Vortex dynamics, animal skin patterns, and ice
fishing
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Vortex dynamics

e Equations first given by Helmholtz (1858): each vortex generates a rotational velocity
field which advects all other vortices. Vortex model:

dz; = 2k
]_ Z’Y}g 29 ]_1 . N.
k#j 1 = 2

e Classical problem; observed in many physical experiments: floating magnetized
needles (Meyer, 1876); Malmberg-Penning trap (Durkin & Fajans, 2000), Bose-
Einstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides
et.al, 2001)

e Conservative, hamiltonian system
e General initial conditions lead to chaos: movie — chaos
e Certain special configurations are “stable” in hamiltonial sense: movie — stable

e Rigidly rotating steady states are called relative equilibria :

zi(t) = “’“ffj <— O—Z Vp—r—— — & 5 — W
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ure 1 Experimental set-up and magnetic force profiles. a, A scheme of the
ierimental set-up, & bar magnet rotates at angular velocity w below a dish filled with
iid {fypically ethylene plycol'water or ghycerine/water solutions), Magnetically doped
<5 are placed on the liquid—air interface, and are fully immersed in the liguid except for
ir top surface. The disks spin-at angular velocity w around their axes. A magnetic force

attrarte tho dicke trararde tho contra nf tho dich and o huwdendsnamie frrco £ nischaoe
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Figure 2 Dynamic patterns formed by various numbers (1 of disks rotating at the ethylene
glycol/water—air Interface. This interface is 27 mm above tha plang of the external
magnet. The disks are composed of & section of polyethylene tube {white) of outer
diameter 1,27 mm, filled with poly{dimethylsilaxane), POMS, doped with 25 wi of
magnetite (black cantre), All disks spin around their centres at w = 7001.p.m., and the
entire aggregate slowly (€2 << 2 r.p.m.) precesses around its centre. For q < 5, the
aggregates do not have a ‘nucleus’—all disks are precessing on the fim of a circle, For
1 = B, nucleated structures appear. For 1= 10 and n= 12, the patterns are bistable in
the sense that the two observed patterns intercorwert irregularly with time. For n=19, the
hexagonal pattern left) appears only above w == B0Or.p.m., but can be ‘annealed’ down



Observation of Vortex Lattices

in Bose-Einstein Condensates PUARAST: VOLME SHEEE
J- R. Abo-Shaeer, C. Raman, |. M. Vogels, W. Ketterle

Fig. 1. Observation of
vortex  |attices. The
examples shown con-
tain  approximately
(&) 16, (B] 32, [C) 8O,
and (D) 130 vortices.
The wortices have
"erystallized” in a tri-
angular pattern. The
diameter of the cloud
in (D) was 1 mm after
ballistic  expansion,
which represents a
magnification of 20.
Slight asymmetries in the density distribution were due to absorption of the optical pumping light.




e Campbell and Ziff (1978) classified many stable configurations for small (eg. N =
18) number of vortices of equal strength.

18, 18,

+2524 . 2832 3521 <3511
1 6§11 1 512 B 12 3 312

e Goal: describe the stable configuration in the continuum limit of a large number of
vortices NV (eg. N = 100, 1000...). These have been observed in several recent
expriments: Bose Einstein Condensates, magnetized disks



Key observation

Vortex model: —= =1 nyk 5, J=1...1V. (V)
k Rj — “k ‘
#J
Relative equilibrium: z;(t) = ¢*"¢;, <= 0= Z Vp——— — & — w;
£ \ —&P
Aggregation model: —= nyk W (A)

kA 10T

e One-to-one correspondence between the steady statates :cj(t) = &; of (A) and the
relative equilibrium z;(t) = e“'*¢; of (V).

e Spectral equivalence of (V) and (A): The equilibrium :cj(t) = ¢ is asymptotically
stable for the aggregation model (A) if and only if the relative equilibrium zj(t) = e‘”tfj
is stable (neutrally, in the Hamiltonian sense) for the vortex model (V)!

e Aggregation model fully describes relative equilibria and their linear stability in the
vortex model.

e Aggregation model is easier to study than the vortex model.



Vortices of equal strength .. = v

dz; | 2 — Zk _
d—tj:wZ—j 5, J=1...N.
kit |Zj_zk|

e In the limit N — o0, the steady state density of (A) is constant inside the ball of
radius

Fig. 1. Stable relative equilibria of N = 25,50 and 200 vortices of equal

strength. The dashed line shows the analytical prediction Rg = /N~ /w of the
swarm radius in the N — oc limit (see (6)).




Connection to the biological aggregation model

e [FHK,2011] Multi-particle interaction model:

dx; 1 Tj— Tj ,
Ty — —2 -_— m'] ]:1...N- (1)
Newtonian repulsion  Linear attraction (2)

e This is just the first two terms of the ice-fishing problem (no reflection in the boundary)
e This model results in a constant density swarm.

e Newtonian repulsion, linear attraction.
e In the limit N — o0, the density is constant inside a ball of radius 1; zero outside.



Continuum limit

e \We define the density p as

/ #particles inside domain D
p(x)dr ~
D N

e The flow is then characterized by density p and velocity field v:

pr+ V- (pv) = 0; v(w)—/Rn(x_y x—y>p(y)dy- (3)

iz —y|?

e \We have



e Inside, the swarm, V-v =0 = p = M/ is constant!

e Radius is determined by conservation of mass: M = prR?> = R =1.
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N + 1 problem

e /V vortices of equal strength and a single vortex of a much higher strength

p B o
ﬂ:_z Ly Tk bxi—nQ_g;j,j:L..N, (4)
—SL’k\ |z — |
k#]
dn _ a Bl S 5)
2

at N p oy I —

e Mean-field limit N — oo:
IOt + V- (pVv) = 0;
v(x afRzp ‘xy|dy—|—b|x o7
d

n_af]RQp |,r] y‘ dy ?7

e Main result: . Define Ry = Vb, Ry = va + b and suppose that 7 is any point
such that Bpr,(n) C Bgr,(0). Then the equilibrium solution for (6) is constant inside

-4 (6)

Br,(0)\ Br,(n) and is zero outside.
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e Unlike the N 40 problem, the relative equilibrium for the /N +1 problem is non-unique:
any choice of 7 yields a steady state as long as || < Ry — R;.



Degenerate case: big central vortex

e Small vortices are constrained to a ring of radius R. with big vortex at the center.
e Non-uniform distribution of small particles!

e Question: Determine the size of the gap @gap.



e Main Result:
Ogap ~ CN 3,

where the constant C' = 8.244 satisfies

1/3
(5 6ut 20 (a1 =3u o - 1) € =2 (O




Sketch of proof

e [Barry+Wayne, 2012]: Set (t) ~ Roe'®i!) then at leading order we get

sin (6; — 6y o
dt NZ (2—2008 0; — 6;) —sin (6, ek))' ")

e In the mean-field limit N' — oo, the density distribution p(f) for the angles 6, satisfies

Pt + (PW)G — 07

o0)=pv [ o) (55t s i@ ) o ©

where PV denotes the principal value integral, and f; p=1

e [Barry, PhD Thesis]: Up to rotations, the steady state density p(@) for which v = 0

must be of the form !

pO) =5

This follows from (8) and (formal) expansion

1+ acosf). 9)

sint

Py sint = sin(2t) 4 sin(3t) 4 sin(4¢) +



e (v is free parameter in the continuum limit.

e For discrete [V, particle positions satisfy

eji(1+ e)de—i
, . COS —N

i 2m
0.4r
0.2r
0
e0 e1 e3/2 e5
_02 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

To estimate ®,,,, choose 6, so that v(¢;) ~ 0. See our paper for hairy details.



N + K problem

Main result: Let R, = /b, k= 1...K and Ry = a+b; + ...+ bg. Suppose
M ...nxk are such Br,(n1)... Br,(nx) are all disjoint and are contained inside Bp,(0).

The equilibrium density is constant inside Bp,(0)\ Uszl Br,(nx) and is zero outside.



N + K problem, with very large K vortices

e The blue ellipse is described by the reduced system

&1 |
—= = = — + fk — & (10)
dt N & &—& 2

e From [K, Huang, Fetecau, 20011], its axis ratio is 3.



Crystallization

Vortex model: —= =1 Z fyk 5, J=1...N. (V)
ktj V5T |
Reltive equiliria: z;(t) = e*''¢; <= 0= Z T——— . — w¢;
< | —&P
dzj
Vortex with dissipation: 7 =1 Z Y= t i Z 7;{; —wz; | (D)

‘Z]_Z‘

k#j T

e In many physical experiments of BEC there is damping or dissipation involved.

e Spectral equivalence: Relative equilibria and their stability are the same for (V)
and (D)

e Both the vortex model and the “aggregation model” model are limiting cases of (D).
e Taking 1 > 0 stabilizes vortex dynamics!  chaos damped stable

e This allows us to find stable relative equilibria numerically.



Vortex dynamics in BEC with trap

e For BEC, dynamics have extra term corresponding to prcession around the trap:

: . a : Zj— Rk :
J
zj:ftl_r2zj+ ZCZﬁ’ j=1...N. (11)
N—— kA <j T “k )
trap-interaction self-interaction

e Large NV limit: non-uniform vortex lattice:

a _ .
pr~w———ifr <R, p=0otherwise,
(1 —r?)
h a +cN
with w =
1-R*> R?
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e No solutions ofr w < w,

larger unstable.

Ry ifw > w,., smaller is stable,

e Two solutions R



N-body problem

. Rk — Zj
Zi = Z C]{Cj—iyg (12)

Tp — T,
0= Z ckcjk—jg + waj (13)

e Gradient flow (to find steady states):

L — XTj
— Z CLCj——= / 5 T ngj (14)
k7]



relative equilibrium for 300-body problem (unstable)

e For N equal-mass bodies, the relative equilibrium is known to be unstable when N >

3.

e Unlike the vortex model, there is no spectral equivalence between ( 12) and (14)



Spot solutions in Reaction-diffusion systems

seashells * fish * crime hotspots in LA * stressed bacterial colony




Classical Gierer-Meinhardt model

2
At:EQAA—A+%; TH, = DAH — H + A

e Introduced in 1970’s to model cell differentation in hydra
e Mostly of mathematical interest: one of the simplest RD systems
e Has been intensively studied since 1990’s [by mathematicians!]

e Key assumption: separation of scales

e lande® < D.




e Roughly speaking, H is constant on the scale of A so the steady state looks "roughly”
: L — Xo
like A(z) ~ Cw ( ) where

€

Aw —w + w? = 0.

e Questions: What about stability? What about location of the spike x(?



“Classical” Results in 1D:

e Wei 97, 99, Iron+Wei+Ward 2000: Stability of K spikes in the GM model in one
dimension

e Two types of possible instabilitities: structural instabilities or translational instabilities
e Structural instabilities (large eigenvalues) lead to spike collapse in O(1) time
e Translational instabilities can lead to "slow death”: spikes drift over large time scales

e Main result 1 : There exists a sequence of thresholds Dy such that /& spikes are
stable iff D < Dy.

e Main result 2: Slow dynamics of K spikes is described by an ODE with 2K
variables (spike heights and centers) subject to /K algebraic constraints between
these variables.



Large eigenvalues

e Careful derivation leads to a nonlocal eigenvalue problem (NLEP) of the form

4sinh? (L
A = Ag+(—1 + 2w) ¢_Xw2§zf; T 9 il (L) 11 <;ﬁs?7r(1 —1/K)]
VD

e Key theorem (Wei, 99): Re(\) < 0iff y < 1

e Corrollary : On adomain [—1, 1], large eigenvalues are stable iff D < D jarge Where

1
arcsinh?(sin 27 / K)

DK,Iarge —

e \When unstable, this can lead to competition instability.

e Movies: stable: unstable



Small eigenvalues

e Causes a very slow drift

e Iron-Ward-Wei 2000: The slow dynamics of the system can be reduced to a coupled
algbraic-differential system of ODEs

e Movie: slow drift



Two dimensions

e Structural stability is similar

e Dynamics [Ward et.al, 2000, K-Ward, 2004, K-Ward 2005]:

dﬂ?o 47’(’62

dt e !y 21 Ry

VR,
where

: 1
Ry = lim {G(x, o) + gln(\x — xo\)] ;

T—X

T—XQ

1
VRy= lim V, [G(:c,:co) — %ln(\x — xo\)] :
AG—%G:—(S(QZ—ZL’()) on(2; 0,G = 0on o)

e Equilibrium location x satisfies V Ry = 0, occurs at the extremum of the regular part
of the Neumann’s Green'’s function



Dumbbell-shaped domain

e QUESTION: Suppose that a domain has a dumb-bell shape. Where will the spike
drift??

e \What are the possible equilibrium locations for a single spike?




Small D limit

e If D is very small, Ry(xo) ~ C(xg) exp (—% E xm\) where z,,, is the point on
the boundary closest to x

e This means that R is minimized at the point furthest away from the boundary
when D < 1

- Inthelimite? < D < 1, the spike drifts towards the point furthest away from the
boundary.

- For a dumbell-shaped domain above, the three possible equilibria are at the
"centers” of the dumbbells (stable) and at the center of the neck (unstable saddle
point)

- For multiple spikes, their locations solve "ball-packing problem”.

e Movie: D = (.03, = 0.04



Large D limit

e We get the modified Green'’s function:

AG,, — |_g12| = —0(x — xg) inside €2, 0,G = 0on 0¢;

1
RmO = lim Gm<$,$0)+2—1ﬂ<‘x—xo‘) .
™

T—X0

e [K, Ward, 2003]: For a domain which is an analytic mapping of a unit disk, 2 = f(B),
we derive an exact formula for V R, in terms of the residues of f(z) outside the
unit disk.

(1—a*z

e Take f(z)= A

ro = f(20) :




Then

VS(Z())
VR 0(%0) =
" f'(20)
where
! o (213e%)% P %
_ 1—|20]? zd—at Z2a?—1 = z2—a?
Vs(z) = o i(a4—1)2(|0z0|2—1)(z0+a2z0)(z§+a2§

(a4+1)(28@2—1)(z§—a2)(2§—a2)2

e Corrollary: for above ), V R,,¢ has a unique root at the origin!

- In the limit D > 1, all spikes will drift towards the neck.

e Complex bifurcation diagram as D is increased.

e Movie: ¢ =0.05, D =0.1; D = 1.



”Huge” D

e In the limit D — oo, (Shadow limit), an interior spike is unstable and moves towards
the boundary [Iron Ward 2000; Ni, Polacik, Yanagida, 2001].

e For exponentially large but finte D = O(exp(—C'/¢)), boundary effects will
compete with the Green'’s function.

e [K, Ward, 2004]: Define

="In| ZZpDe V2 O ~ 334.80:
72 “(\m ) ) 0 |

Then the spike will move towards the boundary whenever its distance from the closest
point of the boundary is at most o; otherwise it will move away from the boundary.

e Movies: ¢ = 0.05, D = 10; D = 100



Spike dynamics inside a disk

In the limit e < 1, D > 1, inside the disk we get

R DLD N D D et o
2 L 2
dt ) “oj—al” 4 —xk/\xk\] o el —wl”

7

~ v~

inter — particle force re f lection in the boundary of unit disk

e The first two terms are identical to vortex stability model!
e The last two terms represent “reflection in the wall”

e Just like for vortex model, the steady state consists of uniformly-distributed
particles inside the domain!

e Movies: disk; dumbbell.



Mean first passage time (ice fishing)

e Question: Suppose you want to catch a fish in a lake covered by ice. Where do you
drill a hole to maximize your chances?

e Related questions: cell signalling; oxygen transport in muscle tissues; cooling rods in
a nuclear reactor...

e Consider N non-overlapping small "holes” each of small radius €. A particle is
performing a random walk inside the domain (). If it hits a hole, it gets destroyed;
if it hits a boundary, it gets reflected. Question: what is the expected lifetime of the
wondering particle? How do we place the holes to minimize this lifetime [i.e. catch the
fish, cool the nuclear reactor...]?

wandering partiele

&)

O(e)

reflecting

walls



e The expected lifetime is proportional to 1/ where A is the smallest eigenvalue of the
problem:

Au + Au = Oinside Q\2,; uw = 0o0n 99,; d,u = 0 on O
where €, = UZJL Q..

e [K-Ward-Titcombe, 2005]: The smallest eigenvalue is given by

20N 2 1
A~ 1 — 2z, zn)+ O
T ( TR <(m1)2>>

where
p(ry,...xN) = Z Z Gij;
G — G (T, x5) i1 # ]
Yl Rnlwg,ag)ifi=j
1
AG,(z,2') — o = —4(x — 2') inside ), 0,G =00n00; R, =reg.part
e For a unit disk:
! 1
2rGy(z, ') = —In|z — 2| — In |z || — ’x—,‘ +3 <|:13|2 + \a:'|2>
X
/ / ' 1 2 /12
2Ry (x,2') = —In |z |z T +5 (\az\ + |2] )

e The optimum trap placement is at the minimum of p(z1, ... zy)



Disk domain, N holes

We need to minimize

p(zy . Zln |z — xk\—z (ln

J#k
Gradient flow is uniform swarm model plus two extra terms

dx; T — Ty Tj— X/ ]xk\ —T; \xk\Q + T \xj\2
=2y Zﬁz - R

o |7 — ] i v — ap/ |zi]” ! | ekl — @

:cj—

1 2 2
9 —|—1H‘.’L’k‘>‘|‘§z (‘CC]‘ + \:ck\ ]

Tk ok

Particleson aring: x. = re™™27/N' The min occurs when
= -
1 —r2N 2N

Note that r — 1/\/§ as N — oco; the optimal ring divides the unit disk into two equal
areas.

Particles on 2,3,... m rings: Similar results are derived with complicated but numerically
useful formulas.



Constrained optimization on up to 3 rings
6 ; 0 0
(DO
16 17

21 22

‘H‘I—‘
3 o

N
o

N
[8)]




Full optimization of K traps

6 (-1.526) 7 (-1.8871) 8 (-2.2538) 9 (-2.6104) 10 (-2.976)

11 (-3.3562) 12 (-3.7593) 13 (-4.1552) 14 (-4.5683) 15 (-4.975)

16 (-5.3914) 17 (-5.8051) 18 (-6.2245) 19 (-6.6731) 20 (-7.1071)

21 (-7.5489) 22 (~7.985) 23 (-8.4207) 24 (-8.8693) 25 (-9.3178)




Comparison

0.5}

-0.5}

0.5}

-0.5}

10, -2.96861, -2.976

15, -4.97285, -4.97502




Conclusion

e \We looked at three very different problems: vortex dynamics; spike dynamics and first
mean-passage time

e All three problems reduce to nonlocal particle aggregation model with Newtonial
repulsion

e In the limit of large number of particles, the steady state approaches a uniform
distribution.

e Spectral equivalence of aggregation and vortex model shows stability

These papers are available for download from my website:
http://www.mathstat.dal.ca/ tkolokol

Thank you! Any questions?
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