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This document contains material that was a part of the manuscript “Estimating and

comparing the rates of gene discovery and expressed sequence tag (EST) frequencies in EST

surveys” but was deleted in the interests of shortening the presentation. It provides useful

additional material, including:

• Derivations and additional details associated with the results and methods presented.

• A table with an example data set. The results of clustering data from individual

libraries for Mastigamoeba are shown in Table 1.

• A table with the estimated coverages and confidence intervals for the example data

sets; Table 2.
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• A table giving the negative binomial parameters for the example data sets.

• A figure giving the expected numbers of new genes as a function of the numbers of new

reads from the Mastigamoeba libraries; Figure 1.

As with the single library estimate 4(t), 4(t1, . . . , tm) becomes highly variable when

any tj > 1. Since the sample size for the non-normalized Mastigamoeba library was

larger than for the normalized library, the contours are plotted for a larger range of

sample sizes from the non-normalized library. Because the counts n01 and n10 are much

larger than most of the other counts the contours here are almost linear.

• A figure giving the histograms of simulated test statistics under both the null and

alternative hypothesis for the overall test of the equality of proportional representation.

The resulting test statistic, td/se2(td), for the test of the equality of proportional rep-

resentation is guaranteed to be positive but the standard error will be inflated. We

conducted simulation studies to check whether this significantly affected the null and

alternative distributions and found that it did not. Plots of the simulated td/se2(td) for

simulations conducted under the null and alternative distributions are given in Figure

2. One can see that a N(0, 1) curve provides a good approximation to the null distri-

bution while the distribution is shifted to the right under the alternative distribution.

In both simulations, 2 libraries were considered and 1000 reads were generated from
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each library. The proportions, pi, of genes for the libraries were created by generating a

set of numbers, λi, from the gamma distribution and then normalizing: pi = λi/
∑

i λi.

For the null simulations 5000 genes were in the common library. For the alternative

simulation, 5000 genes were in one library with the other library containing 70% of

these genes. For the alternative simulation, both libraries had pi’s that were separately

generated from the gamma distribution as described above.

DERIVATIONS

Expected coverage - multiple libraries

We derive the result for the general case of multiple libraries. In the single library case,

n would replace n1 below and n1 would replace n10···0 in what follows. The expectation of C1

is

E[
∑

i

pi1δi] = E[1−
∑

i

pi1I(Xi1 = 0, . . . , Xim = 0)]

= 1−
∑

i

pi1P (Xi1 = 0, . . . , Xim = 0)

= 1−
∑

i

pi1

m∏
j=1

(1− pij)
nj
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If n1 is large the expectation of C1 will be approximately the same as the expectation of Ĉ1:

E[1− n10···0/n1] = E[1− n−1
1

∑
I(Xi1 = 1, Xi2 = 0, . . . , Xim = 0)]

= 1−
∑

i

n−1
1 P (Xi1 = 1, Xi2 = 0, . . . , Xim = 0)

= 1−
∑

i

pi1(1− pi1)
n1−1

m∏
j=2

(1− pij)
nj

Expected new genes - multiple libraries

To see that (11) in the main text is approximately the expected number of new genes,

note that

−
∑

x1+···+xm≥1

ηx1···xm

m∏
j=1

(−tj)
xj = −

N∑
i=1

m∏
j=1

(−tj)
Xijδi (1)

Since δi = 1− I(Xi1 = 0, . . . , Xim = 0), the expectation of any individual term in the sum is

−
m∏

j=1

E[(−tj)
Xij ] + P (Xi1 = 0, . . . , Xim = 0)

which gives

−
∑

x1+···+xm≥1

ηx1···xm

m∏
j=1

(−tj)
xj =

N∑
i=1

{
m∏

j=1

(1− pij)
nj −

m∏
j=1

[1− pij(1 + tj)]
nj} (2)

The number of new genes can be expressed in terms of indicator functions as
∑N

i=1 δ′i where

δ′i is 1 if gene i did not appear in any of the libraries in the initial reads, but does appear in

at least one of the libraries in the new reads. Since new and old reads are independent, the

expectation of δ′i or, equivalently, the probability δ′i = 1 is equal to
∏

j(1 − pij)
nj times the



Comparing EST Libraries 5

probability that the gene does appear in the new reads for at least one of the libraries. This

is calculated as 1−
∏

j(1− pij)
tjnj and so the expected number of new genes is

N∑
i=1

{
m∏

j=1

(1− pij)
nj −

m∏
j=1

(1− pij)
nj(1+tj)} (3)

Using that (1 + x/n)n ≈ exp(x) for n large, we get that

(1− pij)
nj(1+tj) ≈ exp[−nj(1 + tj)pij]

≈ [1− pij(1 + tj)]
nj

which implies that the individual terms in both (2) and (3) are approximately the same.

Even with nj as small as 100, the approximation is quite good for pij(1 + tj) < 1, which for

tj ≤ 1 means that there should not be a single gene that appears more than 50% of the time

in any library.

Standard Error for expected new genes - single library

To obtain standard error formulae, we consider characteristic function argmuents similar

to those of Bartlett (1938), Holst (1979) and Esty (1983). The goal is to obtain a limiting

distribution for a statistic of the form
∑N

k=1 fk(Xk). We are interested in

4̂(t)−4(t) = N1/2

N∑
k=1

fk(Xk)

where

fk(Xk) = N−1/2
∑

x

(−1)x+1tx[I(Xk = x)− pk(x)] (4)
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Since the statistic of interest is a sum of random variables it might be expected that a central

limit type result applies. The difficulty is that the Xk come from a multinomial distribution

implying that they are dependent. This difficulty is overcome by using the relationship

between the Poisson and multinomial distributions.

Theorem 1. Let Yk be independent Poisson random variables with mean npk, k = 1, . . . , N.

Suppose that conditions sufficient for the large sample normality,

[
∑

fk(Yk), n
−1/2

∑
(Yk − npk)]

T →d N(0, Σ)

as N →∞, hold. Then, for large n,
∑

fk(Xk) ∼ N(0, Σ11 − Σ2
12).

Since the Yk are independent, it can be expected that a central limit theorem will hold.

Because the Yk are not identically distributed, conditions under which this will be the case

are difficult to specify exactly but at the least require that that most of the pi be small. In

other words, the approximations here will be useful when a large number of genes are present

in the library.

Proof. Let φ(s) denote the characteristic function of the statistic of interest
∑

fk(Xk).

As indicated in Bartlett (1938) (see also Holst 1979 and Esty 1983), φ(s) is related to the

characteristic function φ(s, t) for
∑

fk(Yk) and n−1/2
∑

(Yk − npk) through

φ(s) = [2πn1/2P (
∑

Yk = n)]−1

∫ πn1/2

−πn1/2

φ(s, t) dt (5)
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Stirlings formula gives that n1/2P (
∑

Yk = n) ≈ (2π)−1/2 so that

φ(s) ≈ [2π]−1/2

∫ ∞

−∞
φ(s, t) dt (6)

Since conditions for the central limit theorem are met, φ(t, s) converges to the character-

istic function of a normal variate with mean 0 and covariance matrix Σ. The variance for

n−1/2
∑

(Yk − npk) is calculated as Σ22 = 1, and so we have that

φ(s, t) ≈ exp(−[Σ11s
2 + 2Σ12st + t2]/2

= exp(−[s2(Σ11 − Σ2
12) + (t + 2sΣ12)

2]/2)

Substituting this into (6), which can be justified using arguments similar to those of theorem

2 of Holst (1979), we get

φ(s) ≈ exp(−[s2(Σ11−Σ2
12)]/2)×[2π]−1/2

∫ ∞

−∞
exp(−[(t+2sΣ12)

2/2) dt = exp(−[s2(Σ11−Σ2
12)]/2)

which is the characteristic function for a N(0, Σ11 − Σ2
12) variate. 2

Calculation of standard errors now amounts to calculation of the variances and covariances

of n−1/2
∑

(Yk − npk) and
∑

fk(Yk) where the Yk are independent Poisson random variables,

rather than calculation under the original multinomial model for the Xk.

With fk(Xk) as in (4), calculation under the Poisson model gives

Σ11 = N−1
∑
x≥1

t2xηk −N−1
∑

k

[
∑

x

(−1)x+1txpk(x)]2
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and

Σ12 = n−1/2N−1/2
∑
x≥1

(−1)x+1tx(xηx − (x + 1)ηx+1)

To obtain an expression that allows estimation of the second term in Σ11 we calculate

∑
k

[
∑

x

(−1)x+1txpk(x)]2 =
∑

k

[exp(−2npk)− 2 exp(−npkt) + exp(−2npkt)]

and use the fact that E[aYk ] = exp[−npk(1 + a)] to justify that

E{(−1)Yk [1− 2(1+ t)Yk +(1+2t)Yk ]I(Yk > 0)} = exp(−2npk)− 2 exp(−npkt)+ exp(−2npkt)

Thus

Σ11 = N−1
∑
x≥1

t2xηx −N−1
∑

k

E[(−1)Yk [1− 2(1 + t)Yk + (1 + 2t)Yk ]I(Yk > 0)}

= N−1
∑
x≥1

t2xηx −N−1
∑
x≥1

ηx(−1)x[1− 2(1 + t)x + (1 + 2t)x]

Since the variance of 4̂(t) is N times the variance of
∑

fk(Xk) we obtain (5) of the main

text.

Standard Error for coverage - multiple libraries

For coverage we are interested in the distribution of

C1 − Ĉ1 = N1/2

N∑
k=1

fk(Xk1, . . . , Xkm)

where

fk(Xk1, . . . , Xkm) = N−1/2[n−1
1 I(Xk1 = 1, Xk2 = 0, . . . , Xkm = 0)−pk1I(Xk1 = 0, . . . , Xkm = 0)]

(7)
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Similarly as in the single library case we obtain

Theorem 2. Let Yk1, . . . , Ykm be independent Poisson random variables with means njpkj,

k = 1, . . . , N. Suppose that conditions sufficient for the large sample normality,

[
∑

fk(Yk1, . . . , Ykm), n
−1/2
1

∑
(Yk1 − n1pk1), . . . , n

−1/2
m

∑
(Ykm − nmpkm)]T →d N(0, Σ)

as N →∞, hold. Then, for large n1, . . . , nm,
∑

fk(Xk1, . . . , Ykm) ∼ N(0, Σ11 − ||Σ12||2).

Here Σ12 is the vector of covariances between
∑

fk(Yk1, . . . , Ykm) and the other compo-

nents.

Proof. A relationship between the characteristic function φ(r) of
∑

fk(Xk1, . . . , Xkm) and

the characteristic function φ(r, s1, . . . , sm) for
∑

fk(Yk1, . . . , Ykm) and the other components

can be derived:

φ(r) = (2π)−m[
m∏

j=1

n
1/2
j P (

∑
Ykj = nj)]

−1

∫ πn
1/2
m

−πn
1/2
m

· · ·
∫ πn

1/2
1

−πn
1/2
1

φ(r, s1, . . . , sm) ds1 . . . dsm (8)

as a generalization of the case m = 1 given in Bartlett (1938), Holst (1979) and Esty (1983).

As in the single library case, n
1/2
j P (

∑
Ykj = nj) ≈ (2π)−1/2, so

φ(r) ≈ (2π)−m/2

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ(r, s1, . . . , sm) ds1 . . . dsm (9)

Using the central limit theorem assumption, φ(r, s1, . . . , sm) converges to the characteristic

function of a normal variate with mean 0 and covariance matrix Σ. The covariance matrix for

[n
−1/2
1

∑
(Yk1 − n1pk1), . . . , n

−1/2
m

∑
(Ykm − nmpkm)] is calculated as the identity matrix and
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so, letting s = [s1, . . . , sm]T , we have that

φ(t, s1, . . . , sm) ≈ exp[−(Σ11r
2 + 2rΣT

12s + sT s)/2]

= exp[−r2(Σ11 − ||Σ12||2)/2] exp[−(s + rΣ12)
T (s + rΣ12)]

Similarly as in the single library case, substituting this expression into (9) gives that

φ(r) ≈ exp[−r2(Σ11 − ||Σ12||2)/2]

2

With fk(Xk1, . . . , Xkm) as in (7) calculation under the Poisson model gives

Σ11 = N−1n−2
1 (η10···0 + 2η20···0)

and

Σ12 = N−1/2[n
−3/2
1 η10···0, 0, . . . , 0]T

Since the variance of Ĉ1−C1 is N times the variance of
∑

k fk(Xk1, . . . , Xkm) we obtain (10)

of the main text.

TABLES AND FIGURES
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Table 1: The numbers of clusters (Nk) of sequences that were read k times from the non-

normalized and normalized Mastigamoeba libraries.

Non-normalized Normalized

k Nk Nk

1 378 200

2 33 21

3 21 14

4 9 4

5 6 3

6 1 3

7 3 1

8 1 0

9 1 1

10 1 0

13 1 0

14 0 1

15 5 0
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Table 2: The single library and two library coverages for several overlapping libraries.

Two Library Data Single Library Data

Library # Reads Coverage 95% CI Coverage 95% CI

Naegleria Aerobic 959 0.70 (0.67, 0.74) 0.64 (0.60, 0.68)

Naegleria Anaerobic 969 0.57 (0.53, 0.60) 0.49 (0.45, 0.53)

Mastigamoeba Non-normalized 715 0.48 (0.43, 0.52) 0.47 (0.43, 0.51)

Mastigamoeba Normalized 363 0.50 (0.45, 0.56) 0.45 (0.39, 0.51)

Table 3: The estimated negative binomial parameters for the example data sets and the

p-values for a chi-square goodness of fit test.

Library α γ p-value

Naegleria Aerobic -0.699 1.000 0.822

Naegleria Anaerobic -0.638 0.834 0.615

Mastigamoeba Non-normalized -0.778 0.944 0.760

Mastigamoeba Normalized -0.715 0.889 0.813
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Figure 1: Estimates of the expected numbers of new genes for the Mastigamoeba library

data set for samples from both normalized and non-normalized libraries. Each contour line

has indicated on it the estimate of the expected number of new genes for any pair of sample

sizes from the libraries that falls on that line.

Figure 2: Histograms of the normalized test statistics for the test of the equality of

proportional representation, simulated under both the null and alternative hypotheses.
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