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It has long been recognized that the rates of molecular evolution vary amongst sites in proteins. The usual model
for rate heterogeneity assumes independent rate variation according to a rate distribution. In such models the rate
at a site, although random, is assumed fixed throughout the evolutionary tree. Recent work by several groups has
suggested that rates at sites often vary across subtrees of the larger tree as well as across sites. This phenomenon
is not captured by most phylogenetic models but instead is more similar to the covarion model of Fitch and
coworkers. In this article we present methods that can be useful in detecting whether different rates occur in two
different subtrees of the larger tree and where these differences occur. Parametric bootstrapping and orthogonal
regression methodologies are used to test for rate differences and to make statements about the general differences
in the rates at sites. Confidence intervals based on the conditional distributions of rates at sites are then used to
detect where the rate differences occur. Such methods will be helpful in studying the phylogenetic, structural, and
functional bases of changes in evolutionary rates at sites, a phenomenon that has important consequences for deep
phylogenetic inference.

Introduction

Recent work has suggested that the rates of molec-
ular evolution at sites in an alignment often vary across
subtrees of the larger evolutionary tree as well as across
sites (Miyamoto and Fitch 1995; Lockhart et al. 1998,
2000; Lopez, Forterre, and Phillippe 1999; Galtier 2001;
Gaucher, Miyamato, and Benner 2001; Gu 2001; Penny
et al. 2001). This phenomenon is often viewed in the
context of the covarion (concomitantly variable codons)
model of Fitch and coworkers (Fitch and Markowitz
1970; Miyamoto and Fitch 1995), whereby the sites in
a protein that were thought to be able to change (and
perhaps the rates at which they change) were not con-
stant over an evolutionary tree. Covarion-like evolution
in molecules has three important consequences. First,
most commonly used phylogenetic models assumed that
the rates-across-sites sites process is fixed over the tree.
Violation of this assumption by covarion processes can
possibly lead to a longer persistence of phylogenetic sig-
nal over time under some conditions (Penny et al. 2001).
Second, under other conditions, ignoring covarion-like
evolution can lead to a special form of the long-branch
attraction tree reconstruction artifact (Lockhart et al.
1998). For instance, rooting of the tree of life on the
bacterial branch with ancient gene duplicates has been
suggested to represent an artifact of this sort (Lopez,
Forterre, and Phillippe 1999). Third, large changes in
the evolutionary rates at sites may be related to major
shifts in the structure, function, or interactions of protein
or RNA molecules. Therefore, elucidating where rate
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changes have occurred in phylogenetic trees and in mol-
ecules may provide important insights into changes in
the properties of the molecules during evolution along
with their causes (Gaucher, Miyamato, and Benner
2001; Gu 2001; Knudsen and Miyamoto 2001). It is of
interest in such cases to determine whether such changes
actually are present or can be explained by sampling
variation, what the general tendencies of change are, and
where changes have occurred. We present three meth-
odologies for detecting such changes. Two of these
methods, regression tests with the rate estimates and a
parametric bootstrap of rate distances, can be used to
detect whether there are significant differences between
the rates for the two subtrees. Confidence interval con-
struction methods that can be used to detect the location
of such changes are presented. Because the confidence
interval methodology assumes a bivariate rates-across-
sites model it differs from the likelihood methods for
the detection of the rate difference of Knudsen and Mi-
yamato (2001) which assumes a rates-across-sites model
in estimating the tree but does not utilize this informa-
tion in testing for rate differences.

The first type of methodology for detecting rate
differences uses distances between rates estimated sep-
arately for the two subtrees of interest. Because there is
a wide variety of ways in which rate variation can occur
(for instance, only small rates might vary between the
two subtrees or only large rates might vary) a number
of different distances are considered. A parametric boot-
strap is used with these distances to determine what
types of distances are expected under the null hypothesis
that there are no rate differences across the two trees.

An alternative approach for detecting whether rate
differences exist comes through a regression analysis of
the rate estimates. This is fairly easy to implement and
can be used to complement the parametric bootstrap
methodology. Under the null hypothesis that the rates
are the same at each of the sites, a plot of the rates for
one of the trees against the rates at the corresponding
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site for the other tree should look like scatter around the
x 5 y line. We use orthogonal regression methodology
with the rate estimates for the two trees to test whether
the mean relationship between the rates satisfies this hy-
pothesis. The estimated coefficients from the regression
methods allow for statements about the general differ-
ences in the rates.

Given that rate differences exist between subtrees,
it is of interest to determine at which sites in the se-
quences these changes occur. Confidence intervals for
the rates at a site in the two subtrees based on the con-
ditional distribution of the rates, given the data at the
site, provide one way of detecting where changes that
take random variation into account occur. Although con-
fidence intervals for the rate at a site for a tree are of
interest themselves, in the present context they are use-
ful to construct confidence intervals for the differences
in rates. Sites with confidence intervals for differences
that do not contain 0 are likely to correspond to rate
differences in the two subtrees.

Confidence intervals can be estimated separately
for subtrees or based on a bivariate distribution for the
rates in the separate subtrees. The bivariate model con-
sidered here is similar to Gu’s (2001) model of func-
tional divergence. Under the Gu (2001) model, the bi-
variate distribution of the rates in subtrees is a mixture
of a distribution in which the rates are assigned inde-
pendently to the two subtrees and a distribution in which
the same rates are assigned to both subtrees. Here, in
contrast, the bivariate distribution for rates is not re-
stricted to any particular form. In addition, the meth-
odology presented here provides confidence intervals for
the differences in the rates at sites.

Models for Rate Variation

The usual model for rate variation treats rates at
different sites as random variables that are indepen-
dently distributed from a common rate distribution (cf.
Yang, 1994; Felsenstein and Churchill 1996). The sub-
stitution model at a site is a continuous time Markov
chain model with rate matrix Q. In our applications we
use the empirically derived rate matrix of Dayhoff (Day-
hoff, Schwartz, and Orcutt 1979) as implemented in
PHYLIP 3.5c (Felsenstein 1993). For a site with rate r,
along a branch of length t, the probability of substituting
amino acid i with j is calculated as

M (t) 5 exp(Qrt).ij

For a given tree T, the probability of f (xzr;T) can then
be calculated by combining these probabilities according
to the postorder tree traversal algorithm of Felsenstein
(1981). Under this model, one can show that the ex-
pected number of substitutions along a branch of length
t for a site with rate r is rt; thus a site with a rate of 4
is expected to have experienced four times as many sub-
stitutions as a site with a rate of 1. The total expected
number of substitutions throughout a tree at a site with
rate r is then r times the sum of the branch lengths for
that tree. The marginal probability of data x for a rate

distribution that assigns probabilities z1, . . . , zk to rates
r1, . . . , rk is then

k

f (x; T) 5 z f (x z r ; T).O j j
j51

To ensure that the branch lengths can be interpreted as
the average number of substitutions per site, the ex-
pected rate coming from the rate distribution is con-
strained to be 1. In the independence model, the likeli-
hood for a tree is the product of the f (x;T) over all sites.
The maximum likelihood methodology chooses the tree
that gives the largest likelihood as an estimate of the
evolutionary tree.

Given the estimated tree for a set of data, rate es-
timates are based on the conditional distribution of rates,
given the data at a site. This distribution can be obtained
through Bayes’ formula:

f (x z r ; T)zj jp(r z x; T) 5 .j

f (x z r ; T)zO j j1 2j

The most common rate estimate is the conditional mode:
the rate giving the largest conditional probability P(rjzx;
T). Alternative estimates can be constructed from the
conditional distribution, however. For instance, the con-
ditional mean

r p(r z x; T) (1)O j j
j

is another reasonable estimate of the rate for a site with
data x.

In cases where differences in rates in subtrees are
of interest, separate rate estimates can be obtained by
treating the data in the subtrees separately:

1. Use the data for subtree 1 to obtain a tree estimate
T1 for the taxa in that subtree, and similarly obtain a
tree estimate T2 for the taxa in subtree 2.

2. Use the separate conditional distributions P(rjzx;T1),
P(rjzx;T2) and the separate data at the sites to obtain
rate estimates ri1 and ri2 at site i.

Parametric Bootstrap Methodology for Detecting
Rate Differences

The first method that we present for detecting
whether rate differences exist between two subtrees
compares the distance between rates estimated separate-
ly for the two subtrees with a parametric bootstrap dis-
tribution of the distances under the null hypothesis of
no rate change. To obtain an overall measure of the
change in rates in subtrees we developed three global
distance measures, whereby real data could be compared
with Monte-Carlo simulated data under the null hypoth-
esis of no rate change.

The first rate-distance measure is simply the abso-
lute value of the conditional mode rate for position i in
the alignment from the first subtree subtracted from the
conditional mode rate for the corresponding position in the
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second subtree. The sum of these distances, summed over
all sites, yields the global arsum distance measure

arsum 5 zr 2 r z. (2)O i1 i2
i

However, because of the uneven separation between
rates implied by the standard form of the discrete gam-
ma model (especially for a , 1 where the distribution
has a large, but low mass, tail), the arsum measure will
be most strongly influenced by changes between the
largest rate category in one subtree and all other rate
categories in the other subtree. To deal with this problem
we used a second rate-distance measure based on the
absolute value of the logarithm of site-by-site rate ratios
summed over all sites:

alrsum 5 zlog(r /r )z. (3)O i1 i2
i

This measure intrinsically upweights large rate ratios
which occur when the rate changes from the lowest rate
category to the other rate categories (especially the high-
est) and thus emphasizes changes from the lowest rate
category to all others. To achieve a slightly more bal-
anced measure between these two extremes, a third
global distance measure that scales the difference be-
tween two rates to their overall magnitude was calcu-
lated:

abrsum 5 zr 2 r z/(r 1 r ). (4)O i1 i2 i1 i2
i

In addition to these three distance measures, the
same measures were calculated without the absolute val-
ues (designated rsum, lrsum, and brsum, respectively).
In principle, changes in rates at sites can be equally
distributed across both subtrees (a homogeneous shift)
or unequally distributed (nonhomogeneous shift). In the
latter case, the rates could be systematically higher in
one subtree versus the second subtree. The nonabsolute
value measure described here can distinguish between
these alternatives. If no systematic shift in rates has oc-
curred, then the summed differences are expected to
cancel out and fall within the simulated null distribution
of the same measure. By contrast, a systematic shift will
yield an imbalance of positive or negative distances that,
through summation, will be evident as a large positive
or negative value falling outside of the simulated null
distribution.

The parametric bootstrapping tests were carried out
as follows. For each pair of subtrees, the full data set
alignment of the two subdata sets together is initially
considered. From this alignment, the a parameter, atotal,
is estimated by maximum likelihood on a neighbor-join-
ing topology using TREE-PUZZLE version 4.02 (Strim-
mer and von Haeseler 1996), and maximum likelihood
distances for all pairs of taxa are estimated using the
PAM 1 G model (the PAM 001 model was used and
the gamma distribution is approximated by an eight-cat-
egory discrete rate distribution, where the eight cate-
gories have equal probability and the rate for each cat-
egory is set to its mean). From this distance matrix, an
optimal topology is estimated using the Fitch-Margo-
liash weighted least-squares method with 10 random ad-

ditions with global rearrangements implemented in the
PHYLIP 3.5c (Felsenstein 1993) program FITCH. Max-
imum likelihood branch lengths for topology are esti-
mated with TREE-PUZZLE with the PAM 1 G model
using atotal. From this topology, N data sets of equal size
are simulated with the PAM 1 G model using the pro-
gram PSeq-Gen (Rambaut and Grassly 1997). Each of
the full data set alignments (observed or simulated) is
then split into the two smaller data sets corresponding
to the separate subtrees (data set–1 and data set–2) for
separate analysis. For each of the smaller data sets, a
maximum likelihood distance matrix is estimated with
the PAM 1 G model using atotal. A topology is estimated
from this matrix using the neighbor-joining algorithm
(implemented in the PHYLIP program NEIGHBOR),
and this is used as a user-defined tree for a second round
of TREE-PUZZLE analysis. This analysis uses the PAM
1 G model, using atotal to estimate maximum likelihood
branchlengths for the NJ topology and the conditional
mode rates for the data set. The conditional mode rates
for each site are then compared between data set–1 and
data set–2, using the global distance measures described
earlier. A shell-script program, COVAR, was written to
automate these comparisons.

Testing for Rate Differences Using Regression
Methods

The regression methods presented in this section
provide a straightforward way of testing whether rate
changes have occurred at all in the two subtrees of
interest.

Let ri1, ri2 denote the rate estimates at site i for the
two trees, and let mi1, mi2 denote the true unobserved
rates at the site. We can then define errors in estimation
through

r 5 m 1 e r 5 m 1 e .i1 i1 i1 i2 i2 i2

If the rate estimates are reasonable estimates of the rates
at sites, we expect that the mass of the distribution of
the eijs will be near 0. Without additional information
that indicates otherwise, we assume that the error in
estimation of rates will on average be similar for both
of the trees so that the eijs are independent 0 mean ran-
dom variables having a common distribution.

Under the null hypothesis of interest H0: mi1 5 mi2
for all i. If this null hypothesis is true, then

r 5 m 1 e 5 m 1 e 5 r 2 e 1 e .i2 i1 i1 i2 i2 i1 i1 i2

Let ei 5 ei2 2 ei1. Then

r 5 r 1 e .i2 i1 i

Thus, if we fit the regression model

r 5 b 1 b r 1 e .i2 0 1 i1 i (5)

The estimates of the slope and intercept in the model
should be close to 1 and 0.

In most regression models of the form (5), least
squares estimates of (b0, b1) are used. These are not,
however, appropriate in the current setting. This is be-
cause both of the variables in the regression equation
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FIG. 1.—The points used for orthogonal and least squares
regression.

are subject to error. As a consequence, least squares es-
timates of the slope are biased in the direction of 0.
Because of the common error process for the two trees
(the errors ei1 and ei2 are assumed to have the same error
distribution), an adjustment is available through orthog-
onal regression (cf. §12.3 Casella and Berger 1990, pp.
583–594).

Orthogonal regression is best explained by contrast
with least squares regression. In both forms of regres-
sion, parameters are chosen to make the sum of the dis-
tances between the observed rates (ri1, ri2) and points on
the regression line as small as possible. The regression
methods differ in the way they measure the distance
from the observed (ri1, ri2) to the line. As illustrated in
figure 1, least squares estimation uses the vertical dis-
tance, whereas orthogonal regression uses perpendicular
distance.

Standard calculations give the orthogonal regres-
sion estimates of the slope and intercept of the regres-
sion line as

2 22(S 2 S ) 1 Ï(S 2 S ) 1 4S11 22 11 22 12
b̂ 5 and (6)

2S12

b̂ 5 ȳ 2 b̂ x̄. (7)0 1

Here S11 5 Si (ri1 2 r̄1)2, S22 5 Si (ri2 2 r̄2)2, and S12
5 Si (ri1 2 r̄1)(ri2 2 r̄2).

If the distribution of the error terms ei1 and ei2 is
normal, orthogonal regression turns out to be equivalent
to maximum likelihood estimation of the regression pa-
rameters. Even if this is not the case, it provides a rea-
sonable methodology for estimating the parameters in
the model. A standard error for the estimate 1 is avail-b̂
able as

2 2 2(1 1 b̂ ) (S S 2 S )1 11 22 12SE(b̂ ) 5 . (8)1 2 2! (S 2 S ) 1 4S11 22 12

The hypothesis that (b0, b1) 5 (0,1) in (eq. 5) is

equivalent to the hypothesis that b1 5 1 and that the
mean rates, averaged over all sites, for the two subtrees
is the same. A paired t-test can be used to test the hy-
pothesis that the mean rates are equal. A test of the
hypothesis that b1 5 1 can be constructed from the or-
thogonal regression estimate and standard error for 1.b̂
An approximate P value for the test is

1 2 F(zb̂ z/se(b̂ ))1 1

where F(z) is the standard normal cumulative distribu-
tion function.

Confidence Bounds for Rates

The regression and parametric bootstrap method-
ologies allow one to draw inferences about whether a
rate difference between two subtrees is present. In the
event that a rate difference is detected through the meth-
odology, a follow-up analysis of the location of the rate
differences is required. In this section we present meth-
ods that can be used to construct confidence intervals
for rates at individual sites in a given subtree.

Confidence bounds for the rate at a site for a given
subtree is most naturally based on the conditional dis-
tribution for rates at a site:

f (x z r ; T)zj jp(r z x; T) 5j

f (x z r ; T)zO j j1 2j

A (1 2 a) 3 100% confidence limits for the rate at site
with data x is given by [l(x), u(x)], where l(x) and u(x)
satisfy

P(rate , l(x)) p(r z x; T) # a/2 and (9)O j
r ,l(x)j

P(rate . u(x)) p(r z x; T) # a/2. (10)O j
r .u(x)j

The conditional probability that the true rate is contained
within the interval [l(x), u(x)] is at least (1 2 a) for any
l(x) and u(x) satisfying equations (9) and (10). To make
the widths of the confidence intervals as small as pos-
sible, l(x) should be chosen as the largest number sat-
isfying equation (9) and u(x) should be chosen as the
smallest value satisfying equation (10). The confidence
interval [l(x), u(x)] must be considered an approximate
confidence interval because its stated confidence prop-
erties hold when the rate distribution, branch lengths,
and all other parameters involved in the calculation of
P(rjzx; T) are known. In practice, estimates of these
quantities are used.

The confidence bounds for the rates at individual
sites in individual subtrees are of interest in their own
right but also provide a means for detecting the locations
of rate differences. If, for a given site, the confidence
bounds for rates in two subtrees do not overlap, a rate
difference is suggested. More generally, the confidence
intervals for the rates at sites can be used to construct
confidence intervals for the rate difference between the
two sites. For a given site, suppose that the (1 2 a/2)
3 100% confidence bounds for the rates in two subtrees
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are [l1, u1] and [l2, u2]. Then a (1 2 a) 3 100% confi-
dence interval for the rate difference is the set of all
difference r1 2 r2 with r1 in [l1, u1] and r2 in [l2, u2];
this set is simply [l1 2 u2, u1 2 l2].

Confidence Bounds for Rate Differences

Using individual confidence intervals to detect rate
differences turns out to be a crude approach to the prob-
lem in cases where rates at sites for two subtrees appear
to be positively correlated. In this case, estimation of a
bivariate rate distribution can be used to construct tight-
er confidence limits for the rate difference at a site.

The usual model for rate variation treats rates at
different sites as random variables that are indepen-
dently distributed from a common rate distribution (cf.
Yang 1994; Felsenstein and Churchill 1996). For all
practical purposes, rate distributions are discrete; they
assign probabilities z1, . . . , zk to a set of rates r1, . . . ,
rk. For a given tree, and a set of rates r1, . . . , rk, the
likelihood for the rate distribution parameters z1, . . . , zk

is obtained by taking the product of the probabilities of
data at the individual sites. An estimate of the rate dis-
tribution can be obtained by maximizing the likelihood
over all z1, . . . , zk corresponding to rate distributions
that have a mean rate of 1 (cf. Susko et al. 2001).

The extension of rate distributions for a given tree
to separate subtrees would be a bivariate distribution
that assigns probabilities to pairs of rates (r1, r2) at a
site for the two subtrees. If r1, . . . , rk is the set of pos-
sible rates for tree T1 and s1, . . . , sk is the set of possible
rates for tree T2, a bivariate distribution would assign
some probability zij to the pair of rates (ri, sj). To ensure
that the branch lengths can be interpreted as the ex-
pected number of substitutions, the rate distribution
should be chosen so that the expected rates, separately,
at the two subtrees are 1. Specifically,

z r 5 1 z s 5 1.O Oij i ij j
i j

A bivariate rate distribution allows a large range of var-
iation in rate difference behavior. At the one extreme, if
zij . 0 only if i 5 j, then the rates for the two subtrees
are always the same. Another possibility would be that
zij 5 tinj, where t1, . . . , tk are the probabilities of the
rates r1, . . . , rk for subtree T1 and n1, . . . , nk are the
probabilities of the rates s1, . . . , sk for subtree T2. Here
rate assignment would be independent in the two
subtrees.

When estimating rate distributions or constructing
confidence intervals for a rate in a given subtree, it suf-
fices to consider only the data in that subtree. In con-
trast, calculations of the probability of data at a site in
a bivariate model require that the data in both subtrees
be considered jointly. For a given site and given rates r
and s for subtrees T1 and T2, let f (x,yzr,s;T1,T2) be the
joint probability of the data x in subtree T1 and data y
in subtree T2. The probability of data x and y at a site
is then obtained as

z f (x, y z r , s ; T , T ).O ij i j 1 2
ij

The likelihood for the rate distribution parameters zij is

obtained by taking the product of the probabilities of
data at the individual sites. An estimate of the rate dis-
tribution can be obtained by maximizing the likelihood
over all zij corresponding to bivariate rate distributions
that have a mean rate of 1 for each of the subtrees.

Given probabilities zij for the pairs of rates (ri, sj),
similarly as in the case of a single subtree, the condi-
tional distribution of the pair (ri, sj) is calculated as

f (x z r , s ; T , T )zi j 1 2 ijp(r , s z x, y; T , T ) 5 .i j 1 2

f (x z r , s ; T , T )zO i j 1 2 ij1 2ij

The conditional probability of a difference d in rates is
then calculated by summing over all pairs of rates giving
this difference:

p(d z x, y; T , T ) 5 p(r , s z x, y; T , T ).O1 2 i j 1 2
(r ,s ) zr 2s 5di i i j

Given the conditional distribution of the difference, a (1
2 a) 3 100% confidence interval can be calculated as
for individual rates as [l(x), u(x)], where l(x) and u(x)
satisfy that

p(d z x, y; T , T ) # a/2 andO 1 2
d,l(x)

p(d z x; T) # a/2O
d.u(x)

The joint probability of the data f (x,yzr,s; T1,T2) is
needed in all of the aforementioned calculations. Cal-
culation of this quantity requires an additional branch
length for the branch connecting the two subtrees,
branches in the two subtrees where the additional branch
will join the two subtrees, and a position along the ad-
ditional branch where the rate change occurs. To avoid
the additional computation implied by these additional
parameters we use an independence model approxima-
tion in practice, replacing f (x,yzr,s; T1,T2) by the product
of the separate probabilities of data in the two subtrees:
f (xzr;T1)f(yzs;T2). If the branch connecting the two sub-
trees is relatively long, this should provide a good
approximation.

Results

As an illustrative example we consider amino acid
data for taxa coming from four subtrees, one for the
eukaryotic elongation factor 1a (eukaryotic EF-1a, the
eEF-1a data set), one for archaebacterial EF-1a (the
aEF-1a data set), one for Hsp70 subfamily B Suppressor
1 (HBS1), and one for the eukaryotic release factor 3
(eRF3). Although eukaryotic and archaebacterial EF-1a
have the same primary biological function of delivering
aminoacyl-tRNAs to the A site of the ribosome during
translation elongation, they are known to have different
auxiliary protein-protein interactions in the two domains
of life (Inagaki and Doolittle 2000). HBS1 and eRF3 are
eukaryote-specific EF-1a paralogs that are believed to
have arisen from EF-1a via gene duplications before the
divergence of extant eukaryotes (Inagaki and Doolittle
2000). eRF3 is one of several proteins that function in
the translation termination process, whereas the function
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FIG. 2.—A, Unrooted tree based on the data set including 13 ar-
chaebacterial and 27 eukaryotic EF-1a (aEF-1a 1 eEF-1a data set).
The tree was obtained using (PAM 1 G) TREE-PUZZLE v.4.0.2 with
a maximum likelihood distance matrix employing the PAM amino acid
substitution matrix, incorporating among-site rate variation (discrete
gamma distribution approximated with eight categories). Subsequently
the tree was reconstructed based on the maximum likelihood distance
matrix using the Fitch-Margolish method with global rearrangements
implemented in PHYLIP v.3.6. Branch lengths for the optimal distance
tree were reestimated by the maximum likelihood method with the
PAM 1 G model in TREE-PUZZLE. B, Unrooted tree based on the
data set including 17 eRF3 and 13 HBS1 (HBS1 1 eRF3 data set).
The details are as described earlier. The a parameters, 0.63 and 1.03,
were estimated from the aEF-1a 1 eEF-1a and HBS1 1 eRF3 data
sets, respectively.

of HBS1 is currently unknown but thought to be differ-
ent from EF-1a or eRF3 (Inagaki and Doolittle 2000).
It is of particular interest to compare the rates at sites
for the aEF-1a and eEF-1a data sets as well as to com-
pare the HBS1 and eRF3 data sets. The aEF-1a data set
had 13 taxa, the eEF-1a data set had 28 taxa, the HBS1
data set had 13 taxa, and the eRF3 data set had 17 taxa.
New sequences were added manually to the previous
alignment (Inagaki and Doolittle 2000). The removal of
ambiguously aligned positions left 269 sites shared be-
tween all four protein families.

Parametric Bootstrap Methodology

Maximum likelihood distance-Fitch Margoliash
trees were obtained under a discrete gamma model with
16 rate categories for two combined data sets, including
the aEF-1a and eEF-1a data set (aEF-1a 1 eEF-1a data
set), and the HBS1 and eRF3 data sets (HBS1 1 eRF3
data set). The estimated trees are given in figure 2. The
a parameters for the gamma models were estimated
from the aEF-1a 1 eEF-1a and HBS1 1 eRF3 data sets
in TREE-PUZZLE as 0.63 and 1.03, respectively. These
two a parameters were used as estimates of atotal for the
parametric bootstrap analyses.

The parametric bootstrap analyses detected a sig-
nificant difference between eukaryotic and archaebac-
terial EF-1a data sets. The P values for the test statistics
arsum, alrsum, and abrsum were estimated from the
parametric bootstrap distribution as 0.001, 0.000, and
0.000, respectively (fig. 3A–C). Curiously, the nonab-
solute value rate distances between the two EF-1a data

sets, lrsum and brsum, fell significantly on one side of
the bootstrap distribution (.99th percentile, data not
shown). Their positions indicate that, at least for medi-
um and low rate differences (emphasized by the lrsum
and brsum values), sites in archaebacterial EF-1a
evolved at a systematically higher rate than those in the
eukaryotic homologs.

By contrast, the distances observed between HBS1
and eRF3 gave P values that ranged from being mar-
ginally insignificant to marginally significant at the 0.01
level of significance for the three test statistics. The P
values for the test statistics arsum, alrsum, and abrsum
were estimated from the parametric bootstrap distribu-
tion as 0.003, 0.01, and 0.018, respectively (fig. 4A–C).
The observed differences from nonabsolute value dis-
tance measures were not significantly different from
those under the null distribution (data not shown). These
results suggest that the tempo and mode of the HBS1
evolution may be slightly different from those of eRF3.
However, these two show less overall rate difference
than that observed for the aEF-1a and eEF-1a
comparison.

Regression Methodology Results

A scatter plot of the log-transform estimated rates
for the aEF-1a and eEF-1a data sets is given in figure
5A. As an initial test of whether rate differences exist
between the aEF-1a and eEF-1a data sets or the HBS1
and eRF3 data sets, we used the orthogonal regression
methodology. The rate estimates used were the condi-
tional mean rate estimates given by equation (1). The
usual rate estimates are conditional mode estimates
which, with a discrete gamma model, take on only a
few values. Regression methods are more appropriate
for rate estimates that can take on a large set of values,
which is the case for conditional mean estimates. Be-
cause many of the rate estimates are small, log trans-
formations were taken to increase the range of data and
avoid difficulties with outlying values. The orthogonal
regression methodology was then applied to the log-
transformed conditional mean rate estimates. The results
are given in table 1 and suggest very strongly that there
are rate differences between the aEF-1a and eEF-1a
subtrees but that there is little evidence of rate differ-
ences between the HBS1 and eRF3 subtrees.

Confidence Bounds for Rate Differences

Because the results of the orthogonal regression
tests suggest that there are rate differences for the aEF-
1a and eEF-1a subtrees but little evidence of rate dif-
ferences for the HBS1 and eRF3 subtrees, further anal-
ysis was restricted to the aEF-1a and eEF-1a subtrees.
Confidence intervals were calculated for the rates at
each of the sites for each of the subtrees. A total of 13
out of the 269 sites (5%) have 95% confidence intervals
that do not overlap (fig. 6).

Use of nonoverlapping confidence intervals to
identify sites where significant rate differences exist is
valid but can be expected not to detect some of the sites
where changes have occurred because of its failure to
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FIG. 3.—Histograms of the bootstrap values of the three test statistics abrsum (A), alrsum (B), and arsum (C) for the comparison of the
aEF-1a and eEF-1a data sets. The locations of the observed test statistics are indicated with an X.

incorporate the clear correlations between rates at sites
in the two subtrees evident from the orthogonal regres-
sion analysis. Modeling the bivariate distribution of the
rates allows one to adjust for the correlation. For the
aEF-1a and eEF-1a data sets we estimated a bivariate
rate distribution, using likelihood methods and then con-
structed confidence intervals for the rate differences. A
total of 60 of the 269 rate differences (22%) have 95%
confidence intervals that do not contain 0 (fig. 7). All
of the sites that were deemed to have significant differ-
ences because the individual confidence intervals were
nonoverlapping are still significant, but a large number
of additional sites are also significant.

Concluding Remarks

We have presented a number of different methods
in this article. The first set of methods, orthogonal re-
gression and parametric bootstrap tests, are useful for
detecting whether rate changes have occurred. The or-
thogonal regression methodology uses the rate estimates
alone as a means of determining whether there are sig-
nificant differences in the means for the subtrees. The
parametric bootstrap repeats the process of tree, branch
length, and rate estimation under the null hypothesis.
Because it incorporates additional sources of variability,
it can be expected to be more sensitive in detecting sig-
nificant rate differences. This is borne out in the com-
parison of rates between the HBS1 and eRF3 data sets.

The orthogonal regression methodology failed to find
significant differences where the parametric bootstrap
results ranged from marginally significant to marginally
insignificant. Both methodologies have value; the para-
metric bootstrap can be expected to be more sensitive
in detecting departures from the null, whereas the or-
thogonal regression methods requires much less com-
putation in large problems. In general, all of the methods
will detect rate differences more easily if there are large
numbers of sites and taxa; however, power investiga-
tions in simplified settings (data not shown) suggest that
larger rate difference might be detected with as few as
five taxa per subtree.

Failure to reject the hypothesis of significant dif-
ferences suggests that further analysis is not necessary
and effectively controls the type I error rate. Given the
rejection of the orthogonal regression or parametric
bootstrap tests, confidence intervals can be constructed
for rates to locate sites that are likely to have significant
rate differences. Confidence bounds for rate differences,
calculated after estimating a bivariate rate distribution
for the two subtrees of interest, can be expected to pro-
duce tighter bounds for the rate differences. To allow
for easier computation, an independence assumption
was made about the data in the two subtrees. When the
branch connecting the two subtrees is relatively long,
one can expect the resulting approximations to be rea-
sonable. We expect that sites with low rates in both sub-
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FIG. 4.—Histograms of the bootstrap values of the three test statistics abrsum (A), alrsum (B), and arsum (C) for the comparison of the
HBS1 and eRF3 data sets. The locations of the observed test statistics are indicated with an X.

Table 1
The Paired t-Test and Orthogonal Regression Results for the Differences in the Rate
Estimates for the aEF-1a and eEF-1a Data Sets as well as the HBS1 and eRF3 Data Sets

aEF-1a–eEF-1a Data HBS1–eRF3 Data

1b̂̂
95% Confidence interval b1

P value: b1 5 1
P value: paired t-test (b0 5 0)

2.1485
1.9874–2.3097

0.000
0.000

1.079
0.9864–1.1717

0.2402
0.5281

trees will be the ones most significantly affected by a
loosening of the independence assumption. In this case,
the branch length between the two subtrees for the site
is effectively shortened because of the low rates so that
the data in the two subtrees become more dependent.
Determining how or whether this would affect the con-
fidence interval for the rate difference will require fur-
ther study.

Our methods have been applied to compare rates
at sites for data sets with subtrees from the HBS1 and
eRF3 data sets. Although significant rate differences
were suggested in the comparison of the rates from the
aEF-1a and eEF-1a data sets, the rate differences in the
HBS1 versus eRF3 comparisons were marginally sig-
nificant and insignificant using the parametric bootstrap-
ping test and regression test, respectively. Further anal-
ysis is needed to determine what the effects of failing
to adjust for rate differences in subtrees might be for
phylogenetic estimation.

The likelihood ratio statistic test of Knudsen and
Miyamato (2001) treats the rate difference at a site as a
fixed parameter for estimation. It uses only the data at
the site and assumes that large sample likelihood theory
is applicable. In contrast, the bivariate confidence inter-
vals treat the rate difference as a random variable. The
information about the range of likely rate differences
contained within the data at a site is obtained by con-
ditioning on the data at a site, but information from oth-
er sites is obtained by using the bivariate rate distribu-
tion in the calculation of intervals. The bivariate model
considered here can be viewed as an extension of the
rates-across-sites model where rates are allowed to vary
in subtrees of the larger tree. The model is similar to
Gu’s (2001) model for functional divergence but places
less restrictions on the form of the bivariate distribution.
The extension is also similar to the covarion models of
Tuffley and Steel (1998), Galtier (2001), and Penny et
al. (2001), which also allow rate variation between sub-
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FIG. 5.—Scatter plots of the log-transformed conditional mean
rates at sites with the x 5 y line indicated.

FIG. 6.—The nonoverlapping 95% confidence intervals for the
rates at sites for the aEF-1a subtree (solid line) and the eEF-1a subtree
(dashed line).

FIG. 7.—Confidence intervals for rate differences (aEF-1a and
eEF-1a) that did not contain 0.

trees. These covarion models assume a stationary pro-
cess of rate variation at a site throughout the tree. This
differs from the bivariate model considered here in at
least two respects. First, the process of rate variation is
constant throughout the tree so that the rate distribution
or rates-across-sites model for one subtree should be the
same as for any other subtree. The bivariate model al-
lows different rate distributions in different subtrees.
Second, in the Tuffley and Steel model, rates are allowed
to vary within any branch of a subtree. In contrast, the
bivariate model assumes a single rate at a site for a given
subtree. Nevertheless, the bivariate models considered
here can be useful in detecting covarion-type rate vari-
ation similar to that of the Tuffley and Steel model. In
the Tuffley and Steel model one can think of an average
rate at a site for a subtree, where the average is taken
over branches of the subtree. Assuming that rates at a
site vary randomly throughout a tree, by chance there
should be differences in the average rates at a site in
any two subtrees of the larger tree. Because the average
rates will differ, with sufficient data, the orthogonal re-
gression or parametric bootstrap tests presented here will
reject the null hypothesis of a single rate distribution
model.

The bivariate model can be extended to allow rate
variation in smaller and smaller subtrees of the tree of
interest. In the most general case, we could partition the
tree into m subtrees, T1, . . . , Tm. In a multivariate model
for rate variation at a site, a set of rates r1, . . . , rm for
the subtrees would be drawn from a multivariate distri-
bution that assigns some probability p(i1, . . . , im) to

every possible set ri1, . . . , rim of m rates that could arise
for the subtrees.
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