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Abstract
The most frequent measure of phylogenetic uncertainty for splits is bootstrap support. Although large bootstrap support
intuitively suggests that a split in a tree is well supported, it has not been clear how large bootstrap support needs to be to
conclude that there is significant evidence that a hypothesized split is present. Indeed, recent work has shown that bootstrap
support is not first-order correct and thus cannot be directly used for hypothesis testing. We present methods that adjust
bootstrap support values in a maximum likelihood (ML) setting so that they have an interpretationcorresponding to P values
in conventionalhypothesis testing; for instance, adjusted bootstrap support larger than 95% occurs only 5% of the time if the
split is not present. Throughexamples and simulation settings, it is found that adjustments always increase the level of support.
We also find that the nature of the adjustment is fairly constant across parameter settings. Finally, we consider adjustments
that take into account the data-dependent nature of many hypotheses about splits: the hypothesis that they are present is
being tested because they are in the tree estimated through ML. Here, in contrast, we find that bootstrap probability often
needs to be adjusted downwards.
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Introduction
In phylogenetic analyses, topological uncertainty is most
frequently represented by bootstrap support or bootstrap
probability (BP). Trees are presented with BP along edges
or, equivalently, for the splits of the taxa into the two
groups on either side of the edge. It is clear that BP cor-
relates with topological uncertainty. Large BP implies that
estimated splits are not dependent on one or a few sites
being present. Such splits arise even when some sites are
repeated and other sites are dropped. What has been less
clear is how large BP needs to be in order to conclude that
there is significant evidence that an edge is present in the
tree. Felsenstein and Kishino (1993) raised the possibility
that 1-BP might be interpreted as a P value for the test of
the null hypothesis that the split is not present. For some-
time, it was believed that 1-BP for splits was first-order cor-
rect as a P value (Efron et al. 1996): that approximately,with
large sequence lengths, 1-BP has the properties of a P value.
The theory for this conclusion was fleshed out in Efron and
Tibshirani (1998)but applied to trees only indirectlyby anal-
ogy. Recently, Susko (2009) showed that 1-BP for splits is
not first-order correct because of the unusual nature of tree
space.

For maximum likelihood (ML) estimation, a by-product
of Susko (2009) was determination of the large sequence-
length distribution of BP for a split. As will be illustrated
here, this distribution can be used to convert a BP value into
an adjusted bootstrap probability (aBP) that is first-order
correct. This implies that if a split is not present in the
true underlying tree, one expects an aBP of 95% or more
only 5% of the time. In the present article, we outline how

the results of Susko (2009) can be used to adjust BP, dis-
cuss approximations of the key information matrix quan-
tities required for implementation, and provide examples.
We also present the results of simulations that suggest that
adjustments tend to be fairly constant across various sub-
stitutionmodels, rates-across-sites parameters, frequencies,
and even when amino acid data are considered instead
of nucleotide data. Extreme edge-length settings, how-
ever, illustrate that there are situations where adjustments
should take into account information about the estimated
tree.

Assumptions
The methods for adjusting BP successively consider each
internal edge of the tree. Because calculations are done
separately for each edge, it suffices to consider a single edge
of interest in describing themain ideas. The situation is then
illustrated in figure 1. The edge pointed to with an arrow
in figure 1A is treated as the edge of interest. In the theory
for limiting distributions, the edge length corresponding
to it is of length 0. The large–sequence length calculations
assume that other edges are well resolved. For example, for
the generating topology in figure 1A , the split of taxa 1, 5,
and 2 is considered as poorly resolved but the split of taxa
1 and 5 from the rest is not. With large sequence lengths,
the ML tree is then sure to contain the split of 1 and 5
from the rest but there will remain positive probability that
it will estimate one of the topologies in figures 1B–1D .
More generally, we assume that the generating tree is
Topology 1 of figure 1 and that, with large sequence length,
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FIG. 1. (A ) The split separating taxa 1, 5, and 2 from the rest is of interest, leading to the three competing topologies in (B–D ), all of which have
taxa 1 and 5 separated from the rest. More generally, there are three competing topologies associated with the split of interest, with the subtrees,
indicated by triangles, all considered fixed.

all the splits in the subtrees 1–4 are correctly estimated. The
competing topologies are then Topologies 1–3.

What is desired here is that 1-aBP has an interpretation
as a P value. Formally, when calculated under the null hy-
pothesis that the split is not present, the probability that
1-aBP is less than α should be α; for first-order correct-
ness, this interpretation should be approximately correct as
sequence length gets large. The restriction that the length
of the edge of interest is 0 may seem unusual, but it is
consistent with hypothesis testing in more standard set-
tings. For instance, in testing the null hypothesis that a
mean is less than or equal to 0, P values are calculated
assuming that the mean is 0. This is because a mean of
0 is the closest parameter, under the null hypothesis, to
the alternative hypothesis space. Similarly here, a tree with
zero-length edge of interest, with other edges being well
resolved, is at the boundarybetween thenull andalternative
hypotheses.

There are trees on a boundary of tree space that satisfy
the null hypothesis but have more unresolved edges than
just the edge of interest.When the true tree has more than
oneunresolved edge, the limiting results for BP are likelydif-
ferent than those of Susko (2009), particularly if at least one
of the additional unresolved edges neighbors the edge of in-
terest. Because the true tree is unknown, the natural choice
is the closest tree to the estimated tree that satisfies the null
hypothesis. If the tree has no zero-length edges, the closest
tree to it is the one that sets the middle edge to 0 and leaves
all other edges unchanged. This can be made formal by con-
sidering tree distances like the branch-length distances of
Kuhner and Felsenstein (1994) or those defined in Billera
et al. (2001).

The model assumed throughout is a conventional
continuous-timeMarkov chainmodelwhere evolution is in-
dependent and according to the same process across sites.
Results do not directly apply to models that allow different
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processes or dependence across sites, such as models that
incorporate protein structure like that of Robinson et al.
(2003) and the autocorrelated rates models of Felsenstein
and Churchill (1996). Although the result may not apply
when differing processes occur at different sites, changes
in process that arise in an independent fashion from some
distribution are allowed. These include the commonly used
gamma rates-across-sites model of Yang (1994) where dif-
ferent rates apply to different sites but arise in an indepen-
dent fashion from a gamma distribution.

More specifically, for a test of any edge, the assumptions
are that the true generating tree contains only that one
edge of zero length and that a conventional continuous-
timeMarkov chain describes the process of evolution along
edges. The requirement is that derivatives, of any order, of
the likelihoods be obtainable and that pattern probabilities
be positive. This is assured for any general time reversible
(GTR) model where all the rates of exchange and frequen-
cies of characters are positive. It is also assumed that the
information matrix or expected second derivative matrix
of the negative log-likelihood is invertible. This can easily
be checked for any parameter setting and has been true
for all cases I have encountered. Finally, it is assumed that
for a given topology, edge lengths are identifiable. That is,
no two sets of differing edge lengths give the same prob-
abilities for every possible alignment. Chang (1996) shows
that equal-rates models are identifiable, and for the gamma
rates-across-sitesmodel of Yang (1994), Allman et al. (2008)
have established identifiability.

Notation
In order to present the methods anddiscuss issues of imple-
mentation, we need to recall the notation of Susko (2009).
Let l (t0; j ) denote the likelihood for topology j in figure 1.
Here t0 denotes the true generating edge lengths for the
tree. We will denote the first partial derivatives of the log
likelihood, l (t; j ) evaluated at t0, as Sj and Se, where Se is
a row vector giving the partial derivatives with respect to
all the external edges and Sj denotes the derivative at the
middle edge of interest. Since edge-lengths are always re-
stricted to be positive, the derivative Sj is only well-defined
when limits are taken from above. Nevertheless, the same
rules of differentiation can be applied to find it. Also, be-
cause the middle edge is of length 0, the Se components are
the same regardless of which topology j is used to calculate
them.

The informationmatrix that determines the distribution
of BP is decomposed as[

Ie ITj e
Ij e Ij

]
. (1)

All the entries give the expected values of −1/n multi-
plied by the matrix of second partial derivatives of the log-
likelihood, where n is the number of sites. For Ie, these are
second partial derivatives for external edges (all edges other

than the edge of interest)

[Ie]kl = −E
[
∂2

∂tk∂tl
l (t0; j )

]/
n , (2)

where tk and tl are the k th and l th external edge. Similarly,

[Ij e]l = −E
[
∂2

∂tj∂tl
l (t0; j )

]/
n (3)

gives the second partial derivative for the length of the edge
of interest and the l th external edge. The final entry

Ij = −E
[
∂2

∂t 2j
l (t0; j )

]/
n (4)

gives the second derivative for the middle edge length.
Letpk (t; j ) denote the probabilityof site patternk calcu-

lated for topology j using edge lengths t. Note that because
t0 contains a zero-length edge of interest, pk(t0; j ), whichwe
will denote as pk , is the same nomatter which topology j is
used. The key variance–covariancematrix used for calcula-
tion of the distribution of BP is

[Σc ]ij =[I
c
i · I cj ]−1/2

×
[∑

p−1k

∂

∂ti
pk (t0; i )

∂

∂tj
pk (t0; j )− Iie I

−1
e ITj e

]
.

(5)

Here partial derivatives are being taken with respect to
lengths of the edge of interest for the two topologies i and
j . The values I ci and I cj are defined through

I cj = Ij − Ij eI
−1
e ITj e.

Finally, we define the standardized score for the j th
topology as

V c
jn = [I

c
j ]
−1/2[Sj − Ij eI

−1
e STe ], (6)

which are the key summary statistics that determine theML
topology.

Bootstrap Support Probability Calculation
The details of the limiting properties of BP are given in
Susko (2009) but the basic ideas can be outlined as follows.
It turns out that, up to terms that become small for large
sequence length, the difference in maximized likelihoods
is determined by the standardized scores in equation (6).
Specifically, the difference in maximized log-likelihoods for
topologies j and k is

l (̂tj ; j )− l (̂tk ; k ) ≈ [V c
jn ]

2I{V c
jn � 0}/2

− [V c
kn ]

2I{V c
kn � 0}/2, (7)

where the notation I{x � 0} indicates a value that is 1
or 0 according to whether x � 0 or not. What we see is
that topology j will have a larger likelihood than topology
k if V c

jn � 0 and V c
jn � V c

kn . Thus, j will give the estimated
topology if, in addition,V c

jn � 0 andV c
jn � V c

kn , for all other
topologies k .
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Although the standardized score vector, Vc
n , is deter-

mined from an alignment, for large sequence lengths, it
has an approximate normal distribution with mean 0 and
variance–covariance matrix Σc : a N (0,Σc ) distribution.
Equation (7) indicates that, for large sequence lengths, the
ML estimate of the topology is determined by the standard-
ized scores. Thus, in terms of the relevant quantities for tree
determination, random generation of an alignment from
the true tree is approximately the same as random gener-
ation of Vc

n from a N (0,Σc ) distribution.
For a fixed alignment, the large sequence-length approx-

imations to the bootstrap distribution mirror the approx-
imations above. In a similar fashion, the difference in
likelihoods for topologies j and k , for a bootstrap alignment,
is approximated by equation (7) but with the entries of Vc

n
being replaced by those of Vc∗

n , the standardized score for
the bootstrap alignment. Although the standardized score
vector, Vc∗

n , is determined from a bootstrap alignment, it
too has an approximate normal distribution. The variance–
covariance matrix for this normal distribution is still Σc

but the mean is Vc
n ; it depends upon the alignment that

bootstrapped data are generated from. Equation (7) indi-
cates that, for large sequence lengths, the ML estimate of
the topology for the bootstrapped sample is determined
by the standardized scores, Vc∗

n . Thus, in terms of the rel-
evant quantities for tree determination, random generation
of a bootstrap alignment froma fixed alignment depends on
the fixed alignment only through its standardized scores Vc

n
and is approximately the same as random generation of Vc∗

n
from a N (Vc

n ,Σ
c) distribution.

As a consequence of the approximations discussed
above, we can obtain the probability of observing BP larger
than x for the j th topology through the following steps:

1. Generate a large number of trivariate random vectors
V1, . . . ,VB from a N (0,Σc) distribution.

2. For each Vb , BP for the j th split is approximated by the
probability that [V∗b ]j is the largest element of V∗b , given
that at least one of the V∗b is positive. This probability is
calculated for V∗b having a N (Vb ,Σc ).

3. Theproportion of BP� x amongcaseswhere at least one
component ofVb was positive gives an approximation to
the probability that BP is at least as large as x under the
null hypothesis that the split is not present.

Adjusted Bootstrap Support
To convert BP to a first-order correct P value, we can use the
distribution of BP. The quantity aBP that we use is the limit-
ing probability, under the null hypothesis, of BP being larger
than the actual observed BP obtained for the split of inter-
est. It can be calculated through Steps 1–3 above for any x .
The idea here is similar to Beran (1988) where it was shown
that transforming a test statistic into a new test statistic
by substituting it into its large-sample distribution function
can often give a more precise uniform distribution approx-
imation to the resulting P values. Here, we seek not a more
precise approximation but that 1-aBP be interpretable as a
P value for large sequence lengths.

Let F (x) denote the limiting cumulative distribution of
BP: F (x) = P (BP � x). Because, in the limiting distribu-
tion, BP is a continuous probability transformation of amul-
tivariate normal random vector (see Step 2 of the previous
section), F (x) will be a continuous distribution function.
The quantity aBP can be expressed in terms of F (x) as

aBP = 1− F (BP). (8)

A continuous cumulative distribution function, like F , has
an increasing inverse function: there is a function F−1 with
the property that if y = F (x), for 0 � y � 1, then
F−1(x) = y . Because it is increasing, F (x) < y if and only
if x < F−1(y). Thus,

P (1− aBP < α) = P (F (BP) < α)

= P (BP < F−1(α))

≈ F (F−1(α)) = α,

which establishes that, for large sequence lengths, 1-aBP can
be interpreted as a P value.

Approximation Issues
The calculation of aBP requires the information matrix in
equation (1). This matrix is calculated by taking expecta-
tions at the true generating edge lengths t0. In practice, this
is not possible because the true edge lengths are unknown.
However, with large sequence lengths, the distribution is still
approximately correct if t0 is replaced by the estimated edge
lengths for each external edge and 0 for the internal edge. A
second practical difficulty is that expectations require sum-
mation over all possible site patterns. For nucleotide data
and a small number of taxa, this is feasible. For instance, with
eight taxa, there are 65,536 patterns to sumover.With larger
numbers of taxa or amino acid data, however, the number
of patterns make exact calculation infeasible. Approxima-
tion of the information matrix can be accomplished in two
ways. Both approaches involve replacing expectations of the
second partial derivatives in equations (2)–(4) by observed
values for some data set. For instance, in equation (4),
the expectation is replaced by− ∂2

∂t 2j
l (̂t; j )/n for a data set.

This derivative can be expressed as

−
∑
k

p̂k
∂2

∂t 2j
log[pk (̂t0; j )],

where t̂0 indicate the ML edge lengths but with the mid-
dle edge set to 0. In addition, p̂k is the proportion of times
the pattern k arose in the data set. Because t̂ ≈ t0 for large
sequence lengths, if p̂k ≈ pk , this should give a good ap-
proximation to equation (4). The two approaches differ in
the data set used.

1. Simulation: Generate a large number of sites from the fit-
ted model. This approach will allow one to approximate
equations (2)–(4) arbitrarily well because the p̂k can be
made arbitrarily close to the pk .

2. Observed information:Use the data that were used to fit
the model. The resultingmatrix is sometimes referred to
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Table 1. BP, aBP, and aBPo (aBP using the observed information
matrix) for the Three Splits from the HIV Data That Did Not Have
100% BP.

Split BP (%) aBP (%) aBPo (%)

A1,B,D|A2,E1,E2 76 90 90
A2,B,D|A1,E1,E2 14 31 31
A1,A2|B,D,E1,E2 10 25 25

as the observed informationmatrix. In theory, if the data
are consistent with the model, this should give a good
approximation. Moreover, in the derivations in Susko
(2009), it was often the case that the quantities (2)–
(4) were obtained as approximations to the observed
information matrix rather than the other way around,
suggesting that the observed information matrix might
actually give better approximations to the distribution
of BP.

Large-sample properties are preserved using either the first
or the second approach which suggests that they should
generally give similar results. A number of studies have
been conducted in other contexts to compare the per-
formance of variance estimates based on observed and
expected information matrices. Efron and Hinkley (1978)
show that variances determined from observed informa-
tion provide better approximations to conditional variances
and thus often are better at constructing confidence inter-
vals with appropriate coverage properties both condition-
ally and unconditionally. Wang et al. (2002) consider the
variance estimation of additional model parameters in a
phylogenetic setting; in their case, a transition/transversion
parameter and a substitution rate. Although they find
comparable performance in some settings, they find that,
particularly when edge-length estimation is not adjusted
for, variances based on expected information tend to be
closer to actual variances.

Examples
We now consider some examples. In all of these, B=10, 000
normal variates were generated to obtain aBP values. The
package PAML (Yang 1997, 2007) was used for ML fitting,
and 1,000 bootstrap samples were used to obtain BP values.

As a first example, we consider the HIV data set consid-
ered previously in Goldman et al. (2000). It has six homolo-
gous sequences, each with 2,000 sites from the gag and pol
genes for isolates of HIV-1 subtypes. There are two A sub-
types A1 and A2, two E subtypes E 1 and E 2, and B and
D subtypes. We fit trees with a GTR model, observed fre-
quencies as stationary frequencies and eight rate categories
in a gamma rates-across-sitesmodel. The subtypes B andD
grouped together with 100% BP as did E 1 and E 2. The only
significant uncertainty is how the A1 and A2 subtypes split
with the rest. There are three possibilities that are listed in
table 1 along with BP and aBP values.

It is valuable to contrast the results with those of
Goldman et al. (2000). They used the SOWH test, named
after the authors, Swofford et al. (1996), that originally de-
scribed it. For the HIV data, this is roughly the same as

Table 2. BP, aBP, and aBPo (aBP using the observed information ma-
trix) for Three Splits from the Mammalian Mitochondrial Data. The
Labeling Scheme Is H = Homo sapiens (human), P = Phoca vitulina
(harbor seal), B = Bos taurus (cow),O =Oryctolagus cuniculus (rabbit),
M =Mus musculus (mouse), and D = Didelphis virginiana (opossum).

Split BP (%) aBP (%) aBPo (%)

MD|OHBP 94 99 98
OMD|HBP 51 73 73
HMD|OBP 40 64 64

that a particular split in table 1 is correct. The particular
hypothesis considered in Goldman et al. (2000) is that the
correct tree is the one that groups the two A subtypes
together: A1,A2|E 1, E 2, B ,D . The P value from the SOWH
test for this hypothesized split is 0.002. In contrast, the aBP
value for the split grouping the A subtypes is 25%. Alter-
natively, the P value for the test of the hypothesis that the
split is not present is 0.75. There is no significant evidence
against this hypothesis. The main reason for the difference
in conclusions is that SOWH tests whether there is signifi-
cant evidence “against” the split, whereas small 1-aBP pro-
vides significant evidence “for” a split. Considering the split
A1, B ,D |A2, E 1, E 2, 1-aBP is 0.10, giving a borderline failure
to reject the hypothesis that some other split might be cor-
rect. Thus, the overall conclusion from aBP is that no one of
the three alternative splits is strongly supported enough to
draw a firm conclusion.

The next example that we consider is the mammalian
mitochondrial data considered previously in Shimodaira
and Hasegawa (1999) and Goldman et al. (2000). The
amino acid alignment had 3,414 sites and 6 taxa. Using
the labeling scheme of Shimodaira and Hasegawa (1999),
these are H = Homo sapiens (human), P = Phoca vitulina
(harbor seal), B = Bos taurus (cow), O = Oryctolagus cu-
niculus (rabbit), M = Mus musculus (mouse), and D =
Didelphis virginiana (opossum). ML fits were obtained using
the mtREV model (the general time-reversible model for
mtDNA-encoded proteins of Adachi and Hasegawa 1996)
with data set frequencies as stationary frequencies and a
gamma rates-across-sites model with eight rate categories.
Because these are amino acid data, the number of possi-
ble site patterns is large (6.4 × 107). Thus, simulation was
used with 100,000 sites to approximate expected informa-
tion matrices. Some of the resulting values of BP and aBP
are given in table 2.

The split of cow and harbor seal from the rest had BP of
100%. The aBP for the split of opposum and mouse from
the rest is 99% providing significant evidence that this is
a correct split. This leaves as uncertain the relative place-
ments of rabbit and human. The aBP values for the two
choices are given in table 2 as 73% and 64% indicating
insufficient support for resolution of these relative place-
ments. The conclusions are consistent with the conclu-
sions of the Shimodaira-Hasegawa and Kishino-Hasegawa
tests reported in Shimodaira and Hasegawa (1999) but dif-
fer from the conclusionsof the SOWH reported in Goldman
et al. (2000) who rejected the tree (P value < 0.001) with
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Chlamydomonas noctigama

Chlamydomonas moewusii

Chlamydopodium vacuolatum
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Oedogonium cardiacum
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FIG. 2. The ML Chlamydomonadales topology with interior edge la-
bels, ordered from left to right: BP, aBP, and aBP with an additional
ML adjustment. For ease of illustration, internal edges were taken as
all equal and larger than terminal edges. Internal edges without labels
had 100% BP.

the split grouping rabbit, seal, andcow together and the split
from human, mouse, and opposum.

The final example considers 17 taxa coming froman anal-
ysis of theChlamydomonadales clade reported in Lewis et al.
(2005). The alignment had 3,341 nucleotide sites from com-
bined 18S and 28S ribosomal genes. We repeated the analy-
siswithanHasegawa–Kishino–Yanomodel (Hasegawa et al.
1985) with data set frequencies as stationary frequencies
and eight rate categories in the gamma rates-across-sites
distribution. TheML tree is given in figure 2with BP and aBP.
Although there are only four character states in this case, the
larger number of taxamake exact informationmatrix calcu-
lation infeasible. Simulated data were used to approximate
the information matrix with 100,000 sites. Once again, aBP
and aBP based on the observed information gave similar val-
ues. Based upon the aBP values, two of the six splits with BP
less than 100% are significant at the 5% level. In Lewis et al.
(2005), it was reported that all the splitshad Bayesian poste-
rior probabilities larger than 0.93. Although the adjustment
to BP brings these values closer to the posterior probabil-
ities, it does not bring them close enough for them to be
truly comparable.

Adjustment for ML Estimation of a Split
In principle, the hypotheses of interest should be data in-
dependent. In many phylogenetic studies this is the case.

For instance, the Coelomata and Ecdysozoa hypotheses of
Dopazo H and Dopazo J (2005) were the consequence of
inconclusive prior studies, and tree fitting was done to test
these hypotheses. In practice, however, it is quite common
that an ML tree will be presented with BP and that some of
the splits considered would not have been a priori hypothe-
ses. In this case, a hypothesis about splits is data dependent:
it is being considered because it is in the ML tree, which de-
pends on the same data being used to test the hypothesis.
The limiting results for BP are not applicable in such cases
as they assume a fixed split as a hypothesis. For instance, for
a fixed split, theory predicts that under the null hypothesis
that it is not present, BP will be less than 10% more than
20% of the time. Although this makes sense for a fixed split
of interest, it is unlikely that such a split will be in the ML
tree when its BP is less than 10%. The theory presented in
Susko (2009) can be adjusted to accommodate the data-
dependent nature of the hypothesis.

The argument for Steps 1–3, giving probabilities for BP,
indicates that BP for the j th topology is well approximated
by the probability that V c∗

j is nonnegative and larger than
the rest of the V c∗

i , where the Vc∗ have a multivariate
N (Vc

n ,Σ
c ) distribution. Here Vc

n denotes a standardized
score (eq. 6) and, with high probability, j is theML split ifVnj

is positive and larger than the other entries of Vn . To obtain
the probability of observing BP larger than x for the j th split,
given that it is the ML split, we simply restrict attention to
cases where Vnj is positive and larger than the other entries
of Vn :

1. Generate a trivariate normal random vectors V1, . . . ,VB

from a N (0,Σc ) distribution.
2. Among cases where [Vb ]j is positive, and larger than

the rest of the entries of Vb , approximate BP for the
j th topology as the probability that [Vb ]

∗
j is the largest

element of V∗b , given that at least one of the V∗b
is positive, where V∗b is generated from a N (Vb ,Σ

c)
distribution.

3. The proportion of BP� x gives an approximation to the
probability that BP is at least as large as x under the null
hypothesis that the split is not present.

The difference between this and the previousmethodof ob-
taining the probability of BP larger than x is in the restric-
tion imposed in Step 2: we only consider cases where [Vb ]j
is positive and larger than the rest of the entries of Vb . In
other words, based on the limiting approximations,we only
consider cases where topology j was the ML topology.

For the HIV data, the ML estimation had only one split
with BP less than 100%: the split A1, B ,D |A2, E 1, E 2 that
had 76% BP and 90% aBP. When correction is made for this
being the ML split, however, the aBP is 69%. For the mam-
malianmitochondrial data, two splits occurred with BP less
than 100%. These were theMD |OHBP splits andOMD |HBP
splits. The BP for these splitswere 94% and 51% and the aBP
values were 99% and 73%. In contrast, the aBP values after
correcting for ML estimation are 95% and 18%. The conclu-
sions remain the same after correction for ML estimation
although the relative support has changed substantially. For
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Table 3.Median aBP Values (in %) for BP Values of 10%, . . . , 90% for Selected Simulation Settings with Four Taxa. The Medians Are Over 1,000
Simulated Values of the Other Parameters in the Model.

Edge Rate BP
Lengths Variation Data Type 10 20 30 40 50 60 70 80 90

Random Gamma Nucleotide 25 41 53 64 73 80 87 93 97
Extreme Gamma Nucleotide 28 45 58 69 77 85 91 95 98
Extreme Equal rates Nucleotide 33 52 66 76 84 90 95 98 99
Extreme Gamma Amino acid 27 43 56 67 75 83 89 94 98
Extreme Equal rates Amino acid 29 46 60 70 79 86 92 96 99

Adjusted for ML Estimation

Random Gamma Nucleotide 0 0 0 2 15 38 59 77 91
Extreme Gamma Nucleotide 0 0 0 5 21 45 66 83 94
Extreme Equal rates Nucleotide 0 0 2 15 38 62 80 91 98
Extreme Gamma Amino acid 0 0 0 3 18 42 62 80 93
Extreme Equal rates Amino acid 0 0 0 6 24 49 69 85 95

the Chlamydomonadales data, only the splitwith the largest
BP (among those with BP less than 100%) is close to signifi-
cant when adjustment ismade for these being theML splits.

Simulations
In the examples, given a similar value of BP, the adjust-
ments were quite similar across the different examples
even though the models being fit, the number of taxa,
and even the type of data (amino acid or nucleotide)
varied substantially. For instance, the BP of 69% for the
Chlamydomonadales data became an aBP of 86%. For the
HIV data, the most similar BP of 76% became 90%. For
the Chlamydomonadales data, the BPs of 53% and 57% be-
came 75% and 78%. For themammalianmitochondrial data,
a comparable BP of 51% became an aBP of 73%. To in-
vestigate further how much variation in adjustments we
should expect across parameter settings,we repeatedly sim-
ulated parameter settings and obtained the aBP values cor-
responding to BP values of 10%, 20%, . . . , 90%. Note that
each of these parameter settings can be thought of as pos-
sible ML fits from sequence data because this is the only
information from the original data that is required for aBP
calculations.

We considered simulations for trees of four and five taxa
as well as two from trees with six taxa; one simulation
with a split of interest that had three taxa on either side
and the other simulation where the split of interest had
two taxa on one side and four on the other. We simulated
from an F84 model (Felsenstein and Churchill 1996) with
nucleotide data and from a JTT model (Jones et al. 1992)
for amino acid data. We also considered simulation from a
gamma rates-across-sites model and an equal-rates model.
Thus, altogether there are 16 simulation settings: 4 trees×
2 data types (nucleotide or amino acid) × 2 rate settings
(gamma rates-across-sites or equal-rates). For each of these
settings, we randomly generated the remaining parameters
1,000 times. Edge lengths for the tree were independently
generated from an exponential distribution with a mean
edge length of 0.5. Stationary frequencies were generated
from a Dirichlet distribution with all parameters set to 1;
this implies a uniform probability density function. In the

nucleotide simulations, an additional K parameter giving
the transition–transversion ratio is required. This was gen-
erated from a uniform distribution with values between 0.1
and 10. For the simulations involving rates across sites, the
α parameter for the gammamodel was also generated from
a uniform distribution with values between 0.1 and 10.

The results were remarkably consistent across settings.
The median aBP values over the 1,000 random generations
of other parameters are reported on the first line of table 3
for four taxa, nucleotide data, and a gamma rates-across-
sites model. The medians for the other 16 settings were
almost identical. Within a setting, for any given BP, the dif-
ference between the 99th percentile and 1st percentile of
the aBP values was always less than 5%.

To investigate whether there may be more extreme set-
tings that are likely to show additional variation in aBP
values, we fixed edge lengths at more extreme values. Con-
sidering the three topologies given in the bottom row of
figure 1, the total distance from the split of interest to the
terminal nodes in subtrees 1 and 3 were fixed at 2.5. The
total distance to terminal nodes in subtrees 2 and 4was 0.01.
aBP was calculated for Topology 2 in the figure.

Once again, within a setting, among the 1,000 random
generations, there was little variation: the difference be-
tween the 99th percentile and 1st percentile of the aBP
values was always less than 5%. Consequently, only median
values are reported in table 3. For a given setting of data type
(nucleotide or amino acid) or rate variationmodel (gamma
or equal rates), there was little variation across trees and so
results are reported for four taxa.We do, however, see vari-
ation across data types and rate variationmodel. In all cases,
the more extreme edge-length setting causes an increase
in aBP.

As a final setting to consider, we simulated from the
Chlamydomonadales topology of figure 2, with 17 taxa. To
have taxa separated from the split of interest by a number of
internal nodes, the edge with BP of 57% was selected as the
edge of interest. Simulation was from an F84 model with a
gamma rates-across-sites correction. Edge lengths, station-
ary frequencies, and K parameter were generated as in the
four-taxon case. The results were almost identical to the
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random/gamma/nucleotide setting in table 3 for four taxa.
As in the four-taxon case, the difference between the 1st and
99thpercentilewas less than 5%. Themedian adjustedboot-
strap values were within 1% of the values in table 3.

Discussion
The tools presented here provide more interpretable
BP values. Software is available at http://www
.mathstat.dal.ca/ tsusko. The main program aBPn uses
a control file similar to that of the package PAML. The im-
plementation includes a number of widely used nucleotide
and amino acid substitutionmodels. The program does not
obtain ML estimates or obtain BP for these models, which
can be obtained from the packages PHYLIP (Felsenstein
1989, 2004), TREE-PUZZLE (Schmidt et al. 2002), and
PAML. Instead, the program takes as input a Newick tree
file with BP as labels and outputs a Newick tree file, with
the same topology, but with labels changed to aBP values.
Because of the similarity of conversion of BP to aBP values
across different examples and simulated settings, as a rough
approximation to aBP values for models not covered by the
software, one might use the median values of the first row
of table 3 as a guide. However, as the other rows of table 3
indicate, this may not give appropriate adjustments when
there is a mix of long and short branches in the tree.

The limiting results used to adjust BP correspond to a
single unresolved edge and, because the true edge lengths
are unknown, use the estimated edge lengths for all exter-
nal edges. With large sequence lengths, the estimated edge
lengths will be close to the actual edge lengths and thus will
result in first-order correct P values. More problematic is
the possibility that the null hypothesis is true but there is
more than one unresolved edge. The distribution of BP is
not currently available in this case, but it is reasonable to
expect that it will be different from the distribution with a
single unresolved edge. I conjecture that using this limiting
distribution would give adjusted BP values larger than the
aBP values described here. To see this, consider the extreme
case that the generating tree is a star tree. For a given split,
because there are so many more possible splits that might
arise in the estimated tree, it seems likely that BP will tend
to be smaller than if that splitwere the only unresolved split
in the generating tree. This suggests that aBP likely provides
a conservativeP value if, in fact, the true generating tree has
multiple unresolved edges; for instance, the probability of
obtaining aBP larger than, say, 95% will be less than 5% in
such cases.

The aBP values obtained after adjustment for ML esti-
mation differ substantially from those that do not make
an adjustment. The distinction between a priori hypothe-
sis and data-dependent hypothesis can get blurry. For in-
stance, in the mitochondrial mammalian data, the split of
mouse and opposum from the rest might very well have
been an a priori hypothesis of interest that happened to
end up in the ML tree. The fact that a split ends up
in the ML tree need not imply that an additional ad-
justment is required. On the other hand, for splits that

one is surprised to find in an ML tree, the aBP value ad-
justed for ML estimation provides a cautionary note on
accepting the hypothesis that the split actually is present.
Under the hypothesis that it is not present, table 3 indicates
that it is not nearly as improbable that one will obtain
large BP.
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