

zj − zN+1
∣

∣zj − zN+1

∣

∣

2
, j = 1 . . . N,

żN+1 = (f (|zN+1|)− ω) zN+1 + c
N
∑

k 6=j

zN+1 − zk

|zN+1 − zk|2
.

As before, we make the ansatz







zj(t) = R exp
(

2πi
N j

)

, j = 1 . . . N,

zN+1(t) = 0.

Then R satisfies

ω= f (R) +
c (N − 1)

2R2
+

b

R2
; (A 4)

setting b= c recovers formula (3.14).
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Next we consider perturbations to the N + 1 vortex configurations. As before we perturb the

steady state as

xk(t) =Rξk (1 + hk(t)) , |hk| ≪ 1, k= 1 . . . N

xN+1(t) =RhN+1(t),

where we defined

ξ ≡ exp (2πi/N) ,

to obtain

dhj
dt

=

(

f ′(R)
R

2
+ f(R)− ω

)

hj + f ′(R)
R

2
h̄j + c

N
∑

k 6=j

ξk−j h̄j − h̄k

4R2 sin2
(

π(k−j)
N

) − b
h̄j − ξj h̄N+1

R2
,

dhN+1

dt
= (f(0)− ω)hN+1 + c

N
∑

k=1

ξkh̄k
R2

.

The solution decomposes into a product of two subspaces:

Subspace 1: Use the ansatz

hj(t) = ξ+(t)ξmj + ξ−(t)ξ−mj , m∈N, j = 1 . . . N ; hN+1 = 0,

and collecting like terms in eim2πj/N and e−im2πj/N , the system (3.4) decouples into a sequence

of 2× 2 subproblems

ξ′+ =

(

f ′(R)
R

2
+ f(R)− ω

)

ξ+ +

(

f ′(R)
R

2
− b

R2

)

ξ̄− + ξ̄−c
∑

k,k 6=j

ξk−j − ξm(k−j)

4R2 sin2 (π (k − j) /N)
,

ξ′− =

(

f ′(R)
R

2
+ f(R)− ω

)

ξ− +

(

f ′(R)
R

2
− b

R2

)

ξ̄+ + ξ̄+c
∑

k,k 6=j

ξk−j − ξ−m(k−j)

4R2 sin2 (π (k − j) /N)
,

and, as previously, we obtain

λ±(m) = f ′(R)
R

2
+ f(R)− ω ±

(

f ′(R)
R

2
− b

R2
+

c

2R2
(m− 1) (N −m− 1)

)

, m= 0 . . . N − 1.

Using Eq. (A 4) yields

λ+(m) = f ′(R)R+
c

2R2
{(m− 1) (N −m− 1)− (N − 1)} − 2b

R2
,

with λ−(m)≤ 0 for all m. As in Theorem 3.1, this expression is maximized when m= ⌊N/2⌋.

Setting b= c recovers Eq. (3.15).

Subspace 2: we use the ansatz

hj(t) = ξ+(t)ξj + ξ−(t)ξ−j , j = 1 . . . N ; hN+1 = η(t),

which yields

ξ′+ =

(

f ′(R)
R

2
+ f(R)− ω

)

ξ+ +

(

f ′(R)
R

2
− b

R2

)

ξ̄− + b
η̄

R2
,

ξ′− =

(

f ′(R)
R

2
+ f(R)− ω

)

ξ− +

(

f ′(R)
R

2
− b

R2

)

ξ̄+,

dη

dt
= (f(0)− ω) η + c

N
∑

k=1

ξ̄+
R2

,

or
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









ξ′+

ξ̄′−

η̄′











=











f ′(R)R2 + f(R)− ω f ′(R)R2 − b
R2

b
R2

f ′(R)R2 − b
R2 f ′(R)R2 + f(R)− ω 0

cN
R2 0 (f(0)− ω)





















ξ+

ξ̄−

η̄











.

Substituting b= c into the matrix above yields Eq. (3.16). �
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