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ABSTRACT
Motivation: Expressed sequence tag (EST) surveys are an
efficient way to characterize large numbers of genes from
an organism. The rate of gene discovery in an EST sur-
vey depends on the degree of redundancy of the cDNA
libraries from which sequences are obtained. However, few
statistical methods have been developed to assess and com-
pare redundancies of various libraries from preliminary EST
surveys.
Results: We consider statistics for the comparison of EST lib-
raries based upon the frequencies with which genes occur in
subsamples of reads. These measures are useful in determ-
ining which one of several libraries is more likely to yield new
genes in future reads and what proportion of additional reads
one might want to take from the libraries in order to be likely to
obtain new genes. One approach is to compare single sample
measures that have been successfully used in species estim-
ation problems, such as coverage of a library, defined as the
proportion of the library that is represented in the given sample
of reads. Another single library measure is an estimate of the
expected number of additional genes that will be found in a
new sample of reads. We also propose statistics that jointly
use data from all the libraries. Analogous formulas for coverage
and the expected numbers of new genes are presented.These
measures consider coverage in a single library based upon
reads from all libraries and similarly, the expected numbers
of new genes that will be discovered by taking reads from all
libraries with fixed proportions. Together, the statistics presen-
ted provide useful comparative measures for the libraries that
can be used to guide sampling from each of the libraries to
maximize the rate of gene discovery.

Finally, we present tests for whether genes are equally
represented or expressed in a set of libraries. Binomial and
χ2 tests are presented for gene-by-gene comparisons of

∗To whom correspondence should be addressed.

expression. Overall tests of the equality of proportional repres-
entation are presented and multiple comparisons issues are
addressed. These methods can be used to evaluate changes
in gene expression reflected in the composition of EST librar-
ies prepared from different tissue types or cells exposed to
different environmental conditions.
Availability: Software will be made available at http://www.
mathstat.dal.ca/~tsusko
Contact: susko@mathstat.dal.ca

INTRODUCTION
Expressed sequence tag (EST) surveys are a powerful way to
quickly characterize expressed genes from a given organism
and are an efficient means for gene discovery in genomics pro-
jects (Gibson and Muse, 2002). In many cases, the redundancy
of highly expressed transcripts makes it necessary to perform
expensive and experimentally difficult ‘normalization’ pro-
tocols on cDNA libraries before large numbers of ESTs are
gathered from an organism. Normalization is intended to make
the frequencies of the genes in cDNA libraries more uniform
so that random clone selection and sequencing approaches
continue to yield sequences from genes that have not been
previously sampled even after a large number of sequences
has been obtained. However, currently, there are few, if any,
rigorous methods available to assess the relative redundancy
of various libraries prepared from the same organism or to
evaluate whether protocols such as normalization have been
successful. In this study, we present a number of statistical
methods that can be used to estimate and compare the rate
of gene discovery from clustered ESTs sampled from differ-
ent cDNA libraries. These methods are ultimately useful for
measuring the degree of redundancy of a library and in guid-
ing the selection of the numbers of clones to be sampled from
various cDNA libraries in the future to maximize the rate of
gene discovery.
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For a single library, the problem is completely analogous
to the problem of quantifying species frequencies, which has
found applications in vocabulary word problems and artifact
preservation models, based on observed samples of species.
Here, the role of species is played by genes. We present a
synthesis of some of the relevant single sample species liter-
ature. The main statistical measures for a single library that we
review are coverage (Good, 1953) and estimates of the expec-
ted number of new genes (Good and Toumlin, 1956). Several
interpretations can be given to coverage including the propor-
tion of genes in the library that are represented in the sample
of reads and the probability that a new read will already be
represented in the library. As such it provides a measure of
the uniformity of the library. For samples of the same sizes
from multiple libraries, the library with the larger coverage
probably has more redundant clones. An alternative single
sample statistic of interest is an estimate of the expected num-
ber of additional genes that will be found in a new sample
of reads. Both single sample statistics are non-parametric,
requiring only independent sampling of reads. For estimates of
the expected number of additional genes however, one obtains
highly variable non-parametric estimates when the number of
reads for which prediction is desired is larger than the number
of reads in the dataset. Less variable estimates of the expected
number of additional gene are obtainable through the negative
binomial model of Fisher et al. (1943).

Analogous coverage and expected number of gene statistics
can be constructed that adjust for overlap in the libraries. The
coverage in this case would be the coverage of a single library
from the samples of reads taken from all libraries. Coverage
here can alternatively be interpreted as the probability that
the next gene selected has already been sampled in any of the
libraries. The expected number of new genes in the multiple
library case is the expected number of new genes based on
fixed numbers of new reads in all libraries. Such statistics
allow a genomicist sequencing from two or more libraries to
monitor the coverage and likelihood of new genes being found
without having to separately consider the libraries.

EST surveys are not only useful for gene discovery, but are
often conducted to evaluate differences in gene expression in
different tissues or cells exposed to different conditions. For
instance, the question of interest could be whether the expres-
sion levels of a particular gene differ in libraries prepared from
different tissues as reflected by big differences in the number
of EST reads corresponding to that gene obtained from the
two libraries. Here the goals of EST surveys are similar to
those of micro-array analysis (Gibson and Muse, 2002) and
some of the same statistical issues arise. For a given gene, con-
ditioning upon the total number of reads in all libraries, we
present appropriate binomial and chi-squared test statistics for
detecting differences in expression. An overall test of whether
there are any differences in expression in the two libraries at
all is constructed by aggregating the individual gene test stat-
istics. Methods for comparing differences in expression have

been presented in Audic and Claverie (1997). The methods
presented here differ in that they do not require prior distribu-
tions and consequently have correct type I error probabilities
regardless of the distributions of genes in the libraries.

An outline of the article is as follows. In the next section
we describe the datasets that will provide running examples.
In the following section we present the multinomial sampling
framework and indicate what the single library measures are,
including a new variance estimate expression for the expec-
ted number of new genes estimate. The statistics that utilize
multiple library data are then presented. Finally methods for
detecting differences in proportional representation of genes
are presented. Proofs and more detailed derivations are given
in Supplementary material.

EXAMPLE DATASETS
Data obtained from two libraries from each of two different
organisms were utilized to test the proposed methods. ESTs
were obtained by randomly selecting and sequencing clones
from both non-normalized and normalized cDNA libraries
from the amitochondriate protist Mastigamoeba balamuthi.
In these cases, the normalized libraries were prepared from
the non-normalized libraries and therefore the non-normalized
library contains all the genes in the normalized library (but
not vice versa). For the second organism, Naegleria gruberi,
cDNA libraries were prepared from cells grown under differ-
ent culture conditions: cells cultured aerobically and anaer-
obically. In this case, the libraries were separately prepared
and will have some genes in common but will not necessarily
contain all the same genes (i.e. some genes expressed under
one culture condition may not be expressed under the other).
The results of these EST studies will be published elsewhere
and are used here only as test cases for the methods described.

Once EST data were obtained, the sequences were clustered
into groups of identical sequence by individual library
or by combining the two libraries using the base-calling
and contig assembly programs phred, phrap and consed
(Ewing et al., 1998; Ewing and Green, 1998; Gordon et al.,
1998) using default parameter settings. These programs and
detailed descriptions of the methods are available from http://
www.phrap.org

In this study we have treated the EST clustering proced-
ure as if there were no errors associated with it. Ideally,
as long as full-length cDNA clones and long, high quality
sequence reads are obtained all from the same end of the
cDNA of the library, this assumption should not be problem-
atic. However, as sequence read length and quality decreases
and variation in the degree of truncation of cDNAs increases,
it becomes possible for ESTs corresponding to the same genes
to fail to be clustered together. In this case the error inherent
in the clustering procedure could be significant and should
be taken into account before further analysis of the cluster-
ing output. However, this issue is beyond the scope of this
study.
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SINGLE LIBRARY STATISTICS
If reads can be considered independent then the summary data
for a single library is multinomial. Assuming that there are
N genes in the library of interest, let pi be the proportional
representation of gene i. A uniform library would have each
gene appearing with equal frequency, pi = 1/N , which would
simplify analysis greatly, but uniform libraries seldom arise.
Usually there are at least a few genes that are over-represented.
For a sample of n reads, let Xi be the number of times the
i-th gene is represented. Then (X1, . . . , XN) is multinomially
distributed:

P(X1 = x1, . . . , XN = xN) = n!
x1! · · · xN !p

x1
1 · · · pxN

N .

What complicates analysis greatly is that any gene that is not
represented in the sample of reads is not known to be in the
library, or, in other words any xi with xi = 0 is unobserved.
Indeed N is not known. An alternative description of the data
that is useful is given by nx , the number of genes that were
represented x times in the sample of reads, x = 1, . . . . Note
that nx is the size of a subset of genes and that nx = 0 for
x > n.

Coverage
The first single library statistic we consider is coverage.
Coverage is the proportion of the library that appears in the
sample of reads

C =
N∑

i=1

piI (Xi > 0). (1)

Here I (A) is an indicator of A : I (A) = 1 if A is true and 0
otherwise. For example, consider a sample of 10 reads with
eight reads corresponding to a single gene, say gene 1, and 2
reads corresponding to another gene, gene 2. If the propor-
tional representation of gene 1 in the library was p1 = 0.3 and
p2 = 0.1 then C = 0.4. Note that since the pi are unknown,
coverage must be estimated and that even if thepi were known,
coverage would be a random quantity since it changes from
sample to sample. An alternative interpretation for coverage
comes from its expectation, 1 − ∑

i pi(1 − pi)
n which is the

probability that the next read is for a gene that has already
been represented in the family of reads; for a derivation see
the section entitled ‘Expected coverage’ in the Supplement-
ary material. Thus a large value of coverage implies that the
likelihood of new discovery is small.

The approximately unbiased estimate of coverage that is
most frequently used is

Ĉ = 1 − n1/n. (2)

Recall that n is the number of genes that appear exactly once
in the sample so that its expectation is the sum, over genes, of
the probabilities that the genes appear exactly once which is

approximately 1 − ∑
i pi(1 − pi)

n. If the number of genes,
N , in the library and the number of sampled genes, n is larger,
then generally C − Ĉ is approximately normally distributed
with mean 0 and standard error

se(Ĉ) = n−1/2[(n1/n) + (2n2/n) − (n1/n)2]1/2. (3)

See the section ‘Standard error for coverage’ in the Supple-
mentary material. A (1 − α) × 100% confidence interval is
thus given by Ĉ±zα/2se(Ĉ).

Coverage was first discussed in Good (1953) who attributed
it to Turing which led estimates of this form to sometimes be
referred to as Turing-type estimates. Since then coverage has
received a considerable amount of additional attention not-
ably in Good and Toumlin (1956), Robbins (1968) and Esty
(1983). In particular, Esty (1983) established normality res-
ults and derived its standard error. For the Naegleria dataset
the coverages were 0.64 (0.02) for the aerobic library and
0.49 (0.02) for the anaerobic library based on n = 959 and
969 reads, respectively; standard errors are indicated in brack-
ets. For the normalized Mastigamoeba library the coverage
was 0.45 (0.03) based on 363 reads. Surprisingly, since nor-
malization is supposed to lead to more uniform libraries, the
coverage for the non-normalized library is approximately the
same, 0.47 (0.02), based on 715 reads.

The expected number of reads required to
discover a new gene
There is a close relationship between coverage and the expec-
ted number of reads required to discover a new gene. Consider
the probability that no new genes are discovered in the first
k − 1 reads and a new gene is discovered on the k-th read.
Independently at any one of the first k − 1 reads the probab-
ility that the next read corresponds to a new gene is equal to
the coverage at the time of the previous read. However, since
no new genes are found in the first k − 1 reads the cover-
age remains constant. Thus the probability that the first k − 1
reads result in no new genes is Ck−1. Since the coverage at the
k − 1st read is still C, the probability that k reads are required
to find a new gene is described by the well-known geometric
distribution, p(k) = Ck−1(1 −C), from which it follows that
the expected number of reads required to discover a new gene
is 1/(1−C). The standard error for the estimate, 1/(1−Ĉ), of
this expectation can be derived from the standard error for Ĉ

using the delta-method as se(Ĉ)/(1− Ĉ). The expected num-
ber of reads required to discover a new gene can be thought of
as a simple redundancy index for a library. The expected num-
ber of reads for a new gene and confidence intervals, based
on single library data, for the two example datasets are given
in the last three columns of Table 1.

The expected number of new genes
An alternative single library statistic is the expected number
of new genes, first derived in Good and Toumlin (1956) and
considered in Efron and Thisted (1976) as well. Let ηx denote
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Table 1. The single and two library estimates of the expected number of new
reads required to find a new gene

Library Two library data Single library data
Reads 95% CI Reads 95% CI

Naegleria Aerobic 3.38 (3.27, 3.49) 2.77 (2.67, 2.88)
Naegleria Anaerobic 2.30 (2.22, 2.38) 1.97 (1.90, 2.05)
Mastigamoeba Non-normalized 1.91 (1.83, 1.98) 1.89 (1.81, 1.97)
Mastigamoeba Normalized 2.02 (1.90, 2.13) 1.82 (1.70, 1.93)

the expected value of nx , the number of genes that will be rep-
resented x times in the a sample of n reads. Then the expected
number of new genes, �(t), that will be found in a sample of
size tn, where t ∈ (0, ∞), is related to the ηx through

�(t) ≈
∞∑

x=1

(−1)x+1txηx . (4)

The usual non-parametric estimate �̂(t) is obtained by sub-
stituting nx for its expectation ηx . As is shown in the section
‘Expected number of new genes’ in the Supplementary mater-
ial, even with n as small as 100, the approximation for t ≤ 1
is quite good as long as no single gene has proportional rep-
resentation >50% in the library. As is shown in the section
‘Standard error for expected new genes’ in the Supplementary
material, the asymptotic variance is given by

∑
x≥1

t2xηx − n−1
{ ∑

x≥1

(−1)x+1tx[xηx − (x + 1)ηx+1]
}2

−
∑
x≥1

ηx(−1)x[1 − 2(1 + t)x + (1 + 2t)x]. (5)

An example of the expected numbers of new genes with
confidence bands for a Mastigamoeba library dataset is given
for both normalized and non-normalized libraries in Figure 1.
There is no overlap in the confidence regions and the expec-
ted number of genes for the non-normalized is larger than for
the normalized library at the same new sample size indicat-
ing that sampling from this library is more likely to lead to
new genes.

Since (4) is a sum of powers of t , for t > 1 the dom-
inant contributions to the sum will come from nx for large
x. For instance, with t = 2, if most genes appeared in less
then 10 reads but one gene appeared 30 times, the contribu-
tion to the sum from that one gene will be −230 and �̂(t)

might quite possibly be negative as a consequence. If another
read was taken and turned out to correspond to the gene that
had appeared 30 times, the contribution would be 231 res-
ulting in an enormous change (231 + 230) in �̂(t). In short,
for non-uniform libraries, where some large clusters of reads
can be expected, �̂(t) is usually highly variable and unstable
for t > 1. A similar problem arises with the third sum of (5)
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Fig. 1. Estimates of the expected numbers of new genes as a func-
tion of the size of a sample of new genes. The central lines give
the estimates and the surrounding lines give 95% confidence bands.
These plots are for the Mastigamoeba library dataset; normalized
and non-normalized libraries.

since its terms are also powers of numbers that are greater
than 1. One possible solution is to substitute less variable
parametric estimates of ηx rather than the observed counts
nx . The possible shortcoming with this approach is that the
parametric models might not provide good fits to the data.
However chi-squared goodness of fit statistics can be calcu-
lated to check the parametric fits and for most of the datasets
we considered, a truncated negative binomial model provided
a good fit to the data. The bad behaviour of non-parametric
estimates of �(t) for t > 1 and the improvements provided
by parametric estimates is illustrated in Figure 2 where �̂(t)

is plotted as a function of t for both non-parametric and para-
metric estimates of �(t). One can see that while the estimates
are in reasonable agreement for t < 1, they start to diverge for
t > 1 with the non-parametric estimate eventually becoming
negative.

The truncated negative binomial model considered is the
one of Fisher et al. (1943). It is defined by specifying the
probability that a randomly selected gene appears x times,

p(x) ∝ �(x + α)

x!�(1 + α)
γ x−1, x = 1, . . . . (6)

If the model is fitted to all available data, α > 0 is required,
however as in Fisher et al. (1943) and Efron and Thisted
(1976), more flexible models with α > −1 and γ > 0 can be
fit by restricting attention to genes that appeared between 1 and
x0 times. In the examples we considered we used x0 = 10
since genes with larger numbers of reads than this are rare.
In this case, the model can be fit with maximum likelihood
to the data (n1, . . . , nx0) treating the individual p(x) as mul-
tinomial probabilities for x = 1, . . . , x0. The constant of
proportionality for p(x) is obtained by rescaling to ensure∑x0

x=1 p(x) = 1. The expected number of new genes �(t)
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Fig. 2. Estimates of the expected numbers of new genes in a new
sample of size tn as a function of the multiple t of the original sample
size n. The estimated numbers are given for both parametric and non-
parametric estimation for the Mastigamoeba library dataset. Note the
difference in behaviour for t > 1.

can then be calculated by substituting expressions for ηx cal-
culated under (6) with the estimated α and γ . The resulting
sum �(t) simplifies to

�(t) = η1α
−1γ −1{1 − (1 + γ t)−α}, (7)

so that a parametric estimate of �(t) can be obtained by sub-
stituting maximum likelihood estimates for α and γ ; which
determines η1 as well.

The truncated negative binomial model was fitted to the
example datasets with x0 = 10. The smallest p-value for a
chi-square goodness-of-fit test of the parameteric model was
0.615 indicating that for each dataset the paramteric model
was reasonable. Indeed, some of the p-values were quite large
because of a very good fit of the expected counts under the
parametric model to what was observed. The truncated neg-
ative binomial model described above, that allows α < 0,
was required however, as was indicated by the small α estim-
ates for each of the datasets; each was less than −0.5. The
big advantage with the parametric model is that the expected
numbers of new genes can be calculated for new sample sizes
greater than the original sample size (t > 1). This is illus-
trated in Figure 2 where reasonable parameter estimates are
obtained for 0 ≤ t ≤ 2. Because of the small α parameter, one
can see from (7) that the expected number of new genes will
be almost linear as a function of t as is evident in Figure 2.

MULTIPLE LIBRARY STATISTICS
Additional subscripts are required to discuss the multiple lib-
rary case. Here pij , nj and Xij are the pi , n and Xi values
for the j -th library, j = 1, . . . , m; here i indexes the N genes
that are present in any library and, for instance, pi1 = 0 if a
gene is not present in library 1 but is present in at least one

of the other libraries. The notation nx1···xm
differs however,

denoting the number of genes that appeared xj times in lib-
rary j , j = 1, . . . , m; ηx1···xm

denotes the expected value of
nx1···xm

. Since the labels of the libraries are arbitrary, it suffices
to consider statistical measures for library 1.

COVERAGE
Coverage for the first library is

C1 =
∑

i

pi1δi , (8)

where δi = 1 if gene i is represented among reads from any
of the libraries and δi = 0 otherwise. The estimate of C1 is

Ĉ1 = 1 − n10···0/n1. (9)

As indicated in the appendix, generally, C1−Ĉ1 can be expec-
ted to be approximately normally distributed with mean 0 and
standard error.

se(Ĉ1) = n
−1/2
1

[
(n10···0/n1) + (2n20···0/n1)

− (n10···0/n1)
2
]1/2

. (10)

Because two sample coverage is an estimate of the coverage
of a given library from the reads taken from any of the librar-
ies, it will be larger than coverage based on reads from a single
library. Similarly, the expected number of reads from a given
library needed to discover a new gene for any of the librar-
ies, which is calculated as 1/(1 − Ĉ1), will be larger than the
expected number of reads from a single library. This is indic-
ated in Table 1 which gives the expected numbers of reads
for two libraries based on both single and two library data.
The estimated decrease in the expected number of reads due
to using two library data is most noticeable for the Naegleria
libraries.

The expected number of new genes
The expected number of new genes, �(t1, . . . , tm), that will be
found in a sample of nj tj reads from library j , j = 1, . . . , m,
is related to the ηx1···xm

through

�(t1, . . . , tm) ≈ −
∑

x1+···+xm≥1

ηx1···xm

m∏
j=1

(−tj )
xj . (11)

An estimate, �̂(t1, . . . , tm), is obtained by substituting
nx1···xm

for ηx1···xm
. As with the single library estimate �(t),

�(t1, . . . , tm) becomes highly variable when any tj > 1.
An alternative useful function in the two library case that

one can obtain from (11) is the expected number of genes
from a fixed number of new reads from both libraries. Given
a fixed number n of new reads, the expected number of new
genes can be obtained as a function of the number of new reads
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Fig. 3. Estimates of the expected numbers of new genes for the
Mastigamoeba library data set for a fixed number, n = 600, new
reads, as a function of the number of reads (n′

1) from the normalized
library. In this case, for any given n′

1, the corresponding number from
the non-normalized library would be n′

2 = 600 − n′
1.

from library 1, n′
1, by solving n′

1 = t1n1 and t1n1 + t2n2 = n

to obtain the t1 and t2 that should be substituted in (11). An
example plot of such a function is given in Figure 3 with
n = 600. Since the function is decreasing it suggests that all
new reads should be taken from the non-normalized library,
however, the slow rate of decrease in the range of 0–300 reads
indicates that taking as much as an even split of reads from
both libraries will not appreciably affect the expected number
of new genes.

TESTING EQUALITY OF PROPORTIONAL
REPRESENTATION
Answers to questions about the expected numbers of new
genes, coverage and the probability of finding new genes
are of particular interest when dealing with differing librar-
ies, often normalized versus non-normalized, obtained under
similar conditions. However, often the libraries under compar-
ison are prepared from different tissues of the same organism
or cells exposed to different environmental conditions. A
primary question of interest in these cases is whether there are
differences in gene expression that are reflected in the compos-
ition of the different libraries. An example is provided by the
two Naegleria libraries which were prepared from cells cul-
tured aerobically and anaerobically. For these two conditions
one expects different gene expression profiles that indicate
how this primarily aerobic organism responds biochemically
to oxygen deprivation. Although the general goals here are the
same as those of a micro-array based analysis, the nature of
the data gathered is quite different. For instance, in contrast to
micro-array data where gene expression is measured as con-
tinuous variation in intensities of spots, in EST surveys, the
expression level of a given gene is described as the numbers
of times, x1, . . . , xm that the gene was encountered in samples
of size n1, . . . , nm from the m libraries. Genes for which the

x′
is are highly variable can be expected to be differentially

expressed. Because the xis are discrete there may be several
genes with the same observed ‘expression’. For instance, with
two library data, 10 genes might share the property that reads
for them came up five times in one library and eight times
in the other. Below we discuss comparison of expression on
a gene-by-gene basis, adjustments for the large numbers of
comparisons that are being made and give an overall test of
whether there are any differences in expression at all.

Tests of expression for a gene
We will fix a gene for which an expression comparison is of
interest and let X1, . . . , Xm denote the numbers of reads of the
gene amongst the m libraries. Then, independently, each Xi

has a binomial distribution with size parameter ni and probab-
ility parameter pi , the proportional representation of the gene
in library i. Because ni is usually large and pi is small, the Xi

have an approximate Poisson distribution with rate parameter
nipi . The null hypothesis of interest is H0 : p1 = · · · = pm.

Two library case In the two library case (m = 2), which is
the main case that has been of interest here, an optimal test
in the sense of being uniformly most powerful and unbiased
can be calculated (Lehmann, 1991, pp. 145–156). It is a con-
ditional test that rejects the null hypothesis when X1 is less
than c1 or greater than c2. The constants c1 and c2 must be
calculated for an α level test so that

P(X1 < c1|X1 + X2 = t) + P(X1 > c2|X1 + X2 = t) ≤ α.
(12)

In order for the test to be optimal, the constants c1 and c2 must
be chosen to satisfy the Equations (18) and (19) of Lehmann
(1991, p. 147). In practice, c1 and c2 are usually taken as the
α/2 and (1 − α/2)-th quantile of the conditional distribution
of X1 given X1 + X2 = t which often coincides with, and
approximately agrees with, the c1 and c2 that one would obtain
solving the equations giving the optimal test. The distribution
of X1|X1 + X2 = t is hypergeometric but for most EST
applications, t and x for any given gene are small relative
to n1, n2. In this case, the hypergeometric distribution is well
approximated by a binomial distribution with size parameter t

and probability parameter n1/(n1 + n2).
Methods for comparing expression across two libraries have

been discussed previously in Audic and Claverie (1997). They
derive a form of a ‘conditional distribution’ of p(X1|X2)

for testing and reject the null if X1 is large or small relat-
ive to what would be expected under p(X1|X2). Audic and
Claverie’s derivation of p(X1|X2) assumes a prior distribu-
tion for the proportional representations of genes. Although
they favour a uniform prior, different priors can be used and
give different critical regions. Assuming a uniform prior in
this case is akin to assuming that in both libraries genes are
uniformly distributed which need not be the case even in the
null hypothesis of equality of representation for a given gene
is true. Surprisingly, given the very different derivations, we
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found the critical regions for the two library test considered
in were not very different in at least some cases. In particular,
the critical regions given in Table 1 of Audic and Claverie
(1997) are in reasonable agreement with the critical regions
resulting from (12). Nevertheless the test presented here, as
a uniformly most powerful unbiased test, is more soundly
supported by theory.

Multiple libraries For multiple libraries, a test can be con-
structed using the conditional distribution of (X1, . . . , Xm),
given that

∑
Xi = t , which under the null hypothesis is

approximately multinomial with size parameter t and prob-
ability parameters n1/n·, . . . , nm/n· where n· = ∑

ni . Thus,
if the null hypothesis is true, the expected value of Xi is
t × ni/n·. A chi-square statistic provides a natural statistic
for comparing observeds and expecteds:

χ2(x1, . . . , xm) =
m∑

i=1

(xi − tni/n·)2/(tni/n·). (13)

The p-value for this test is obtained as the probability,
under the null hypothesis, that a random chi-square statistic is
larger than the observed statistic. For large t , the distribution of
a random chi-square statistic is approximately chi-square with
m−1 degrees of freedom. Unfortunately t is often not large for
the comparisons considered. There is a large body of experi-
ence with χ2 tests, which in the present context indicates that
use of the chi-square distribution gives reasonable approxim-
ations even for tni/n· ≥ 5. For smaller values of t the number
of possible (x1, . . . , xm) that sum to t becomes small so that
the p-value can be computed by summing multinomial prob-
abilities, from the multinomial distribution described above,
of all choices of x1, . . . , xm that yield larger values of the
chi-square statistic than the one that was observed.

Adjusting for multiple comparisons Tests of differences in
expression for a single gene can be conducted using the chi-
square or binomial test statistics described above. For a single
gene, the probability of a false positive can be controlled to be
small but when a large number of genes are tested, the overall
probability that a false positive will be found becomes large
unless a multiple comparisons adjustment is made. The adjust-
ment that we use is described in Benjamini and Hochberg
(1995) and controls the probability of experiment-wise false
positives at less than α. It is simply described:

(1) Order the distinct p-values from smallest to largest:
p(1) < p(2) . . . , and let Nj denote the number of genes
that gave p-value p(j).

(2) Reject the hypotheses corresponding to the k smallest
p-values, where k is the largest i for which

p(i) < α

i∑
j=1

Nj/N .

Here N is total number of distinct genes. The Benjamini
and Hochberg correction ensures that the probability of
experiment-wise false positives is less than α. The actual prob-
ability of experiment-wise false positives can be much less
than α. In addition the probability of false positives on a gene-
by-gene basis will be much smaller than α. Thus it provides
conservative decision rules about rejection that can be con-
trasted with the liberal decision rules implied by comparison
of p-values to α.

An overall test of the equality of proportional
representation
Whether one is interested in differences in expression or in
comparing normalized and non-normalized libraries, one of
the questions of interest is whether the frequencies of appear-
ance, pi1, . . . , pim of the genes that were sampled are the same
in each library across all genes; i.e. H0 : pi1 = · · · = pim for
all i. In an analysis of gene expression differences, this hypo-
thesis would provide the appropriate initial question, namely,
are there any differences in expression at all? In the case that
the answer to this question is yes, the follow-up question of
interest is which genes have differences in expression? The
methods of the previous subsections are applicable to this
question. The reason that we have chosen to describe tests of
this hypothesis after describing tests for gene-by-gene com-
parisons is that the chi-square tests used on a gene-by-gene
basis can be aggregated to produce an overall test statistic.

Under the null hypothesis that pi1 = · · · = pim,

td :=
∑

x1···xm

nx1···xm
χ2(x1, . . . , xm) − (m − 1), (14)

has a mean of 0. A standard error for this test statistic, under
the null hypothesis can be shown to be given by

se(td )2 =
∑

x1···xm

nx1···xm [χ2(x1, . . . , xm) − (m − 1)]2

−
m∑

j=1

{ ∑
x1···xm

nx1···xm [χ2(x1, . . . , xm) − (m − 1)]xj

}2/
nj .

(15)

Under the null hypothesis, td/se(td)has a large sampleN(0, 1)

distribution and so a p-value for a test of H0 : pi1 =
· · · = pim, all i P r(Z > td/se(td) where Z has a N(0, 1)

distribution.
While se(td) is a valid standard error when the null hypo-

thesis is true and is be expected to be positive with large
samples, it can turn out to be negative. To provide a con-
servative approach that is less likely to reject, one can ignore
the second two sums in (15), resulting in the standard error
estimate

se2(td)2 =
∑

x1···xm

nx1···xm
[χ2(x1, . . . , xm) − (m − 1)]2.

The resulting test statistic, td/se2(td) is guaranteed to be pos-
itive but the standard error will be inflated. We conducted
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Table 2. The results of the binomial tests of equality of proportional
representation for Naegleria library (n1 = 959, n2 = 969)

N x y p-value Reject Null

1 55 14 5.57e−07 Yes
1 0 13 2.61e−04 No
1 12 0 4.59e−04 No
1 18 4 4.03e−03 No
1 11 1 6.02e−03 No
1 17 4 6.71e−03 No
1 0 8 8.14e−03 No
1 10 1 1.12e−02 No
2 6 0 3.03e−02 No
3 10 2 3.69e−02 No
1 16 6 4.95e−02 No

Here N indicates the number of genes that appeared x times in the aerobic library
and y times in the anaerobic library with the p-value being the next entry in the row.
Also listed is the Benjamini and Hochberg decision rule when the false positive rate is
controlled at α = 0.05.

Table 3. The results of the binomial tests of equality of proportional
representation for the Mastigamoeba library (n1 = 363, n2 = 715)

N x y p-value Reject Null

1 6 0 0.002 No
1 9 3 0.008 No
1 7 2 0.017 No
2 4 0 0.025 No
8 3 0 0.076 No
1 0 7 0.113 No
1 14 15 0.147 No
1 0 6 0.170 No
2 3 15 0.193 No

12 2 0 0.226 No

For each gene, x gives the number of reads in the normalized library and y the number
in the non-normalized library.

simulation studies to check whether this significantly affected
the null and alternative distributions and found that it did not.

Application to the example data
The p-values for the test of H0 : pi1 = · · · = pim,
all i were small for each of the libraries: <10−5 for the
Naegleria library and equal to 0.0004 for the Mastigamoeba
libraries, which perhaps not surprisingly gave the most sim-
ilar coverage values. Since there appear to be differences
of proportional representation of genes in the libraries, the
follow-up question is which genes those differences corres-
pond to. Tables 2 and 3 give the 10 smallest distinct p-values
and the Benjamini and Hochberg decision rule when the false
positive rate is controlled at less than α = 0.05. Among
each of the libraries it is apparent that there are a small

number of genes that have different proportional representa-
tions. For the Mastigamoeba libraries, none of the hypotheses
about differences in proportion representation is rejected even
though the overall test rejected the hypothesis of equality
of proportional representation. This reflects the conservat-
ive nature of the multiple comparisons adjustment. For the
Naegleria libraries (Table 2) one gene displays a significant
difference in proportional representation between the two lib-
raries. In this case, the gene was sampled 55 times in the
aerobic and 14 in the anaerobic library. Further investiga-
tion showed that this gene codes for the translation elongation
factor 1α, a protein that is a key component of the translation
apparatus in all cells. The significant difference in expression
of this gene between aerobic and anaerobic conditions makes
sense since cells growing aerobically are rapidly dividing and
need to produce proteins quickly and hence have a high expre-
sion of translational proteins. On the other hand, anaerobically
cultured cells grow very slowly (if at all) and are stressed and
therefore produce much less protein. This case illustrates the
potential usefulness of this statistical test in identifying genes
that are differentially expressed in EST surveys.

CONCLUSIONS
We have presented two measures for the comparison of librar-
ies: coverage or, equivalently, the expected number of reads
for a new gene, and the expected number of genes for a given
number of reads. Coverage is a simple measure of uniformity
and most directly monitors the information about the library
contained in a given collection of reads. The expected num-
ber of new genes is easily interpretable and allows one to
ascertain the performance of the library for a larger extrapol-
ation of new reads. Difficulties in extrapolation occur when
the new number of reads exceeds the current number of reads,
in which case parametric models like the negative binomial
model considered here may be useful. The measures have
been presented for both single and multiple library cases. The
advantage with the multiple library formulas are that they take
into account the additional information about overlap between
libraries and therefore allow one to optimize future sequencing
efforts by recommending the relative proportions one should
sample from the libraries to maximize gene discovery.

Curiously, in the two cases examined here where normalized
libraries had been constructed to decrease the redundancy of
the original library, it appears that the normalization procedure
was not successful. Indeed, a maximum rate of gene discov-
ery would be achieved in both cases by sampling ESTs only
from the non-normalized libraries. This kind of information
is extremely invaluable to the researcher in order to assess the
quality of cDNA libraries and to avoid wasting time and money
on producing redundant ESTs from poor quality libraries.

The other class of EST library comparison problem that we
have considered is gene-by-gene and overall comparisons of
proportional representation of genes in the libraries. The tests
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presented are conditional tests, conditioning upon the total
numbers of reads for each of the genes in all the libraries.
The use of conditional statistics is important. First, in the two
library case, it yields a uniformly most powerful, unbiased
test. Second, it avoids some of the subtle difficulties that might
arise with other tests of the equality of several proportions.
These difficulties include the use of large sample distributions
that fit poorly when the numbers of reads for a given gene
comparison are small as well as what might be referred to as
a truncation issue: the fact that we never make comparisons
between libraries for genes which did not yield reads in any
of the libraries.
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