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We investigate the use of Markov models of evolution for reduced amino acid alphabets or bins of amino acids. The use
of reduced amino acid alphabets can ameliorate effects of model misspecification and saturation. We present algorithms
for 2 different ways of automating the construction of bins: minimizing criteria based on properties of rate matrices and
minimizing criteria based on properties of alignments. By simulation, we show that in the absence of model
misspecification, the loss of information due to binning is found to be insubstantial, and the use of Markov models at the
binned level is found to be almost as effective as the more appropriate missing data approach. By applying these
approaches to real data sets where compositional heterogeneity and/or saturation appear to be causing biased tree
estimation, we find that binning can improve topological estimation in practice.

Introduction

Most probabilistic models of amino acid evolution im-
plicitly assume that it is the amino acids themselves that
evolve according to a time-reversible Markov model. Gross
departures from these assumptions can, and frequently do,
give rise to incorrect topological estimation. Common dif-
ficulties include compositional heterogeneity (Jermiin et al.
2004) and saturation: the number of amino acid changes
along lineages is so large that it effectively erases the his-
torical signal (Ho and Jermiin 2004). More generally, the
substitution process may not be homogeneous and could
change in any number of ways throughout the tree. To deal
with compositional heterogeneity and/or saturation, nucle-
otide data is often recoded into pyrimidine (Y) and purine
(R) bins. This procedure has been shown, in some cases, to
improve phylogenetic estimates (Phillips and Penny 2003).
Recoding amino acids is also possible, although the choice
of bins is not as obvious. There is thus some value in ex-
ploring formal ways of binning character states into groups
that are more appropriate for evolutionary analysis in the
presence of some of these difficulties for phylogenetic re-
construction. Good choices of alphabets or bins of amino
acids can serve as diagnostic tools: large bootstrap support
for splits under an amino acid model that are no longer sup-
ported under a binned model provide evidence that some-
thing is awry.

A set of bins that has received some attention in the
literature are the ‘‘Dayhoff classes’’: AGPST, DENQ,
HKR, ILMV, FWY, and C. Users of this choice of reduced
alphabet in phylogenetic reconstructions include Hrdy et al.
(2004), Martin et al. (2005), and Embley et al. (2003). The
classes were obtained from a log odds matrix of probabil-
ities of pairs of amino acids appearing together. Pairs of
amino acids that are more likely to appear together in short
evolutionary distances than random are expected to have
log odds greater than zero. The classes are chosen so that
they (almost) satisfy that log odds for pairs of amino acids
within groups are greater than 0. The single exception to
this rule is the pair G and P in the group AGPST (fig. 84
in Dayhoff et al. 1978). Other approaches to the construc-

tion of bins include those of Wang J and Wang W (1999),
who obtained reductions in a more formal way based on the
Miyazawa and Jernigan matrix (Miyazawa and Jernigan
1996). Their goals, however, were not evolutionary; the ini-
tial question they posed is how many residue types are re-
quired to form a structured protein? Cannata et al. (2002)
gave a globally convergent Branch-and-Bound routine to
derive bins for certain classes of criterion functions. The
criteria used, however, are more directly related to scoring
an alignment than evolutionary processes. Kosiol et al.
(2003) presented methods most similar to those that will
be used here in the construction of what we will refer to
as the saturation bins, and their approach is similar in mo-
tivation to the construction of the Dayhoff classes. The ap-
proach taken by these authors resembles a rearrangement of
the rows and columns of a substitution matrix to obtain an
approximate block diagonal matrix with relatively rapid
rates of exchange within blocks and slow rates of exchange
between blocks.

An outline of the article is as follows. First, we con-
sider methods for dealing with reduced alphabets in the ab-
sence of model misspecification. Next, we propose criteria
for choices of bins. These come in 2 flavors: once-and-for-
all choices of bins based on the properties of empirical
amino acid rate matrices or bin choices based on the se-
quence data being analyzed. A brief simulation study is
conducted to investigate how much information is lost
through binning. The major sections of the paper conclude
with several real data examples.

Methods for Dealing with Reduced Alphabets

For the bins considered in this paper, once the various
amino acids are placed into a given bin, they are then treated
as the same single character state. For instance, for the
Dayhoff groups: AGPST,C, FWY,HRK,MILV, andNDEQ,
we assign the bin 1 to any amino acid that is an A,G, P, S, or
T. For any amino acidC, we assign the character state 2, and
so forth. The simple 3-site alignment

Sequence 1 ARI
Sequence 2 DFV
Sequence 3 NWI

becomes

Sequence 1 145
Sequence 2 635
Sequence 3 635
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We first consider methods for using binned data in the
absence of model misspecification at the amino acid level.
There are 2 approaches to modeling binned data that we will
consider: the missing data (MD) method and the binned
Markov chain (BMC) method. The MD method is the more
appropriate one in the absence of model misspecification
but is not the natural choice otherwise. The methods differ
primarily in the manner in which they do probability cal-
culations. Maximum likelihood (ML) trees and/or ML dis-
tances, that are the primary methods used here, can be
calculated given any one of the choices for probability
calculations.

The MD method treats the amino acids within bins as
MD and averages over what they may have been in much
the same way that the MD is treated in standard phyloge-
netic analysis. For instance, for the Dayhoff groups:
AGPST, C, FWY, HRK, MILV, and NDEQ, if bin 1 were
the observed data for one taxon separated by evolutionary
distance t from another taxon having bin 3, the probability
of the observed bins for those 2 taxa would be the proba-
bility that the amino acid for the first taxon was A,G, P, S,
or T and that the amino acid for the second was F, W, or
Y. Under a Markov model for amino acids, this can be
calculated as

X

i2AGPST

X

j2FWY

piPijðtÞ

where the pi and Pij(t) are the stationary frequencies and
substitution probabilities under the amino acid model. This
is analogous to the summing over unobserved amino acids
at internal nodes and corresponds to the widely agreed upon
correct method for dealing with MD.

The BMC method treats the process of substitution of
bins along an edge as a continuous time Markov chain and
uses the rate matrices at the amino acid level to obtain rate
matrices for the substitutions of bins. This method was used
in Yang et al. (1998) to derive a rate matrix for a Markov
model of amino acids based on a Markov model for codons.

For qIJ
(b) to be a rate from bin I to bin J, the probability

that bin I is substituted with bin J should be qIJ
(b)h þ o(h),

for a small evolutionary distance h. Here o(h) is the standard
notation for a function of h that converges to 0 faster than h.
Similarly as in Yang et al. (1998), if the original data were
generated under a Markov model with rates quv, we obtain

q
ðbÞ
IJ 5

X

u2I

X

v2J
puquv=

X

u2I

pu ð1Þ

To see this, note that the Markov model for amino
acids gives the probability, at the start of a small time in-
terval [t, t þ h), that the amino acid is in bin I as

P
u2I pu.

The probability that the amino acid is u at time t and v at
t þ h is puquvh þ o(h) and so the probability that it is in bin
I at t and bin J at time t þ h is obtained by summing over u
in I and v in J; the numerator of equation (1). The condi-
tional probability of going to J from I is obtained as the ratio
of the probability of bin I at time t and bin J at time t þ h
divided by the probability that bin I is observed initially.
This is exactly the ratio given in equation (1).

If a Markov chain model also applied for bins, using
the rates in equation (1) for Markov chain–based calcula-

tions, it would give exactly the same probabilities as the
MD method. However, although the rates in equation (1)
may be appropriate, it is rarely the case that the Markov
property holds; given the last 2 bins in the evolutionary pro-
cess, the probability of the next bin will not be dependent
only on the last.

To see that the binned process will rarely satisfy the
Markov property, assume a JTT substitution model and
suppose that one of the bins is the single amino acid V
and that another is {I, P}. For the JTT substitution model,
when the last amino acid is an I, the next will be a V 49% of
the time, but when the last amino acid is a P, there is only
a 2% chance the next will be a V. Given only that the last bin
is {I, P}, calculations give a probability of 0.33 that the next
amino acid will be V. However, given that the last amino
acid was a V, the next will be an I 41% of the time and a P
only 1% of the time. Thus, if we know that the last 2 bins are
V and {I, P}, it is much more likely that the last amino acid
was I and, consequently, that the next will be V; calculation
gives the probability as 0.48.

Reduced Alphabets to Adjust for Saturation

A site in an alignment is considered saturated if many
repeated substitutions have occurred over the period of time
under consideration. Saturation usually refers to situations
in which many sites are saturated with changes, leading to
some edges being long. Sequences corresponding to such
terminal edges can be considered to have been (almost) ran-
dom or independent of the other sequences in the analysis,
which makes their placement highly variable. Saturation
is also known to create biases whereby saturated sequences
are more likely to be placed, correctly or incorrectly, near
other long branches in the tree (Susko et al. 2005; Wenzel
and Siddall 1999). In cases where rates of substitution
within a group of similar amino acids, say V, I, and L,
is high, an ancestral character state of V will likely be mul-
tiply substituted along a long edge, but the group, V, I, and L
are more likely to remain the same. Thus, with a reduced
amino acid alphabet, ancestral nodes of long terminal edges
will appear more similar to their child terminal nodes; the
edges will be less susceptible to multiple substitutions of
bins.

We illustrate with a simple, contrived example. Con-
sider the following pair of sequences of length 1000:

Sequence 1 ETMIYDNKFC. . .MA
Sequence 2 EQLEWRDCTA. . .AT

Although not independent, one can clearly see a large
number of differences in these sequences. The estimated
evolutionary Jukes–Cantor (Jukes and Cantor 1969) distan-
ces were 2.48. (Although the Jukes–Cantor model was orig-
inally described for nucleotides, it can be applied with
amino acids or, more generally, bins as well. It is the model
in which the rate of substitution from any one bin to any
other is constant.) The edge length for this simplest of trees,
with only one edge, is quite large and the 2 sequences can
be thought to be saturated with changes. If, however, we
create bins for the amino acids based on the alphabetical
order of the 3-letter codes for amino acids, with 5 amino
acids in each bin (the first 5 alphabetically ordered amino
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acids are placed in the first bin, the second 5 in the second
bin, and so forth), the sequence data become

Sequence 1 2432411331. . .31
Sequence 2 2232411141. . .14

One can see that there is much more conservation be-
tween the sequences. The estimated Jukes–Cantor distances
were 0.53. The example was created by simulating bins ac-
cording to a Jukes–Cantor model, with evolutionary dis-
tance 0.5 between the sequences, and then, for a given
bin, randomly assigning an amino acid from that bin.

The goal in adjusting for saturation is to create groups
so that when multiple substitutions occur along edges, they
will usually be substitutions within the same group. The
empirically derived rates from the JTT substitution model
(Jones et al. 1992) should give an indication of which
groups of amino acids tend to see large numbers of substi-
tutions within groups but smaller numbers of substitutions
between groups. Indeed, the use of an empirically derived
model like the JTT substitution model should ameliorate the
effects of saturation because larger numbers of substitutions
within groups are expected. Still, empirical models obtain
rates by averaging over a large number of sites and a large
number of proteins. Site-specific increases in the rates of
exchange within groups may still lead to problems of sat-
uration. In any case, we will choose bins so that the rate of
substitution, under the JTT model, within bins is large and
the rate of substitution between bins is small.

However, simply considering only the rates of substi-
tution under the JTT model cannot be expected to be an
effective way of choosing bins. We illustrate why here, us-
ing the Jukes–Cantor model as a baseline for comparison.
In the Jukes–Cantor model, no bin choice should be pre-
ferred since, for an edge of length t, the expected number
of substitutions is t/380 for a pair of amino acids, regardless
of what those amino acids are. It is important to use the
Jukes–Cantor model as a baseline for comparison because
of size effects. For instance, for 2 bins, one with a single
amino acid, there are 19�18 5 342 substitutions of amino
acids within bins so that the expected number of substitu-
tions within bins under the Jukes–Cantor model is 342t/
380. In contrast, with 2 bins each containing 10 amino
acids, there are 2�10�9 5 180 substitutions of amino acids
within bins so that the expected number of substitutions
within bins is 180t/380.

The criterion that we use to select bins for saturation is
to choose the bins that maximize the ratio of the expected
number of substitutions within bins under the JTT model,
W, to those expected number under the Jukes–Cantor
model, WJC. Alternatively, because WJC is proportional
to the number of pairs of amino acids within bins, the av-
erage rate of substitutions, within bins, is being maximized.
The resulting bins are given in table 1.

It is interesting to note that the bins are related to the
chemical properties of amino acids. For instance, the
hydroxylated polar amino acids S and T are frequently to-
gether, the positively charged amino acids K and R always
group together, as do the negatively charged D and E. For
comparison, we include a set of bins based on hierarchical
clustering of the Grantham distance matrix given in table 2
of Grantham (1974). This distance matrix is based on the

chemical properties of the amino acids alone and not rates
of exchange between them. We do see some similarities be-
tween the Grantham bins and the saturation bins (such as
the groupings ILV and AGPT), but there are substantial dif-
ferences as well.

Algorithms for Criterion Minimization

In principle, for a fixed number of bins, determination
of the set of bins that maximizes the ratioW/WJC is straight-
forward. More generally, the problem is to minimize a func-
tion of the bins, F(b) (note that maximization is the same as
minimization of—F(b)), for a fixed number of bins. Be-
cause there are a finite number of sets of bins, one can ob-
tain F(b) for each of these sets and choose the one that gave
the smallest value. The difficulty is that the number of pos-
sible bins is very large. The numbers of partitions of
n things into k groups are known as the Stirling numbers
of the second kind and can be recursively calculated from

Sðn; kÞ5kSðn� 1; kÞ þ Sðn� 1; k � 1Þ; 2 � k � n� 1;

where S(n, 1) 5 S(n, n) 5 1 give starting conditions (cf.
Abramowitz and Stegun 1972). Considering the number
of partitions of 20 amino acids into 2 groups, the number
is a feasible 524,287, but with 8 bins, there are roughly 1.5
� 1013 choices of bins.

We experimented with a number of different heuristic
algorithms to minimize criterion functions, but all results
reported here are for a bin rearrangement algorithm with
1000 random sets of starting bins for each choice of the
number of bins. Given an initial set of bins, all possible
exchanges of one amino acid from a bin to another are
checked until an improved criterion function is found.
The procedure was repeated with the resulting bins that im-
proved the criterion function and continued until, for a cur-
rent set of bins, all possible exchanges had been exhausted
without an improvement.

Bias and Variance in the Absence of Misspecification

We first consider performance of methods using
binned data in the absence of model misspecification and
without much consideration for the choice of bins. Al-
though it seems clear that some information will be lost
constructing these bins, it is far from clear how much in-
formation will be lost. Figure 1 gives the mean and varian-
ces of the expected estimated distances between 2 taxa as
functions of the true distance between them. These are
based on 1000 simulated amino acid data sets of sequence
length 250 simulated using Seq-Gen (Rambaut and Grassly
1997) under a JTT Markov model at each of the indicated
true distances. The bins considered are the Dayhoff groups
as well as the 10 saturation bins given in table 1. Plots using
6 saturation bins were very similar to those of the Dayhoff
groups; although this choice of bins is similar to the Dayh-
off groups, there are some differences. Considering the bias
and variance plots, the differences in the performance for
both of these bin choices and performance with 10 satura-
tion bins suggests that the number of bins was the more
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important factor in degradation of performance rather than
the content of those bins.

The biases of the MD method are comparable to the
bias in the unbinned JTT distances (fig. 1). All distances
are ML distances. By contrast, the BMC bins give substan-
tial apparent biases. This is expected as the interpretation of
distances under the BMCmethod is the expected number of
substitutions between bins where it remains unchanged un-
der the MD method. What is important to note is that the
mean BMC distances vary in a roughly linear fashion with
the true distances, suggesting that such forms of binning
will not give rise to topological inconsistency with larger
sequence lengths. All variances increase as a function of
true distance with a more rapid increase for the MD meth-
ods. To make the variances more comparable, we rescaled
the distances so that the means were the same for each of the
methods. Interestingly, the BMC variances are smaller
than corresponding MD method variances, suggesting that
the BMC distances might perform better in topological
estimation.

In figure 2, each cell of a heat map indicates the pro-
portion of times that the correct tree was estimated for a par-
ticular edge length setting on a 4-taxon tree. As expected,
we see a degradation of performance as we move from es-
timation without binning to 10 to 6 bins. Nevertheless, per-
formance is reasonable even with 6 bins. Interestingly, both
the BMC and, in the case of no model misspecification, the
more appropriate MD method give comparable perfor-
mance for the Dayhoff groups. This suggests that the
BMC method can be used with potential gains in the case

of model misspecification and without too much loss in the
case that models are not misspecified. The setting for the
simulation results given in figure 2 is the widely used
long-branch attraction simulation setting used in, for in-
stance, Huelsenbeck (1995). The simulating tree for a cell
in the heatmap is ((1:b, 2:a):a, (3:b, 4:a)). We follow the
convention of Huelsenbeck (1995) by transforming a
and b to corresponding probabilities of different amino
acids for taxa separated by those evolutionary distances.
The x value for a cell indicates the probabilities correspond-
ing to a, and the y values indicate the probabilities corre-
sponding to b. The general variation in proportions of
missestimations in the heat maps is as expected being great-
est when the middle edge length, a, is small, but terminal
edges are long. Each cell was based on 1000 simulations,
with sequences of length 250, from the JTT substitution
model. For each simulated data set, ML distances were cal-
culated for the binned model, and a neighbor-joining tree
was constructed from this.

Criterion Minimization for Particular Alignments

The saturation bins in table 1 are once-and-for-all bins
that are determined from a rate matrix. Because most amino
acid models are empirically derived from large databases of
alignments, the resulting bins reflect average properties
over many alignments. In some cases, it may be preferable
to obtain minimizers of criteria that are specific to a partic-
ular alignment of interest. For instance, violation of the

Table 1
The Estimated Saturation Bins and the Bins Obtained by Hierarchical Clustering Applied to
the Grantham Distance Matrix

Saturation Grantham

ADEGKNPQRST CFHILMVWY ACDEFGHILMNPQRSTVWY K
ADEGNPST CHKQRW FILMVY ACDFGMPQRSTW EHILNVY K
AGNPST CHWY DEKQR FILMV AGPT CDFMQRSW EHILNVY K
AGPST CFWY DEN HKQR ILMV AGPT CDQ EHILNVY FMRSW K
APST CW DEGN FHY ILMV KQR AG CDQ EHILNVY FMRSW K PT
AGST CW DEN FY HP ILMV KQR AG CDQ EHNY FMRSW ILV K PT
AST CG DEN FY HP ILV KQR MW AG C DQ EHNY FMRSW ILV K PT
AST CW DE FY GN HQ ILV KR MP AG C DQ EHNY FMW ILV K PT RS
AST CW DE FY GN HQ IV KR LM P A C DQ EHNY FMW G ILV K PT RS
AST C DE FY GN HQ IV KR LM P W A C DQ EHNY FM G ILV K PT RS W
AST C DE FY G HQ IV KR LM N P W A C DQ EHNY FM G IL K PT RS V W
AST C DE FY G H IV KR LM N P Q W A C DQ E FM G HNY IL K PT RS V W
AST C DE FL G H IV KR M N P Q W Y A C D E FM G HNY IL K PT Q RS V W
AST C DE F G H IV KR L M N P Q W Y A C D E FM G HNY IL K PT Q R S V W
AT C DE F G H IV KR L M N P Q S W Y A C D E F G HNY IL K M PT Q R S V W
AT C DE F G H IV K L M N P Q R S W Y A C D E F G HNY IL K M P Q R S T V W
A C DE F G H IV K L M N P Q R S T W Y A C D E F G HNY I K L M P Q R S T V W
A C D E F G H IV K L M N P Q R S T W Y A C D E F G HN I K L M P Q R S T V W Y

NOTE.—The saturation bins were constructed from the JTT rate matrix. The criterion used to choose bins is to maximize the

ratio of the expected number of substitutions within bins to the expected number under the Jukes-Cantor model.

Table 2
The P Values for a Chi-Squared Compositional Heterogeneity Test for the Metazoan Data Sets Using Maximum Chi-Square
Statistic Bins

Number of Bins 2 3 4 5 6 7 8 9 10 11 �12
Mitochondrial 0.53 0.61 0.56 0.45 0.27 0.21 0.10 0.06 0.02 0.01 ,0.001
Nuclear 0.74 0.70 0.66 0.61 0.53 0.37 0.24 0.17 0.09 0.02 0.000
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assumption of compositional homogeneity (Ho and Jermiin
2004) can create substantial problems for phylogenetic re-
construction. Alternatively one might be concerned with vi-
olation of time-reversibility assumptions.

The form of model misspecification that we focus
upon here is compositional heterogeneity. The criterion
function that we minimize is the maximum chi-squared
statistic:

ts5n
X

i;s

ðpis � piÞ2=pi

where n is the sequence length, pis is the frequency of the ith
bin for the sth species, and pi is the overall frequency of the
ith bin. For a fixed number of bins, nb, we will refer to the
resulting set of bins as the minimax chi-squared bins. The P
value for any one of these observed ts test statistics would be
calculated as P(T . ts) where T has a v2nb�1 distribution.
The same sequence that will give the maximum ts will give
the minimum P value, and so minimizing the maximum
chi-squared statistic is equivalent to maximizing the corre-
sponding minimum P value. Given that the concern is with
compositional heterogeneity, one of the reasons for consid-
ering this criterion is that it is readily interpretable: If for

a given choice of bins we end up with a P value that is larger
than 0.1, compositional homogeneity cannot be rejected
for this set of bins even if it could be for the original amino
acid data.

One other unexpected advantage with this choice of
criterion function is the stability of its calculation across
the large number of different choices of bins encountered
during the progression of the algorithm. There is some pos-
sibility that difficulties will arise when the frequency of one
or more amino acids is 0, but this tends not to occur too
frequently in practice. By contrast, an alternative choice
that was considered was Bowker’s test statistic as described
in Ababneh et al. (2006). The null hypothesis for the latter
test is compositional symmetry: a property implied by most
time-reversible Markov models. Because compositional
heterogeneity implies compositional asymmetry, the test
can detect compositional heterogeneity as well. However,
for a given pair of taxa, the test statistic requires that the sum
of pairwise frequencies for each pair of bins be nonzero.
With large numbers of bins, this is frequently not the case.

Another kind of data set–specific binning is what we
will refer to as general time reversible (GTR) binning. The
setting is similar toWaddell and Steel (1997) andWeiss and
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FIG. 1.—Plots of the mean and variance of the estimated distances under various binned models as functions of the true distances. The unbinned
estimated distances are JTT, the Dayhoff groups are a set of 6 bins, and the saturation bins are given in table 1. Means and variances for binned
distances were obtained under both a MD (no label) and BMC method. Included as well are variances after rescaling distances so that each method has
the same mean as the JTT distances. All values are based on 1000 simulated amino acid data sets of sequence length 250 simulated under a JTT Markov
model at each of the indicated true distances. All figures presented here were produced using the R statistical package (R Development Core Team
2007).
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von Haeseler (2003). In brief, fixing a pair of taxa, an ei-
genvector decomposition of the form P�1F 5 UXU�1 is
obtained, where P is a diagonal matrix with entries equal
to the frequencies of the amino acids, or bins in our case,
and the ijth entry of F gives the frequency with which the
pair of amino acids i and j arose. In our implementation, the
F frequency matrix is symmetrized so that Fij is the fre-
quency with which i occurred in the first sequence and j
in the second or i in the second and j in the first sequence.
It follows from the symmetry of F that P�1F has a real-
valued eigenvector decomposition (cf. Keilson 1979;Waddell
and Steel 1997). Under a gamma rates-across-sites model,
an estimate of the iith entry of the K in the eigenvalue de-
composition of the matrix Q 5 UKU�1 can be obtained
through the transformation a – a(Xii)

–1/a; this is the inverse
moment generating function for the gamma rate distribu-
tion. Because the decomposition of P�1F may give nega-
tive values of Xii it is possible that K cannot be computed.
We ignored all choices of bins for which this occurred. A
value of a is required, and we obtain this through a 2-step
process. First a neighbor-joining tree is obtained using un-
corrected ML distances (BMC method using bins). Then
ML estimates of the edge lengths and a are obtained given
the tree. Estimation of a in this way can be affected by poor
topological estimation due to the use of uncorrected distan-

ces, but our anecdotal experience, using simulated amino
acid data, is that reasonable estimates are obtained.

Given estimates Q(kj), of the rate matrices for all pairs
of sequences (k, j), we use the test statistic of Weiss and von
Haeseler (2003) as a criterion for minimization. This test
statistic is the sum of 1 plus the eigenvalues of the sample
covariance matrix, treating all pairs as the sample, of the
off-diagonals of the Q(kj). The matrix provides a measure
of the differences between the individual pairwise Q(kj) ma-
trix estimates from the overall mean, and the test statistic
will be large when there is evidence of heterogeneity in
the Q matrices throughout the tree.

We refer to bins obtained through the maximization of
theWeiss and von Haeseler (2003) test statistic as GTR bin-
ning because the underlying Q matrix estimates are esti-
mates under the general time-reversible model. One of
the reasons that this type of estimation is not frequently pur-
sued with amino acid data is that sparseness issues can lead
to difficulties with the eigenvalue decompositions. With
smaller numbers of bins, these problems are not as likely
and make a full GTR method feasible. In cases where
GTR bins are used, this is indeed what we do. Given
a set of bins, we obtain GTR distances for these bins: d 5
–trace[PQ]. The estimated Q matrix for the pair is con-
structed as discussed above.

FIG. 2.—Each cell of a heat map indicates the proportion of times that the correct tree was estimated for the 4-taxon tree ((1:b, 2:a):a, (3:b, 4:a)).
The x value for a cell indicates the probability of different amino acids for along an edge of length a, and the y values indicate the corresponding
probability for an edge of length b. Each cell was based on 1000 simulations, with sequences of length 250, from the JTT substitution model. For each
simulated data set, ML distances were calculated for the binned model and a neighbor-joining tree was constructed from this. Results for unbinned
estimation are indicated as JTT. For the Dayhoff groups, results are reported for both the MD (no label) and BMC method. The saturation bins are given
in table 1.
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Metazoan Mitochondrial Data

The first example data set that we consider is the meta-
zoan mitochondrial data considered previously in Foster
et al. (1998). This amino acid data set is fairly large with
8 taxa and 3713 sites. The topologies for the top 16 ML
trees are given in figure 3; the fitted model was the JTT
model with 8 gamma rate categories. The top 3 trees and
5 out of the top 10 trees have the honeybee and nematode
sequences grouped together, a clearly incorrect split. This is
consistent with the observations of Foster et al. (1998) that
these 2 sequences share significantly elevated ratio of the
amino acids FYMINK to GARP due to their heightened
A þ T nucleotide content relative to other sequences in this
data set. Indeed, the Ecdysozoa hypothesis tree, ranked 12th
by ML, is widely believed to be the correct tree for this data
(cf. Turbeville et al. 1997; Philippe et al. 2005).

To assess whether the unusual groupings observed
may be due to uncertainty in the data, we used the single
distribution nonparametric bootstrap (SDNB) test of Shi
et al. (2005). This test gives a P value as the proportion

of bootstrap samples where the log likelihood ratio
lðŝ�Þ � lðŝÞ was greater than the observed log likelihood
ratio, lðŝÞ � lðs0Þ, for a hypothesized topology s0; here ŝ
is the ML topology and ŝ� represents the ML topology
for a bootstrap sample. Using 100 resampling of estimated
log-likelihoods resampled data sets (Kishino et al. 1990),
only a single tree was contained in a 95% confidence region
for trees. The P values from the SDNB test ranked from
highest to lowest were 0.29, 0.03, 5 trees had P values
of 0.01, and the rest were less than 0.01. The observed
groupings of honeybee and nematode are not a consequence
excess noise in the data set.

The results of chi-square tests confirm that composi-
tional heterogeneity is a serious problem in this data set.
Only the fruit fly passed the compositional chi-squared test
with a P value of 0.29. Seven of the 8 taxa gave P values
that were 0 up to round-off error. In light of these difficul-
ties, the suggested compositional homogeneity of the fruit
fly is not meaningful as the overall frequencies are a mix of
very heterogeneous frequencies.

FIG. 3.—The top ranked ML topologies for the metazoan mitochondrial data using the original amino acid data are listed across rows. The JTT
model with 8 gamma rate categories was used in fitting. P values for the SDNB test using amino acids were 0.29 and 0.03 for the top 2 ranked trees,
with the next 5 trees giving P values of 0.01. P values for the SDNB test when 5 maximum chi-squared bins are also given; any tree with a P value
larger than 0.05 would be included in a 95% confidence region.
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The minimum P value for any taxa and for each choice
of bins is given in table 2. Binning does help in dealing with
the compositional heterogeneity difficulties, giving large P
values for 5 or less bins and insignificant test results for 9 or
less bins.

A plot of the log likelihood difference between the ML
topology (topology 1 in fig. 3) and the Ecdysozoa hypoth-
esis tree (topology 12) is given in figure 4. For comparison,
the plot includes the same log likelihood differences aver-
aged over 100 choices of random bins of the same size. The
increasing trend in log likelihoods for the random bins is
due in part to the loss of information due to binning but
may be due as well to an amelioration of compositional het-
erogeneity effects for some of the random choices. Never-
theless, because the random bins were not selected with
composition corrections in mind, numbers of bins where
the maximal chi-squared bins give smaller differences in
likelihood are of particular interest. We see that the gap
is particularly pronounced for less than or equal to 9
bins—the numbers of bins that gave insignificant chi-
squared homogeneity test results—and that with 5 bins,
the likelihood for the Ecdysozoa hypothesis tree is actually
higher than for the ML topology.

Considering the choice of 5 bins further, we obtained
the likelihood values (optimizing edge lengths and an a pa-
rameter for 8 gamma rate categories) for the top 100 amino
acid ML topologies. The top 8 topologies were topologies
4, 6, 10, 11, 7, 13, 12, and 1 in figure 3. With the exception
of topology 1, all these topologies have broken up the
honey bee, nematode split, and correctly have honey
bee, locust, and fruit fly split from the rest. The 95% con-
fidence region of trees from the SDNB test included these 8
trees plus the trees with amino acid ML rankings: 14, 15, 9,
54, 38, 41, and 58, with the P values for the last 5 topologies
being between 0.10 and 0.05. Among the topologies in the

confidence region, only topology 1 had honey bee and nem-
atode split from the rest. The 5 bins for this data were
AFMP, CKQR, DE, GHN, and ILSTVWY. There is not
a lot of overlap with the Dayhoff groups or saturation bins.
Nevertheless, some of the groupings, DE and VIL, for in-
stance, are consistent with what one would expect based on
chemical properties of amino acids.

Metazoan Nuclear Data

We consider next a phylogenomic data set with 50,462
sites and 10 taxa considered by Dopazo H and Dopazo J
(2005). Of primary interest for this data is whether one
of 2 trees, the Coelomata tree (fig. 5A) or the Ecdysozoa
tree (fig. 5B), is the correct tree; these are figure 3a and
b (Dopazo H and Dopazo J 2005). The 2 trees differ in their
placement of Caenorhabditis elegans. Different data sets
and methods have yielded either the Coelomata or Ecdyso-
zoa trees, although currently most evidence suggests the lat-
ter is correct (Philippe et al. 2005; Dopazo H and Dopazo J
2005). In Dopazo J and Dopazo J (2005), for instance, anal-
ysis of the full data set gives the Coelomata tree, whereas
removal of fast evolving sites gives the Ecdysozoa tree.
This is a natural data set for the saturation bins which
are intended to deal with difficulties due to fast evolving
sites without throwing away all the information coming
from these sites.

For the 2 hypothesized trees, likelihoods were ob-
tained with ML edge lengths for both the saturation bins
and the maximum chi-squared bins. In each case, 8 gamma
rate categories were used. For the saturation bins, the Ec-
dysozoa tree gave a larger likelihood only when the number
of bins were 3. For the maximum chi-squared bins, the Ec-
dysozoa tree gave a larger likelihood only when there were
9 bins. Notably, the minimum chi-squared statistics gave
rejections of compositional homogeneity with more than
9 bins for this data (table 2). The Coelomata tree was
the estimated tree more frequently than not for both binning
methods. In addition, the neighbor-joining tree obtained us-
ing GTR distances and GTR bins was the Coelomata tree in
each case. Still the support was frequently not strong. The P
values from the SDNB tests comparing the 2 trees are given
in table 3 and are often larger than 0.05.

Chloroplast Data

Years of controversy have surrounded the identity of
the basal-most node in the angiosperm phylogeny. For in-
stance, the placement of Amborella within the radiation of
angiosperms has evoked a debate about the basal node in
angiosperm phylogeny (Goremykin et al. 2003, 2004;
Soltis et al. 2004; Lockhart and Penny 2005; Martin
et al. 2005). Using the chloroplast genome data, Leebens-
Mack et al. (2005) found weak support for Amborella
and water lilies (Nymphaea and Nuphar here) at the base
of the angiosperms.

A binned analysis of 61 concatenated chloroplast-
encoded proteins, yielding 15,688 sites for 24 taxa, gave
interesting results in this regard. The neighbor-joining trees
for the ML distances using bins that gave the minimum chi-
squared statistic among 12 and 13 bins are given in figure 6.
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FIG. 4.—The difference in log likelihoods between the ML topology
(topology 1 in Figure 3) and the Ecdysozoa hypothesis tree (topology 12)
for the bins giving the maximum chi-squared statistic. For comparison,
the plot includes the same log likelihood differences averaged over 100
choices of random bins of the same size. Approximately 95% confidence
bounds are indicated for the mean log likelihood difference.
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The differences in the 2 trees involve the placement of the
Nymphaea, Nuphar, Amborella clade, hereafter referred to
as the NNA clade, as well as the placement of Calycanthus.
With 12 bins, Calycanthus groups with the monocots, and
the NNA clade is basal. This would usually be considered
the correct relationship, although there has been consider-
able debate. With 13 bins, Calycanthus groups with NNA,
and these groups split from the monocots after an initial
split giving rise to the eudicots.

The transition from 12 to 13 bins represents a sort of
phase transition. With 3–12 bins, the neighbor-joining trees
obtained are exactly the same and with 13–20 bins the
neighbor-joining trees are the same. What is striking is
the bootstrap support for the features that differ from 12
to 13 bins. With 12 bins, the bootstrap support for a basal
NNA clade is 84% and similarly high for less than 12 bins.
With 13 bins, the shallower NNA þ Calycanthus split has
59% bootstrap support, and this increases to 82% with the
original amino acid data (20 bins).

Surprisingly, there is overlap in the bins. The bins giv-
ing the minimum chi-squared statistic with 12 bins were
AIV, CW, EF, GN, KR, and LQS with the rest of the bins
consisting of single amino acids. The 13 minimax chi-
squared bins that differ from the 12 minimax bins are

AL, CQV, and IS. In addition, W has split from C to give
its own new bin.

Part of the explanation for the differences between the
trees may have to do with a joint composition and saturation
correction when there are 12 bins. Considering the JTT rate
matrix, the rate of substitution from I to any other amino
acid, for instance, is highest when that amino acid is V
and the highest rate from V is to I. Generally, when the num-
ber of bins is 12, the bins that differ from those when the
number of bins is 13 involve amino acids that have rela-
tively high substitution rates to and from each other. Homo-
plastic substitutions of amino acids are less likely to be
substitutions at the binned level for 12 bins.

Some confirmation that the differing rates of substitu-
tion between bins were important is obtained by consider-
ing the sites in the alignment where there were 2 and only 2
amino acids. Among these sites, there were 577 that in-
volved amino acids that were within bins when the number
of bins was 12 but in different bins when the number of bins
was 13; for instance, a site with all A and V. Out of these
sites, 205 require as an evolutionary explanation multiple
substitutions between the 2 amino acids. In contrast, there
were only 16 such sites with amino acids in the same bin
when the number of bins was 13 but different bins when the
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FIG. 5.—The Coelomata (A) and Ecdysozoa (B) hypothesis trees for the metazoan nuclear data. Edge lengths were obtained from the full amino
acid data fitted with a JTTþC model having 8 C rate categories. For the GTR bins, neighbor joining with GTR distances was used to reconstruct the
tree.

Table 3
The P Values for the Metazoan Nuclear Data, Using the SDNB Test, when the Null Hypothesis Is that the Ecdysozoa Tree Is
the True Tree and the Coelomata Tree Is the Alternative Tree

Saturation Bins
Number 2 3 4 5 6 7 8 9 10 11
P value 0.01 0.51 0.34 0.08 0.14 0.08 0.09 0.21 0.05 0.06
Number 12 13 14 15 16 17 18–20
P value 0.04 0.03 0.20 0.10 0.02 0.01 ,0.01

Maximum Chi-Square Bins
Number 2 3 4 5 6 7 8 9 �10
P value 0.41 0.33 0.00 0.00 0.22 0.04 0.33 0.42 0.01
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number of bins was 12. Only one of these sites requires
multiple substitutions between the amino acids.

It does appear, however, that it was important that both
saturation and composition are adjusted for with 12 mini-
max chi-squared bins. The same topology as with 13 bins
was obtained for every choice of the number of bins when
the saturation bins were used.

The neighbor-joining trees obtained using GTR dis-
tances and corresponding GTR bins, with gamma rates-
across-sites adjustment, consistently placed the NNA clade
at the base of the tree. The only difference in the estimated
tree across choices of bins was the placement of Calycan-
thus which was more basal with 2 GTR bins. With 3 or
more bins, it grouped with the eudicots with bootstrap sup-
port varying between 40 and 70%.

Discussion

With small numbers of bins, the saturation bins ended
up being similar to other choices of bins like the Dayhoff
classes; the 5 saturation bins differ from the Dayhoff classes

only in that C is not split fromW and Q is with H K R rather
thanD E N. This is not very surprising as the reasons for the
choices given in Hrdy et al. (2004) are similar to the mo-
tivations for the saturation bins. Kosiol et al. (2003) simi-
larly desire choices of bins where rates of substitution are
high within bins but low between bins. However, their
bins differ substantially from the saturation bins here. Dif-
ferences may be due to their derivation from the Helan and
Goldman (WAG) and point accepted mutation (PAM) rate
matrices rather than JTT.

To some degree, the saturation bins also match up with
groupings based on the chemical similarities between the
groups; that is, bins based on hierarchical clustering of
the Grantham chemical property distance matrix which is
constructed entirely from chemical properties. The bins
match up to some degree but show a fair number of differ-
ences. Furthermore, the saturation bins also reflect group-
ings based on chemical properties described elsewhere (cf.
fig. 4.3 in Orengo et al. [2003] and Sections 2.4–2.6 of
Higgs et al. [2005]). For instance, the small hydroxylated
amino acids S and T are frequently together, and A, P and G
are often part of this group. The positively charged amino

FIG. 6.—Trees with bootstrap support for the chloroplast data estimated by applying the neighbor-joining algorithm. The top panels give trees from
ML distances from 12 and 13 minimax chi-squared bins. The bottom panels give trees from GTR distances with 2 GTR bins and with the original
amino acid data.
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acids K and R always group together; H on the other hand
tends not to group with these. The aromatic amino acids F
and Y tend to appear together but not withW andH. Another
notable grouping is the negatively charged amino acids D
and E. Because the saturation bins are directly a conse-
quence of empirical observations of the frequencies of ex-
change of amino acids, via the empirically derived JTT rate
matrix, it is clear, as anticipated, that these rates of exchange
are interlinked with chemical properties of the amino acids,
but are not solely determined by them.

Data set–based criteria for bins also showed some
similarities with saturation bins. For example, for the chlo-
roplast data, groups of amino acids like IV,KR, andCW that
occur in some saturation bins were in the 12-bin maximum
chi-squared solution that, excluding single amino acids,
consisted of the bins AIV,CW, EF,GN,KR, and LQS. There
are differences as well, however. For instance, the amino
acid A is never grouped with IV in the saturation bins.
As the chloroplast example illustrated there may be an
interaction between saturation and compositional heteroge-
neity that the alignment-based criteria are dealing with.
It seems plausible that, more generally, the root causes
of saturation and other problematic issues for phylogenetic
inference will be related to the causes of compositional
heterogeneity, so that bins constructed with compositional
homogeneity as a target may correct other problems as well.

The P values for the compositional heterogeneity tests
in table 2 are fairly large. When the number of bins is small,
one can overcorrect for compositional heterogeneity; dur-
ing the course of optimizations, a number of different bin
choices gave maximum chi-squared statistics consistent
with the chi-squared variation expected in the absence of
compositional difficulties. For smaller numbers of bins,
it thus seems clear that more model misspecifications could
potentially be fixed. The GTR bins considered here provide
an example where heterogeneity of entire rate matrices
rather than heterogeneity of composition is the target of cor-
rection. Because of the same types of sparseness issues that
arise with GTR distances in amino acids, this type of
method is primarily applicable when the number of bins
is small enough that matrix logarithms can be expected
to exist.

A somewhat surprising finding was that, in the ab-
sence of model misspecification, there was not too much
loss of information in binning amino acids and, moreover,
that using a (misspecified) binned Markov model as op-
posed to a MD method did not lead to substantial difficul-
ties. It appears that the model misspecification induced by
binning leads to increased variation but not to substantial
biases. The situation is likely more complex with real data
where model misspecification will usually be present both
when the data is represented in terms of bins and when it is
represented as amino acids.

The use of reduced amino acid alphabets will provide
a useful diagnostic tool in this era of large concatenated data
sets where information content is so high that concern rests
more with biases due to model misspecification rather than
with excess variance due to overly elaborate modeling. Dif-
fering, well-supported estimated trees for different choices
of bins provide evidence of difficulties and food for addi-
tional thought and investigation.
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