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Department of Mathematics and Statistics, Dalhousie University,
Halifax, Canada

We investigate the dynamics of N point vortices
in the plane, in the limit of large N. We consider
relative equilibria, which are rigidly rotating lattice-
like configurations of vortices. These configurations
were observed in several recent experiments. We
show that these solutions and their stability are fully
characterized via a related aggregation model which
was recently investigated in the context of biological
swarms. By using this connection, we give explicit
analytical formulae for many of the configurations
that have been observed experimentally. These
include configurations of vortices of equal strength;
the N + 1 configurations of N vortices of equal
strength and one vortex of much higher strength; and
more generally, N + K configurations. We also give
examples of configurations that have not been studied
experimentally, including N + 2 configurations, where
N vortices aggregate inside an ellipse. Finally,
we introduce an artificial ‘damping’ to the vortex
dynamics, in an attempt to explain the phenomenon
of crystallization that is often observed in real
experiments. The diffusion breaks the conservative
structure of vortex dynamics, so that any initial
conditions converge to the lattice-like relative
equilibrium.

1. Introduction
The dynamics of N point vortices in a plane is a classical
problem that goes back to the works of Helmholtz [1],
who first described this model as a fluid analogue to the
N-body problem in celestial mechanics. Fundamentally,
point vortices correspond to singularities in an ideal
irrotational flow. These singularities in turn characterize
the flow itself. Vortex dynamics have been reproduced in
many physical experiments, starting with those of Meyer
[2] of floating needle magnets in an applied magnetic
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field. Yarmchk et al. [3] obtained stable vortex lattices in a rotating 4He superfluid. Vortex
dynamics have also been observed in Bose–Einstein condensates [4–6] and in electron columns
confined in a Malmberg–Penning trap [7], which allow for a high degree of control over initial
vortex configurations [8]. Vortex dynamics were also reproduced experimentally using a system
of small rotating discs [9–11]. See reference [12] for a recent review of these experiments. Some
examples of vortices in nature include geophysical flows [13] such as Jupiter’s red spot [14],
intensifying hurricanes [15] and plasma flows [16].

As first described by Helmholtz, each vortex generates a rotational velocity field that advects
all other vortices. This yields a system of ordinary differential equations (ODEs) for vortex centres
zj which we will refer to as the vortex model,

dzj

dt
= i

∑
k �=j

γk
zj − zk

|zj − zk|2
, j = 1 . . . N. (1.1)

Here, i = √−1, zk ∈ C and 2πγk is the circulation of the kth vortex; we will assume throughout
the paper that γk > 0. There is an extensive literature that describes vortex dynamics of a small
number of vortices, or special vortex configurations, such as vortices arranged on a ring (see
[17–19] for the overview of the field). The vortex model is a Hamiltonian system of many
variables. As such, general initial conditions with four or more vortices typically result in chaotic
dynamics. However, there are many special arrangements, which lead to the rigidly rotating
configurations of vortices, called relative equilibria [12,17,20,21]. These equilibria can be either
stable [12,22] or unstable [23]. For example, N vortices of equal strength arranged uniformly
along a ring is a basic relative equilibrium, which is stable for N ≤ 6 and unstable for N ≥ 8, with
N = 7 being the threshold case [24–26]. The stable relative equilibria are of particular physical
importance, and are often observed in experiments, even when starting with arbitrary initial
conditions. In real experiments, there is usually some form of dissipation present, which disturbs
the underlying Hamiltonian structure of vortex dynamics and, in practice, causes a decay towards
a stable lattice-type relative equilibrium over a long time. For example, this process was observed
in experiments with magnetized electron columns [7,8,27] and has been dubbed ‘crystallization’
in [8].

Motivated by rotating 4He superfluid experiments [3], Campbell & Ziff [22] classified many
stable configurations for a small number of vortices of equal strength. Our goal here is to describe
the stable configuration in the continuum limit of a large number of vortices N → ∞. The key
observation is that the model (1.1) is intimately connected to the following aggregation model,

dxj

dt
=
∑
k �=j

γk
xj − xk

|xj − xk|2
− ωxj. (1.2)

Here, ω is the angular velocity of the relative equilibrium. Model (1.2) was recently
investigated in studies [28,29] in connection with swarm formations in biology. There is a one-
to-one correspondence between the steady states xj(t) = ξj of (1.2) and the relative equilibrium
zj(t) = eωitξj of (1.1). Moreover, as we show below, this correspondence carries over to stability:
the equilibrium xj(t) = ξj is asymptotically stable for the aggregation model (1.2) if and only if
the relative equilibrium zj(t) = eωitξj is stable (neutrally, in the Hamiltonian sense) for the vortex
model (1.1). While the steady states and their local stability are the same for the vortex and
aggregation model, the latter has much simpler dynamics, and many results can be explicitly
obtained in the large-N limit as we show below.

Throughout the paper, we make use of the fact that ω > 0, which follows from our original
assumption that γj > 0 as we now show. Indeed, we have

ω =
∑∑

j�=kγkγj∑
j γj|ξj|2

, (1.3)
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Figure 1. Stable relative equilibria of N = 25, 50 and 200 vortices of equal strength. The dashed line shows the analytical
prediction R0 = √

Nγ /ω of the swarm radius in the N → ∞ limit (see (2.3)). (Online version in colour.)

where xj(t) = ξj is the equilibrium state of (1.2) corresponding to the relative equilibrium zj(t) =
exp(iωt)ξj of (1.1). This can be seen by multiplying the right-hand side of (1.2) by γjξj, summing
over j, and setting the sum to zero. The quantity

∑∑
j�=kγkγj is the total angular vortex

momentum, and
∑

j γj|ξj|2 is the angular impulse.1

2. Equilibrium and stability of vortices of equal strength
Consider the special case of N vortices of equal strength γk = γ so that the aggregation model
(1.2) becomes

dxj

dt
= 1

N

∑
k=1...N

k �=j

a
xj − xk

|xj − xk|2
− xj, j = 1 . . . N, (2.1)

where a = Nγk/ω and where we rescaled the time t → ω−1t. The distinguished 1/N scaling makes
it possible to take the mean-field limit N → ∞ which yields a non-local partial differential
equation (PDE) [28–30]

ρt + ∇ · (ρv) = 0; v(x) = a
∫
R2

ρ(y)
x − y

|x − y|2 dy − x. (2.2)

Here, ρ(x, t) approximates the particle density normalized so that
∫

D ρ(x, t) dx represents the
fraction of particles inside a domain D with

∫
R2 ρ(x, t) = 1.

The system (2.2) was analysed in detail in recent studies [28,29]. It was shown that in the limit
t → ∞, the density ρ(x, t) approaches a steady state which is constant inside a disc of radius

√
a

and is zero outside such a disc: ρ(x, t) → 1/(aπ ) if |x| < √
a and ρ(x, t) → 0 as t → ∞ otherwise. For

the vortex model, this result implies that for large N, the stable relative equilibrium for (1.1) with
γk = γ consists of particles uniformly distributed inside a disc of radius

R0 =
√

Nγ

ω
. (2.3)

The radius R0 was previously derived in the physics literature, see for example [31] and in [32,
eqn. 25]. The stability can also be ascertained: as was shown in [29], the uniform disc is the global
attractor for the continuum limit (2.2) of the aggregation model. An immediate consequence is
that the uniform disc is the only stable relative equilibrium of the vortex model (1.1) with γk = γ

in the large N limit. While in the derivation of (2.3), we assumed that R0 is O(1), the formula
actually holds even when γ /ω = O(1). This is because one can always rescale the space to make
R0 of O(1). Indeed, the rescaling xj = √

N/ax̃j, t = √
N/at̃ eliminates a/N from equation (2.3); hence,

these results are independent of scaling.
Figure 1 shows that the continuum limit radius (2.3) provides a very good estimate of the

equilibrium radius even for relatively small N = 25; as expected, larger N results in an even better
agreement. Below, we will re-derive this result as a special case of the N + 1 configuration.

1
We thank the anonymous referee for pointing out formula (1.3) to us.
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Figure 2. Stable relative equilibria for N + 1 system of vortices (3.1) and (3.2). (a): N = 100, b= 1 are fixed with a= 2, 2
and 0.25 (left to right). The asymptotic predictions are indicated by dashed curves (result 1). (b): parameters a= 0.05, b= 1
are fixed with N = 100, 20 and 5 (left to right). Asymptotic prediction (result 3) is indicated by crosses middle-right figure.
(c): experimentswith small, floatingmagnetizeddiscs from [9]. Reprintedwithpermission from the authors. Copyright (2001) by
the American Physical Society. (d): the angular density distribution of particles is well-approximated by (3.8) shown by crosses;
circles are the full numerics.α is as given in result 3. (Online version in colour.)

3. N + 1 problem
A well-studied case in the literature going back to Havelock [25] consists of a ring of N vortices of
equal strength surrounding a single vortex of a much higher strength. This is the fluids analogue
of the ‘rings of saturn’ problem in celestial mechanics that was first studied by Maxwell [33].
Cabral & Schmidt [26] established the stability of an N + 1 uniform ring, provided that the
strength of the central vortex is between a certain lower and an upper bound. Below the lower
bound, the ring has high-mode instabilities that cause the ring to deform into an annulus. This is
illustrated in the left-top panel of figure 2. Above the upper bound, there is a low-mode instability
that causes the ring to deform into a stable non-uniform ring-like state [20], as illustrated in the
second row of figure 2. The non-uniform state of this type was also observed experimentally in
[9] and in [8] (figure 2). For the experiments with Bose–Einstein condensates, it has been shown
that higher charge vortices are both experimentally and theoretically potentially unstable, owing
to break-up to lower topological charges [34–36], which makes the N + 1 configurations more
difficult to achieve.
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In this section, we will construct the N + 1 states in the large N limit. Label η = xN+1 and
rewrite (1.2) as

dxj

dt
= a

N

∑
k=1...N

k �=j

xj − xk

|xj − xk|2
+ b

xj − η

|xj − η|2 − xj, j = 1 . . . N, (3.1)

and
dη

dt
= a

N

∑
k=1...N

η − xk

|η − xk|2
− ηj, (3.2)

where a = Nγk/ω, k = 1 . . . N; b = γN+1/ω and where we rescaled the time t → ω−1t. Taking the
mean-field limit N → ∞ as before yields a PDE for the density distribution of small vortices ρ(y)
which satisfies

ρt + ∇ · (ρv) = 0;

v(x) = a
∫
R2

ρ(y)
x − y

|x − y|2 dy + b
x − η

|x − η|2 − x

and
dη

dt
= a

∫
R2

ρ(y)
η − y

|η − y|2 dy − η.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

We make the following ansatz for the steady state:

ρ(x) =
{

ρ0, if x ∈ BR0 (0)\BR1 (η)

0, otherwise,

where BR(z) denotes a disc of radius R centred at z; R0, R1 ∈ R
+ and η ∈ BR0 (0) are chosen such that

BR1 (η) ⊂ BR0 (0). The normalization
∫

R2 ρ(x) dx = 1 yields ρ0π (R2
0 − R2

1) = 1. Using the identity

∫
BR(z)

x − y
|x − y|2 dy =

⎧⎪⎨
⎪⎩

π (x − z), x ∈ Br(z)

πR2 x − z
|x − z|2 , x /∈ Br(z),

we find that for x ∈ BR0 (0)\BR1 (η),

v(x) = (aρ0π − 1)x + (−aρ0πR2
1 + b)

x − η

|x − η|2 ; ηt = (aρ0π − 1)η.

At the steady state of (3.3), v(x) = 0 = ηt so that aρ0π = 1; aρ0πR2
1 = b. Solving for R1, R0, we obtain

the following result.

Result 3.1. Define R1 = √
b, R0 = √

a + b and suppose that η is any point such that BR1 (η) ⊂
BR0 (0). Then, the equilibrium solution for (3.3) is constant inside BR0 (0)\BR1 (η) and is zero outside.

This result is illustrated in figure 2, first row, where the boundaries of discs BR1 (η), BR0 (0) are
shown by dashed lines. Excellent agreement between the continuum limit result is observed.
Unlike the N + 0 problem, the relative equilibrium for the N + 1 problem is non-unique: any
choice of η yields a steady state as long as |η| < R0 − R1.

In the limit a → 0, note that R1 → R0 so that the steady-state approaches a (possibly
non-uniform) ring solution. Assuming that η ∼ 0 is at its equilibrium, it was shown in [20] that
the evolution of the small vortices is given by xj(t) ∼ R0eiθj(t) where θj satisfies, after a rescaling
t → a−1t,

dθj

dt
= 1

N

∑
k �=j

(
sin(θj − θk)

2 − 2 cos(θj − θk)
− sin(θj − θk)

)
. (3.4)

In the mean-field limit N → ∞, the density distribution ρ(θ ) for the angles θj satisfies

ρt + (ρvθ )θ = 0,

and v(θ ) = PV
∫π

−π

ρ(φ)
(

sin(θ − φ)
2 − 2 cos(θ − φ)

− sin(θ − φ)
)

dφ,

⎫⎪⎬
⎪⎭ (3.5)
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where PV denotes the principal value integral, and
∫π

−π ρ = 1. Using a formal expansion

sin t
2 − 2 cos t

− sin t = sin(2t) + sin(3t) + sin(4t) + . . . , (3.6)

note that up to rotations, the steady-state density ρ(θ ) for which v = 0 must be of the form

ρ(θ ) = 1
2π

(1 + α cos θ ). (3.7)

This formula was first derived in [37] using a similar technique. The free constant α corresponds
to the non-uniqueness of the steady state of the continuum limit (3.5) of the N + 1 problem. This
steady state is in fact stable (see appendix A), and the density is strictly positive whenever |α| < 1.
However, for any finite N, the density ρ is quantized; this has the effect of choosing a specific
constant α. The discrete locations are well approximated by

∫ θj

−π

1
2π

(1 + α cos θ ) dθ = (j − 1/2)
N

(3.8)

(figure 2, row 4). The relative equilibrium exhibits a gap along the unit circle. In appendix A, we
show the following result.

Result 3.2. In the limit a � 1 and N  1, the equilibrium θj for the problem (3.4) is
approximated by solving (3.8), where α ∼ 1 + A N−1/3 with θ1 ∼ −π + B N−1/3, where the
constants A ≈ 2.0699802 and B ≈ 4.122044 satisfy equations (A 4). The gap in the steady state,
given by Θgap = 2(θ1 + π ), is of the size

Θgap = 2BN−1/3 ≈ 8.244N−1/3. (3.9)

This result is illustrated in figure 2, second row. Despite the low-power scaling O(N−1/3) for the
gap, formula (3.9) is very effective even for relatively few vortices N = 5.

4. N + K problem
It is straightforward to generalize result 1 to the situation where there are K large vortices and N
small ones. In analogy to the N + 1 case, we let a = Nγk/ω, k = 1 . . . N; bk = γN+k/ω, k = 1 . . . K and
rescale the time t → ω−1t. The mean-field limit N → ∞ for the velocity v of the density distribution
ρ of vortices then becomes a coupled system

v(x) = a
∫
R2

ρ(y)
x − y

|x − y|2 dy +
∑

k=1...K

bk
x − ηk

|x − ηk|2
− x,

and
dηj

dt
= a

∫
R2

ρ(y)
ηk − y

|ηk − y|2 dy +
∑

k=1...K
k �=j

bk
ηj − ηk

|ηj − ηk|2
− ηj, j = 1 . . . K.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.1)

The generalization of result 1 then yields

Result 4.1. Let Rk =√
bk, k = 1 . . . K and R0 =

√
a + b1 + · · · + bK. Suppose η1 . . . ηK are such

BR1 (η1) . . . BRK (ηK) are all disjoint and are contained inside BR0 (0). The equilibrium density for
(4.1) is constant inside BR0 (0)\⋃K

k=1 BRk (ηk) and is zero outside.

In analogy to the N + 1 problem, such an equilibrium has K free parameters η1 . . . ηK. Some
examples are given in figure 3. Unlike the N + 1 problem, not all values of parameters are allowed
in result 3. For example, for the N + 2 problem, such solutions exist if and only if R1 + R2 < R0
or

√
b1b2 ≤ a/2. In the opposite case, the two smaller discs no longer fit inside the big disc; this is

illustrated in figure 3, row 2.
When K > 2 and in the limit a → 0, the integral terms in (4.1) disappear at the leading order,

so that K large vortices ‘decouple’ from the N small vortices, and their behaviour is simply
given by a lower-dimensional K-vortex problem obtained by setting a = 0. The N small equilibria
aggregate at several points as illustrated in figure 3 (middle left and bottom). These special points
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(a)

(b)

(c)

Figure 3. N + K relative equilibria. Small dashed circles are the large-N limit result BR1 (η1) . . . BRK (ηK ) and big dashed circle
has the radius R0, see result 3. For all snapshots, N = 200 and K corresponds to the number of big dots. (a) Left and middle:
a= 1, (b1, b2)= (0.25, 0.5); right: a= 1, (b1 . . . b4)= (0.05, 0.05, 0.1, 0.45). (b) b1 = b2 = 1 with a= 1 (left and centre)
and a= 0.1 (right). (c) bj = 1 and a= 0.1, 0.3, 0.3 resp. for left, centre and right. (b) Right: the thick dashed curve is the
predicted ellipse shape. Crosses are the asymptotic resultη1 = 1/

√
2= −η2. (Online version in colour.)

correspond to the stagnation points of the velocity field (4.1) with a = 0. As we now show, the
shape of the swarm around these points can be computed explicitly. For simplicity, we concentrate
on a special case of two big vortices of equal strength b1 = b2 = b and one aggregation of small
vortices. This configuration is shown in figure 3, middle right panel. The relative equilibrium
position of the two big vortices η1, η2 satisfies

b
η2 − η1

|η2 − η1|2
= η1 = −η2.

By rotation, assume η1, η2 are on the x-axis so that η1 =√
b/2 = −η2. For the small vortices and in

the limit a → 0, we set xj = X + a1/2ξj + O(a). Collecting the O(1) terms, we then obtain

b
(

X − η1

|X − η1|2
+ X − η2

|X − η2|2
)

− X = 0.

This yields X = ±
√

3
2 bi. At the next order, collecting the O(a1/2) terms, we then obtain system

dξj

dt
= 1

N

∑
k=1...N

k �=j

1
ξj − ξk

+ 1
2
ξ̄k − ξk (4.2)

where the bar denotes the complex conjugate. The system (4.2) was recently analysed in [38]
in the context of singularly perturbed aggregation kernels. Using a complex variables method, it
was shown that ξj concentrate uniformly inside an ellipse whose radii are

√
3 and

√
1/3 and whose

major axis is parallel to the x-axis. This ellipse, along with the full solution, is plotted in figure 3,
right-middle panel; good agreement is observed.
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5. Crystallization
Owing to the conservative nature of the idealized vortex dynamics (1.1), random initial conditions
typically result in chaotic motion, and stable relative equilibria are only neutrally stable: small
perturbations neither grow nor decay. By contrast, in experiments [3,7–9], arbitrary initial
conditions often converge to an asymptotically stable lattice-like state. Similar stable lattices
have also been observed in Bose–Einstein condensates [4]. The emergence of such lattices can
be explained by adding a small ‘damping’ term that destroys the Hamiltonian structure. Here,
we propose the following phenomenological model that incorporates this friction:

dzj

dt
= i

∑
k �=j

γk
zj − zk

|zj − zk|2
+ μ

⎛
⎝∑

k �=j

γk
zj − zk

|zj − zk|2
− ωzj

⎞
⎠. (5.1)

The constant μ ≥ 0 models damping effects. The term γk(i + μ)(z − zk/|z − zk|2) corresponds to a
velocity field generated by an outwards spiralling source that adds local repulsion of strength
μ. The term −μωzj keeps the vortices confined near the origin; it arises naturally for vortices
confined to a circular domain via boundary effects. The original vortex model (1.1) is a special
case of (5.1) obtained by setting μ = 0. Moreover, the aggregation model (1.2) is also a special case
of (5.1) by taking μ → ∞ after rescaling the time t → μ−1t.

The specific form of (5.1) is motivated by the fact that any relative equilibrium zj(t) = exp(ωit)ξj
of (5.1) is also a relative equilibrium of (1.1) for any μ; and vice versa. Furthermore, we now
show that the relative equilibrium zj(t) = exp(ωit)ξj of the vortex model (1.1) is stable if and only
if it is a stable for the damped system (5.1), and if and only if the corresponding equilibrium
xj(t) = ξj of the aggregation model (1.2) is stable. Note that systems (1.1), (1.2) and (5.1) are all
invariant under rotations; hence, there is always a zero eigenvalue of the relative equilibrium that
corresponds to the rotation invariance. So, we define stability to mean that all other eigenvalues
are non-positive. Because the vortex model (1.1) is Hamiltonian, its eigenvalues come in pairs ±λ.
The (neutral) stability in this case means that all eigenvalues (except for the zero rotational mode)
are purely imaginary.

We linearize around the relative equilibrium by setting zj(t) = exp(ωit)(ξj + ηj(t)) where η � 1.
We then obtain the 2N × 2N linear system of ODEs

d
dt

η = (i + μ)(Lη̄ − ωη),
d
dt

η̄ = (−i + μ)(L̄η − ωη̄), (5.2)

where the overbar denotes complex conjugation; η = (η1, . . . ηN) and L is an N × N matrix with
Ljk = γk/(ξj − ξk)2 for j �= k and with Ljj = −∑k �=j Ljk.

Eliminating η̄ from (5.2), we obtain

ηtt = (i + μ)Lη̄t − (i + μ)ωηt

= (1 + μ2)LL̄η − (−i + μ)ω(i + μ)Lη̄ − (i + μ)ωηt

= (1 + μ2)(LL̄ − ω2)η − 2μωηt. (5.3)

Setting η(t) = exp(λt)v in (5.3), we find that λ satisfies

λ2 + 2μωλ + (ω2 − σ )(μ2 + 1) = 0, (5.4)

where σ is an eigenvalue of LL̄ with corresponding eigenvector v. Note that L = DL̂, where D =
diag(γ −1

1 . . . γ −1
N ) is a positive diagonal matrix, and L̂ is a symmetric matrix. It follows that LL̄ =

D1/2(D1/2L̂D1/2D1/2L̂D1/2)D−1/2 is similar to the hermitian matrix D1/2L̂D1/2D1/2L̂D1/2, so that
σ ∈ R

+. Hence, recalling the assumption μ, ω > 0, we obtain that Re(λ) < 0 if and only if σ < ω2.
The original vortex model (1.1) corresponds to taking μ = 0 so that λ = ±

√
σ − ω2. If σ < ω2,

then λ is purely imaginary which corresponds to the neutral stability. Otherwise, λ = +
√

σ − ω2

is a positive eigenvalue, and the relative equilibrium is unstable.
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t = 0(a)

(b)

t = 7 t = 14 t = 21 t = 100

Figure 4. The effect the damping μ in (5.1) on the vortex dynamics. Snapshots of the dynamics are shown with time t as
indicated. (a) μ = 0. (b) μ = 0.1. Initial conditions and all other parameters are the same for the two runs. We invite the
reader to see the full movies at this address: http://www.mathstat.dal.ca/∼tkolokol/vortexswarms. (Online version in colour.)

An analogous computation for the aggregation model (1.2) shows that the eigenvalues of the
steady state xj(t) = ξj are similarly given by

λ2 + 2ωλ + (ω2 − σ ) = 0 (5.5)

so that λ = −ω ± √
σ ∈ R with both λ < 0 if and only if σ < ω2 (note that (5.5) can also obtained

from (5.4) by taking the limit μ → ∞ after rescaling λ → μλ). This establishes the equivalence of
linear stability of the steady state xj(t) = ξj of the aggregation model (1.2), the neutral stability
of the corresponding relative equilibrium zj(t) = eiωtξj of the vortex model (1.1), and the linear
stability of the model with damping (5.1). We remark that this method is similar to the argument
that was used in [39].

6. Discussion
Vortex dynamics is a very old subject, dating back to the 1850s. In this paper, we explored the
connection between vortex dynamics and a model of biological swarming. This connection allows
us to obtain many new as well as existing results in the large N limit. For example, previous works
on the N + 1 configurations [20,26] consider only the case where the N vortices form a ring around
the big vortex. Here, we treat the more general case where the equilibrium is bounded between
two circles. The previously known cases can be recovered as limiting case when the radius of the
inner circle approaches the radius of the outer circle. Moreover, we also computed asymptotically
the gap in the N + 1 non-uniform ring using a similar approach. This result is also new.

Many open questions remain. The stability of N + K configurations has not been studied,
except when K = 0 or for a very restricted case of the N + 1 problem (see appendix A). For the
N + 2 problem, the steady state as described in result 2 requires that the two discs inside the
swarm are disjoint. But there are other configurations, such as those illustrated in figure 3, top-
middle panel, where the two discs overlap by an O(1) amount. Numerical simulations indicate
that the amount of the overlap is independent of initial conditions, provided that the initial
conditions are such that the small vortices are all on one side of the two big vortices.

Numerical simulations of the crystallization model (5.1) indicate that the steady state attained
in figure 4 is a global attractor. This remains to be shown. Model (5.1) is the simplest possible
model that incorporates damping while still preserving the relative equilibrium of the original
vortex model (1.1). It would be interesting to incorporate the damping effects in a more systematic
way starting from first principles. See [40] for work in this direction.

http://www.mathstat.dal.ca/~tkolokol/vortexswarms
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Appendix A

(a) Stability of the N + 1 solution (3.7)
We now show that (3.7) is a stable steady state of the continuum equation (3.5). For simplicity, we
restrict the discussion to symmetric solutions that have the Fourier expansion

ρ(t) = C0 +
∞∑

m=1

2Cm(t) cos(mθ ).

Using (3.6), the velocity is then given by

v =
∞∑

m=2

2πCm sin(mθ ).

Substituting into ρt + (ρvθ )θ = 0, we obtain the following infinite system of ODEs for the Fourier
coefficients

d
dt

C1 = −πC1C2,

d
dt

C2 = −2π (C0C2 + C1C3)

and
d
dt

Cm = −mπ (C0Cm + C1(Cm−1 + Cm+1)), m ≥ 3.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

This system admits a steady state Cm = 0, m ≥ 2 with C1 arbitrary. Linearizing about this state
yields the infinite Jacobian matrix

J
π

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −C1
0 −2C0 −2C1
0 −3C1 −3C0 −3C1

−4C1 −4C0 −4C1
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Applying the Gershgorin Theorem to the columns of J, its eigenvalues are non-positive
provided that |C1| < C0/2, which is precisely the condition that steady-state density ρ(θ ) = C0 +
2C1 cos θ is positive.

(b) Derivation of result 2
The continuum density ρ(θ ) = (1/2π )(1 + α cos θ ) is approximated by a discrete density ρN =
(1/N)

∑N
k=1 δ(θ − θk), where θk are given by (3.8). The idea is to choose α such that the velocity

at the boundary is zero: dθ1/dt = 0, where dθ1/dt is given by (3.4). We then estimate the discrete
sum in (3.4) by (dθ1/dt) ∼

∫π

θ1+1/2

1
2π

(1 + α cos φ)
(

sin(θ1 − φ)
2 − 2 cos(θ1 − φ)

− sin(θ1 − φ)
)

dφ,

where θ1+1/2 is given by (3.8) with j = 1 + 1/2; refer to the bottom of figure 2. This integral can be
evaluated exactly using the identities

∫
sin t

(
sin(t)

2 − 2 cos(t)
− sin(t)

)
dt = 1

2
(sin t)(cos t + 1);
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∫

cos t
(

sin(t)
2 − 2 cos(t)

− sin(t)
)

dt = ln(1 − cos(t)) + cos t
2

(cos t + 1).

We then expand using the following scaling:

α = 1 + AN−1/2; x1 = −π + BN−1/3; x1+1/2 = −π + CN−1/3

where A, B, C are O(1). Setting dθ1/dt = 0 and expanding in Taylor series yields, at the
leading order,

C(2B + C) = 2 ln
(

C
B − 1

)
(2A − B2). (A 2)

The expressions (3.8) for x1 and x1+1/2 yield to leading order,

B3

12
− AB

2
= π

2
;

C3

12
− AC

2
= π . (A 3)

Together, (A 2) and (A 3) give a system of three algebraic equations for A, B, C independent
of N to leading order. Two of the variables can be eliminated by defining u = C/B; v = A/B2.
Eliminating v, we then obtain

(8 − 6u + 2u3) ln(u − 1) = 3u(u2 − 4)

and B3 = 6π (2 − u)
u(u2 − 1)

; A = B2 1
6

2 − u3

2 − u
.

⎫⎪⎬
⎪⎭ (A 4)
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