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Abstract

This article considers two similar likelihood-based test statistics for comparing two fixed trees, the Kishino-Hasegawa
(KH) test statistic and the likelihood ratio (LR) statistic, as well as a number of different methods for determining
thresholds to declare a significant result. An explanation is given for why the KH test, which uses the KH test statistic and
normal theory thresholds, need not give correct type I error probabilities under the appropriate null hypothesis.
Simulations show that the KH test tends to give much smaller type I error probabilities than expected. The article
presents a computationally efficient normal-theory parametric bootstrap method for determining better KH test statistic
thresholds. For the LR statistic, existing mixture of chi-squares results for determining thresholds are extended to cases in
which a tree with two or three zero edge-lengths exhibits the two trees being compared. The resulting chi-bar test and use
of the KH test statistic with normal bootstrap are shown through simulation to give good performance but are more
difficult to implement than the KH test. Two conservative approaches are presented which require only log likelihoods
and simple chi-square thresholds. While they did not perform as well as chi-bar and normal bootstrap methods in the
simulations considered, they gave better performance than the KH test and have just as simple an implementation. As a
by-product of parametric bootstrap considerations, an adjustment to the Swofford-Olsen-Waddell-Hillis (SOWH) test is
proposed.
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Introduction
The Kishino-Hasegawa (KH) test developed in Hasegawa and
Kishino (1989) and Kishino and Hasegawa (1989) is the most
widely used test of whether there is significant evidence for a
particular hypothesized tree under the null hypothesis that a
different but fixed tree is correct. It has been implemented in
a number of popular packages including TREE-PUZZLE
(Schmidt et al. 2002) and PAML (Yang 1997, 2007).
Shimodaira and Hasegawa (1999) and Goldman et al.
(2000) point out that the KH test is inappropriate if one of
the two trees is chosen in a data-dependent manner; this is
sometimes referred to as selection bias. The most frequent
data-dependent choice is the estimated tree which, in the
case of maximum likelihood (ML) estimation as used in the
KH test, leads to a test with higher than expected false-
positive or type I error rate.

Although two-tree tests like the KH test can be inappro-
priate in some settings due to selection bias, they continue to
be widely reported and there are a number of legitimate
reasons for continued interest in them. First, cases do arise
where a priori hypotheses about correct trees can be made;
for example, the Coelomata and Ecdysozoa trees considered
in Dopazo and Dopazo (2005). Second, the distinction be-
tween data-dependent tree choice and data-independent
choice is not always clear. A tree can be both the ML tree
and be considered a priori reasonable. The KH test provides
useful supplementary information in such cases about what
inference would be made had the tree been fixed. Third,

two-tree tests can provide relevant information even if a se-
lection bias is present. For a given two-tree test, if a Tree 2 is
not rejected when the test is applied to it and the ML tree,
that Tree 2 would not have been rejected had a selection bias
correction been made to the test. Finally, two-tree tests can
be viewed as a basis for tests that adjust for selection bias. For
instance, the SH test of Shimodaira and Hasegawa (1999) is
the selection bias-adjusted version of the KH test and the
Swofford-Olsen-Waddell-Hillis (SOWH) test described origi-
nally in Swofford et al. (1996) and considered in greater detail
in Goldman et al. (2000) can be viewed as a selection bias-
adjusted version of two-tree parametric bootstrapping.
Anisimova and Gascuel (2006) illustrate how Bonferroni ad-
justment can be used to give a selection bias-adjusted version
of the Ota et al. (2000) test for a significant split.

This article examines two-tree tests based on either the KH
test statistic or likelihood ratio (LR) statistic. The two trees
being tested are assumed fixed a priori so that the issue of
selection bias does not need to be corrected for. An argument
is given in this article that the motivation for the KH test is
problematic and that the test cannot be expected to give
correct type I error probabilities. Results indicate that the
test can be grossly conservative. Such conservativeness is
not due to KH test difficulties discussed in Shimodaira and
Hasegawa (1999) and Goldman et al. (2000) as there is no
selection bias in the cases considered. The result also helps to
explain why KH test P values tend to be larger than SOWH P
values; the SOWH adjustment for selection suggests the
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opposite. Determining thresholds for the KH test statistic
through parametric bootstrapping, the two-tree analog of
the SOWH test, is more appropriate. However, a familiar
mammalian mitochondrial data example will be used to
explain how small P values from the SOWH test, and its
fixed two-tree analog, can also be due to the choices of the
edge-lengths in the trees used for simulation.

An alternative method for KH test statistic threshold de-
termination is presented here which uses less intensive
normal simulations as a proxy for parametric bootstrapping.
Extension of the Ota et al. (2000) LR statistic test, which will
be referred to as the chi-bar test, provides an alternative test
in some cases. These tests are more difficult to implement
than the KH test, but their performance is found to be much
better. Alternative testing methods that are conservative and
use either the LR statistic or KH test but with simple chi-
square thresholds are also considered. Although they are not
as powerful as either the chi-bar test or using the KH test
statistic with normal simulation, they are found to be more
powerful than the KH test and just as easy to implement.

Theory and Methods
One-sided tests are considered: whether there is significant
evidence for a particular Tree 1 by comparison with a partic-
ular Tree 2. All of the methods that will be considered use a
log LR as a test statistic. Let k denote a site pattern. For
instance, with four taxa, k = ACGG gives a nucleotide site
pattern where an A, C, G, and G were observed for taxa
1–4, respectively. Let pkðh; jÞ denote the probability of site
pattern k for tree j and parameter h, including edge-lengths
and possibly other substitution parameters. Then, assuming a
conventional model where evolution at sites is independent,
the maximized log likelihood for tree j isXn

i¼1

logpki
ðbhj; jÞ

wherebhj is the ML estimate for tree j based on all sites, ki is the
site pattern for site i, and n is the number of sites.

The KH Test

The original version of the KH test applied a z-test to the site
log likelihood differences for the two trees

di ¼ log pki
ðbh1; 1Þ � log pki

ðbh2; 2Þ ð1Þ

Recall that the one-sample z-test of H0 : E½di� ¼ 0 against
HA : E½di� > 0 has P value

p ¼ PðZ > �dÞ ð2Þ

where �d is the mean di and Z has a Nð0,s2
d=nÞ distribution;

here s2
d denotes the sample variance of the di. Let �2 ¼ n�d

denote the KH test statistic. Then, alternatively, the KH test
checks whether the KH test statistic is larger than expected
from a Nð0,ns2

dÞ distribution.
A variation of the KH test replaces the Nð0,s2

d=nÞ distribu-
tion in equation (2) by a bootstrap distribution (Kishino et al.
1990). Specifically, di are sampled with replacement to obtain

a new �d� that is the mean di sampled. The process is com-
monly referred to as RELL for resampling estimated log like-
lihoods and is repeated a large number of times yielding a
large number of �d�. The p in equation (2) is replaced by the
proportion of �d� � aveb

�d� that are larger than �d. Here,
aveb

�d� is the average �d�, averaged over bootstrap samples.
The �d� � aveb

�d� is a centering step to make sure that the log
likelihood difference follows the expected value for the differ-
ences to be 0, as assumed for the null distribution. If n is
relatively large and enough bootstrapped �d� are obtained, it
turns out that RELL will give P values that are approximately
the same as those using the normal distribution in equation
(2), no matter what the data (Bickel and Freedman 1981). In
the examples considered, n was large enough that results with
RELL were almost identical to results using equation (2). As a
consequence, simulations only considered performance of
the KH using the normal distribution in equation (2).

The Null Hypothesis

The null hypothesis of the KH test states only that
H0 : E½di� ¼ 0. The Goldman et al. (2000, p. 664) review of
the KH test specified a tree as part of the null hypothesis, but
the original reference of Kishino and Hasegawa (1989), which
only briefly discusses the testing setting, does not clearly in-
dicate that Tree 2 is assumed under the null. As a statement
of significant support in favor of Tree 1 over Tree 2 is not very
meaningful when a Tree 3 that is very different from Tree 1
generates the data, the null hypothesis throughout this article
includes that Tree 2 is correct. More specifically, the null tree
throughout the article is a strict consensus tree that sets as
many edge-lengths to zero as is needed to make Tree 1 and 2
equivalent. For instance, if Tree 1 and 2A are being compared
in figure 1, this leads to Tree 3A which sets one edge-length to
0. If comparison is between Trees 1 and 2B, two edge-lengths
are set to 0, giving Tree 3B and comparison between Trees 1
and 2C gives the star Tree 3C. Although this choice differs
somewhat from the null of KH test, it is approximately equiv-
alent as will be established below.

There are a number of arguments that the consensus tree
gives the correct choice of null tree. First, it is conventional in
hypothesis testing to evaluate type I error at a point on the
intersection of the boundaries of the null and alternative hy-
pothesis; type I error for the z-test of mean hypothesis
H0 : � � 0 against HA : � > 0 is evaluated at � ¼ 0.
Consensus trees are the points on the intersection of the
boundary of tree space for Tree 1 and the boundary of tree
space for Tree 2; see supplementary material, Supplementary
Material online, for additional details. Second, an a-level test
should satisfy that the probability of false rejection under the
null is at most �. In the present case, the null is that Tree 2 is
correct and any sensible test will be less likely to reject for
positive edge-lengths than if edge-lengths are set to 0 in such
a way that Tree 1 and Tree 2 are equivalent. Thus, to ensure a
false-positive rate at most �, one needs to ensure that the
false-positive rate is at most � for the tree giving both Tree 1
and Tree 2. Third, if Tree 2 is estimated, it will certainly not be
rejected in favor of Tree 1. One needs only be concerned with
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thresholds for rejection when Tree 1 is estimated, in which
case it is natural to determine these thresholds for the tree
satisfying the null hypothesis with smallest distance to Tree 1.
For both the branch score distances of Kuhner and
Felsenstein (1994) and geodesic distances of Billera et al.
(2001), and any given Tree 1, the least distant version of
Tree 2 is one with edge-lengths set to 0 to make the two
trees equivalent; see supplementary material, Supplementary
Material online, for additional details.

That a consensus tree null hypothesis is approximately
equivalent to the KH null hypothesis follows from arguments
associated with consistency of ML estimation. Suppose the
null hypothesis includes in addition to E½di� ¼ 0 that the
generating tree is Tree 2, but not necessarily the consensus
tree. Then, under the null, for large samples, due to the con-
sistency of ML estimation, the ML estimates of parameters for
Tree 2 will be approximately the same as the generating pa-
rameters with large probability. Arguments of White (1982)
indicate that the ML estimates of parameters for Tree 1 will
converge to particular parameters as well. As a consequence,
pkðbhj; jÞ � pkðhj0; jÞ, where hj0 denotes the parameters con-
verged upon. As expectations are calculated using the gener-
ating distribution, pkðh20; 2Þ, for large samples,

E½di� �
X

k

pkðh20; 2Þ log½pkðh20; 2Þ=pkðh10; 1Þ� ð3Þ

where the sum is over all possible site patterns. However, a key
property giving rise to consistency of ML estimation is that
the sum in equation (3), which is sometimes referred to as the
Kullback-Leibler divergence, is positive unless pkðh20; 2Þ ¼
pkðh10; 1Þ for all patterns k (cf. Section 9.3 of Pawitan
2001). For conventional continuous-time Markov models as
well as a number of models that allow variation in rates across
sites (cf. Chang 1996; Allman et al. 2008, 2012), it has been

shown that the only way in which probabilities of all data
patterns can be equal for two trees is if the two trees are
equivalent. To do this, the edge-length corresponding to in-
compatible splits need to be set to 0. Thus for any generating
tree different than this tree, the expected difference in max-
imized log likelihoods will eventually differ substantially from
0 and the KH null hypothesis will not be satisfied. The only
generating Tree 2 that will approximately have a zero
expected log likelihood difference is the one that sets edge-
lengths for incompatible spits to 0.

LR Tests

The null hypothesis of interest is a special case of Tree 1 with
some edge-lengths constrained to make it equivalent to Tree
2. The problem thus can be recast as a conventional para-
metric testing problem. Tree 1 is fixed, the null hypothesis is
that a particular subset of its edges have zero length (those
that are 0 in the consensus tree of Trees 1 and 2), and the
alternative hypothesis that some of these are positive. These
are nested hypotheses and LR tests can be applied. The LR
statistic is 2�3 where

�3 ¼
Xn

i¼1

log pki
ðbh1; 1Þ �

Xn

i¼1

log pki
ðbh3; 2Þ ð4Þ

andbh3 denotes the ML estimate for Tree 2 (or equivalently
Tree 1) when edge-lengths are constrained to be 0 to make
Trees 1 and 2 equivalent.

Ota et al. (2000) consider the LR test and note that, be-
cause of the boundary constraints that some edges are 0, the
appropriate null distribution is not a chi-square distribution
but rather a mixture of chi-squares. In particular, they con-
sider the case where the null tree has a single zero edge-length
and show that the large sequence-length distribution of �3 is
ð1=2Þ�2

0 + ð1=2Þ�2
1. Consistent with Susko (2013) and refer-

ences therein, this test and the extensions presented later on
are referred to as chi-bar tests.

KH Test Statistic Thresholds from Full Bootstrapping

The final variations of the KH test that reviewed involve
bootstrap methods (Efron 1982) whose application to two-
tree tests is described in Goldman et al. (2000). The nonpara-
metric version is as follows:

1) Generate sites with replacement to obtain a boot-
strapped data set.

2) Obtain ML estimates bh�1 and bh�2 for the bootstrapped
data and use these to calculate the KH test statistic ��2
for the bootstrapped data.

3) Repeat 1-2 a large number of the times to obtain a large
number of ��2 .

4) Center the ��2 by subtracting the average ��2 , averaged
over all bootstrapped data sets.

5) Calculate a P value as the proportion of ��2 larger
than �2.

The process is referred to in Goldman et al. (2000) as full
bootstrapping, as the RELL version of the KH test can
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FIG. 1. Tree 1 gives the tree that significant evidence is being sought for
when compared with Trees 2A–2C. The Trees 3A–3C give the corre-
sponding null trees obtained by collapsing edges in Tree 1 to make it
equivalent to Trees 2A–2C, respectively.
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alternatively be characterized as nonparametric bootstrap-
ping with the time-saving device of replacing bh�j by bhj in
step 2.

Parametric bootstrapping replaces step 1 with generation
from the fitted Tree 2 with parametersbh2. As Tree 2 is the
generating tree under the null hypothesis, the version men-
tioned in Goldman et al. (2000) skips the centering step 4.
Parametric bootstrapping with centering will also be consid-
ered in what follows.

As the null hypothesis considered here is a consensus tree,
an alternative form of parametric bootstrapping not consid-
ered in Goldman et al. (2000) is to replace step 1 with gen-
eration from the fitted consensus Tree 2 with parametersbh3.
This can be considered with or without centering.

KHns: KH Test Statistic Thresholds from Normal
Simulation

Full parametric or nonparametric bootstrapping provides
valid replacements for the normal distribution used to
obtain the P value in equation (2). Their computational
cost can, however, be substantial. In this section, a faster
simulation method is presented.

The method description requires a bit of notation. With
parameters ordered so that the first ones are the edge-lengths
that are 0 under the null hypothesis (to make the two trees
equivalent), the same true generating value, h0, applies to
both trees. For tree j, let SðjÞðh0Þ denote the vector of deriv-
atives of the log likelihood, which has two blocks of entries, SðjÞb
and SðjÞr , where SðjÞb gives the derivatives with respect to the
first zero-valued edge-length parameters and SðjÞr the rest of
the derivatives. Let �nIðjÞðh0Þ denote the expected matrix of
second derivatives of the log likelihood. Then, IðjÞðh0Þ can be
similarly decomposed as

IðjÞðh0Þ ¼
IðjÞb IðjÞbr

IðjÞrb IðjÞr

" #
Finally, let

IðjcÞb ¼ IðjÞb � IðjÞbr ½I
ðjÞ
r �
�1IðjÞrb

Lemma 2 in the supplementary material of Susko (2013) gives
that

2�2 � ½a
ð1Þ�

TIð1cÞ
b að1Þ � ½að2Þ�TIð2cÞ

b að2Þ ð5Þ

where aðjÞ is the minimizer of

ðZðjÞb � aÞTIðjcÞb ðZ
ðjÞ
b � aÞ ð6Þ

subject to the constraint that a � 0. Here, ZðjÞb are the com-
ponents of n�1=2½IðjÞðh0Þ�

�1SðjÞðh0Þ that correspond to the
zero edge-lengths.

It is well known that, with regularity conditions, SðjÞðh0Þ has
mean 0 and covariance matrix IðjÞðh0Þ (cf. Proposition 3.4.4 of
Bickel and Doksum 2007). As SðjÞðh0Þ is proportional to a
mean (SðjÞðh0Þ ¼

P
i SðjÞðki; h0Þ, where SðjÞðki; h0Þ is the con-

tribution from the ith site), it follows from the Central Limit
Theorem that Sð1Þðh0Þ

T and Sð2Þðh0Þ are jointly approximately
multivariate normal with mean 0 and a joint covariance

matrix �ðsÞ that can be calculated and will be discussed in
this study. As Zð1Þb and Zð2Þb are linear transformations of
Sð1Þðh0Þ and Sð2Þðh0Þ, it follows that they too are approxi-
mately multivariate normal with a joint covariance matrix,
�ðzÞ, which can be calculated from �ðsÞ using expressions for
covariance matrices of linear transformations; full implemen-
tation details are given in supplementary material,
Supplementary Material online.

In summary, the main result for simulation is that 2�2 has
the approximate distribution of the right-hand side of equa-
tion (5) where aðjÞ is the minimizer of (6) and ZðjÞb is part of a
vector having a multivariate normal distribution with mean 0
and covariance matrix, �ðzÞ. Thus, the distribution of 2�2

can be approximated with the following simulation strategy.

1) Repeatedly generate Zð1Þ�b and Zð2Þ�b , normal random vec-
tors with mean 0, and joint covariance matrix �ðzÞ.

2) For each Zð1Þ�b and Zð2Þ�b , determine aðjÞ� as the minimizer

of ðZðjÞ�b � aÞT½IðjcÞb �ðZ
ðjÞ�
b � aÞwith the constraint a � 0.

3) Given the result from 2, calculate 2��2 from equation (5).

Given the ��2 generated according to this scheme, probabil-
ities involving �2, like Pð�2 > cÞ, can be approximated from
proportions of ��2 satisfying the condition. As h0, the param-
eters generating the data, are unknown, estimates of these,
obtained through ML with the null hypothesis tree, are
plugged in to obtain �ðzÞ and Ijcb .

Returning to the calculation of �ðsÞ, the joint covariance
matrix of Sð1Þðh0Þ and Sð2Þðh0Þ, it is of the form

�ðsÞ ¼ n
Ið1Þðh0Þ Ið12Þðh0Þ

Ið12Þðh0Þ
T Ið2Þðh0Þ

" #
The covariance matrix Ið12Þðh0Þ is calculated as

Ið12Þðh0Þ ¼
X

k

pkSð1Þk ðh0ÞS
ð2Þ
k ðh0Þ

T
ð7Þ

where the sum is over all patterns k and SðjÞk ðh0Þ is the con-
tribution to SðjÞðh0Þ that arises from site pattern k if it is in the
alignment. Similarly,

IðjÞðh0Þ ¼
X

k

pkSðjÞk ðh0ÞS
ðjÞ
k ðh0Þ

T
ð8Þ

Because the number of possible patterns gets large with a
large number of taxa, it may be necessary to approximate
equations (7) and (8). This can be done by either replacing pk

with the observed frequency of pattern k in the original align-
ment or an alignment simulated under the null tree. In this
case, the sum would be over at most as many site patterns as
there are sites. The covariance matrix �ðzÞ in step 1 can be
calculated from equations (7) and (8). In practice, a further
linear transformation is applied to the Zb for simpler normal
generation and to use the NNLS routine of Lawson and
Hanson (1974) in step 2. Full details are given in the supple-
mentary material, Supplementary Material online.

The main result leading to steps 1–3 makes some assump-
tions. Derivatives of any order need to be obtainable and
expected values must exist. These conditions are satisfied
for standard continuous-time Markov models. It is also as-
sumed that the covariance matrix �ðsÞ is invertible. This has

1032

Susko . doi:10.1093/molbev/msu039 MBE
 at D

alhousie U
niversity on M

arch 24, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

Since
Since
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu039/-/DC1
for
Since
[
]
presently
Since
that
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu039/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu039/-/DC1
Since
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu039/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu039/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu039/-/DC1
-
http://mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


been true for all settings considered. As mentioned previously,
identifiability of edge-lengths and other parameters is
assumed and has been shown to hold for standard models.

Chi-Square Results

The final set of methods presented use the LR statistic 2�3,
where �3 is defined in equation (4), as a test statistic and chi-
square results for threshold determination. They include ex-
tensions of the Ota et al. (2000) chi-bar test to cases where the
null tree has two or three zero edge-lengths. In addition, the
conservative LR statistic thresholds of the conditional test of
Susko (2013) are discussed. These can be more easily imple-
mented and apply for null trees with more zero edge-lengths.
For the results to hold, an additional assumption is that,
except for those edge-lengths set to 0 to make the trees
equivalent, no other parameters are set to their boundary
values.

The methods discussed differ primarily in the threshold
used to declare significance or, equivalently, used for P
value calculation. With the conditions discussed, the results
of Shapiro (1985) imply that 2�3 has the approximate distri-
bution of a mixture of chi-square random variables

Pð2�3 > yÞ ¼
Xp

j¼0

wjPð�
2
j > yÞ ð9Þ

where �2
j has a chi-square distribution with j degrees of free-

dom; �2
0 is 0 with probability 1. Here, p is the number of edge-

lengths that were constrained to be 0 to make the two tree
equivalent.

The weights of the mixture are positive and sum to 1. In
general, they are difficult to calculate directly and depend on
the true parameters in the generating model. As noted in Ota
et al. (2000), however, when only one edge-length needs to be
set to 0 to make the trees equivalent, w0 ¼ w1 ¼ 1=2. In the
case that two edge-lengths need to be set to 0 to make the
trees equivalent, the weights are

w1 ¼ 1=2, w2 ¼ cos�1
n

Icb12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Icb11Icb22

p o�
ð2�Þ, w0

¼ 1=2� w2

ð10Þ

This follows roughly from case 7 of Self and Liang (1987) but
adjusts for the presence of additional parameters beyond the
two edge-lengths set to 0.

The weights for the case that three edge-lengths are set to
0 are more complicated. Let A ¼ ½Icb�

�1, �ij ¼ Aij=
ffiffiffiffiffiffiffiffiffiffi
AiiAjj

p
and
�ij�k ¼ ð�ij � �ik�jkÞð1� �

2
ikÞ
�1=2
ð1� �2

ikÞ
�1=2.

Then,

w3 ¼ ½2�� cos�1ð�12Þ � cos�1ð�13Þ � cos�1ð�23Þ�=ð4�Þ

w2 ¼ ½3�� cos�1ð�12�3Þ � cos�1ð�13�2Þ � cos�1ð�23�1Þ�=ð4�Þ

w1 ¼ 1=2� w3, w0 ¼ 1=2� w2

ð11Þ

While Icb depends on unknown parameters, estimates of
these can be used in practice. Derivations of equations (10)
and (11) are given in the Appendix. When more than three

edge-lengths need to be set to zero to make the trees equiv-
alent, explicit formulas are no longer available.

The equation (9) is the correct one to use in calculating P
values for the LR test. When the number of zero edge-lengths,
P, required to make the two trees equivalent is larger than 3,
however, explicit formulas for the wj are no longer available.
A conservative approach that will be referred to as the naive
test treats 2�3 as if its distribution, under the null hypothesis,
is chi-square with p degrees of freedom. It is naive in the sense
that it is the usual LR test one would apply if unaware that
edge-lengths being set to 0 under the null creates difficulties
for ML theory. Because chi-square distributions with smaller
degrees of freedom have smaller probabilities of exceeding a
threshold, under the null hypothesis,

Pð2�3 > yÞ ¼
Xp

j¼0

wjPð�
2
j > yÞ �

Xp

j¼0

wjPð�
2
p > yÞ

¼ Pð�2
p > yÞ

ð12Þ

which implies that P values calculated using a chi-square dis-
tribution with p degrees of freedom will always be larger than
the correct P value calculated using equation (9). As a con-
sequence, the test will be conservative in that if one rejects
whenever a P value is less than 0.05, the type I error probability
will be less than 0.05.

Another conservative test, discussed in Susko (2013) and
referred to as the conditional test, calculates P values using a
chi-square distribution with degrees of freedom V, the
number of edge-lengths that are 0 under the null hypothesis
but estimated to be positive. As discussed in Susko (2013),
under the null hypothesis, the conditional distribution of
2�3, given V ¼ v, is chi-squared with v degrees of freedom.
It follows that the type I error of a 0.05-level conditional test,
given that V > 0, is 0.05. The test is conservative because
there is some positive probability that none of the edge-
lengths that are 0 under the null hypothesis will be estimated
as positive, in which case 2�3 ¼ 0 and any reasonable test
will not reject. That is, the type I error is 0 when V = 0.

Using the KH Test Statistic with LR Statistic
Thresholds

Both �2 and �3 are differences in log likelihoods between the
maximized log likelihood for Tree 1 and a maximized log
likelihood for Tree 2. As the Tree 2 log likelihood for �3 is
maximized subject to some edge-lengths being constrained
to 0, it is never larger than the Tree 2 log likelihood for �2,
which is maximized without constraint. As Tree 2 log likeli-
hoods are subtracted, it follows that �3 � �2. As a conse-
quence, if �2 is used in place of �3 in any of the LR statistic P
value calculations, conservative or otherwise, a larger P value
will be obtained than with �3. Thus, such a substitution will
give a conservative method. The reason such a replacement is
worth considering is that all phylogenetic software implemen-
tations of ML allow ML estimation of edge-lengths, so that �2

can be calculated, whereas few allow edge-lengths to be con-
strained to 0 as is required by �3.
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Results

Difficulties with the KH Test Motivation

The reason that the usual KH test need not give correct type I
error probabilities using normality or RELL is that when the
correct null hypothesis is considered, the argument for the
approximate normal distribution of �2 given in Kishino and
Hasegawa (1989) no longer applies. What they argue is that
the ML estimates will converge upon some parameters hj0,
j ¼ 1,2, and thus the log likelihoods with ML estimates
should be approximately the same as when these parameters
are substituted:Xn

i¼1

logpki
ðbhj0; jÞ ¼

Xn

i¼1

logpki
ðhj0; jÞ+ rjðhj0Þ ð13Þ

Because the remainder term rjðhj0Þ is small relative to the first
term, they argue that it can be ignored and indeed never
consider its form. They point out that each log pki

ðhj0; jÞ is
independent and identically distributed. Thus by the Central
Limit Theorem, the first term in equation (13) has an approx-
imate normal distribution. They correctly conclude that the
log likelihoods with ML parameters are approximately
normal.

It may appear that the same argument can be applied to
the differences in log likelihoods and Kishino and Hasegawa
(1989) argue that it follows in the same way. However, the
correct null hypothesis is a tree with edges collapsed to make
the two trees equivalent. As ML estimation is consistent and
the null tree is a version of both Trees 1 and 2, the parameters
converged upon hj0, j ¼ 1,2, will be the true generating pa-
rameters. Consequently, the log likelihoods will be the same
for Trees 1 and 2 when hj0 is substituted. So,

�2 ¼
Xn

i¼1

log pki
ðh10; 1Þ+ r1ðh10Þ

�
Xn

i¼1

log pki
ðh20; 2Þ+ r2ðh20Þ

¼ r1ðh10Þ � r2ðh20Þ

While the log likelihoods separately are larger than the
remainder terms and are approximately normal, they cancel
and the distribution ends up depending on the remainder
terms, whose form was never considered.

The Mammalian Mitochondrial Data

The mammalian mitochondrial data considered previously in
Goldman et al. (2000) and Shimodaira (2002) provide a useful
illustrative example. For this data set with 6 taxa and 3,414
sites, a mtREV model (Adachi and Hasegawa 1996) was fit
with gamma rates-across-sites variation and 8 rate categories
(Yang 1994). The two trees to be tested and their consensus
tree are in figure 2. The P values for significant evidence for
Tree 1 over Tree 2 are given in table 1. The P value for the KH
test was, up to the precision indicated, the same regardless of
whether the normal distribution was used to calculate P
values or RELL with 10,000 bootstrap samples. For the other

bootstrap methods, 1,000 bootstrap samples were considered
in each case. As Tree 1 was the ML tree, Goldman et al. (2000)
considered it in their examples of the SOWH test, where they
similarly reported a P value of 0.00.

The KHns test and parametric bootstrapping from Tree 3,
with or without centering, give identical P values up to the
precision indicated. For large sequence lengths, E½di� � 0
under Tree 3, so centered or uncentered bootstrapping
should give comparable results. The parametric bootstrap
uses the distribution of �2 under Tree 3 with fitted param-
eters and the KHns test uses the large sample approximation
to that distribution. Thus, substantial agreement between
these approaches is expected. That all of these P values,
which should have approximately correct type I error rates,
are much smaller than the KH P value suggests the KH test
may give conservative results.

The P values from the SOWH test is 0.00 which is smaller
than the KHns P value and much smaller than the KH P value.
This is surprising as the SOWH test can be viewed as a cor-
rection to the KH test when Tree 1 is not known in advance
but is rather the ML tree. The likelihood of the ML tree is
always at least as large as the likelihood of a fixed Tree 1. Thus,
for the same null generating tree, the distribution of KH test
statistics calculated with the ML tree in place of a fixed Tree 1
should be shifted to the right of the distribution of KH test
statistics. Consequently, one expects larger P values from the
SOWH test than a two-tree test with the same observed KH
test statistic. The explanation of the discrepancy thus does
not have to do with the SOWH test correcting for selection
bias. It must be due to the SOWH test using a different gen-
erating tree in bootstrapping. Indeed, the small SOWH test P
value is not inconsistent with the P value from uncentered
parametric bootstrapping from Tree 2 which is similarly 0.00.
By comparison, the P value from the parametric bootstrap
with generating Tree 3 is 0.05 which is comparable to the
KHns P value. The ML edge-lengths for Trees 2 and 3 were, on
average, within 0.005 of each other except for the edge-length

Table 1. The P values for the Mammalian Mitochondrial Data.

Test P value

KH 0.45

KHns 0.05

Parametric bootstrap, Tree 3, uncentered 0.05

Parametric bootstrap, Tree 3, centered 0.05

Parametric bootstrap, Tree 2, uncentered 0.00

SOWH 0.00

Parametric bootstrap, Tree 2, centered 0.49

Nonparametric bootstrap (centered) 0.45

Chi-bar 0.00

Chi-bar(�2) 0.06

Naive 0.00

Naive(�2) 0.12

NOTE.—Here, naive and chi-bar refer to likelihood ratio tests using different thresh-
olds: a chi-square threshold with maximum degrees of freedom (naive), with degrees
of freedom dependent on the number of estimated zero edge-lengths (cond) and
with a mixture of chi-square threshold (chi-bar). The suffix �2 indicates that the KH
test statistic, �2, was used in place of the constrained log LR, �3.

1034

Susko . doi:10.1093/molbev/msu039 MBE
 at D

alhousie U
niversity on M

arch 24, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

Since
,
s
-
-
-
Since
-
-
-
-
,
-
-
-
-
-
-
-
-
http://mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


that was constrained to 0. Without constraint it was esti-
mated to be 0.02 which is the smallest edge-length in the
tree but still not very small. The small SOWH P value is a
consequence of the fact that one does not expect large log
likelihood differences for one tree (ML or fixed) against Tree 2
when the generating Tree 2 is well resolved.

The nonparametric bootstrap and parametric bootstrap
from Tree 2 with centering gave large values. The mean of
these distributions is 0 by design, so the large values relative to
parametric bootstrapping from Tree 3 with centering implies
that these distributions showed extra variance over what is
expected under the consensus tree null. The chi-bar and naive
P values are small. By comparison, the P values from these
tests with �2 in place of �3 are not small, indicating that the
difference is due to the differing test statistics used.

Simulation Results

To further illustrate the properties of the tests under the null
and alternative hypothesis, consider simulation from the six-
taxa tree, Tree 1 in figure 1. Testing was of Tree 1 against Trees
2A–2C, leading to the null Trees 3A–3C. Accordingly, null

simulations were from Trees 3A–3C with all nonzero edge-
lengths set to 0.1. Similarly, simulations to study power prop-
erties were from Tree 1 with all of the edge-lengths that are
nonzero under both null and alternative hypothesis set to 0.1.
Depending on the setting, some or all of those edge-lengths
that are 0 under the null hypothesis were positive in power
simulations. All such positive edge-lengths were set to a
common positive value which was allowed to vary as propor-
tions of rejections are reported over a range of values. For
each simulation setting, 1,000 simulated data sets of 1,000
sites were generated from the HKY model (Hasegawa et al.
1985) with � parameter of 2 and frequencies of A, C, G, and T
equal to 0.1, 0.2, 0.3, and 0.4.

The results of simulations under the null hypothesis are
given in table 2. The KH test has a far smaller than necessary
false-positive rate, almost never rejecting. As expected by
theory, using the naive or conditional test thresholds gives
a smaller than expected false-positive rate although the dif-
ference is not substantial. The false-positive rates of KHns and
the chi-bar test are close to the expected rate of 0.05.

Figure 3 gives the results of simulations to investigate
power. Across conditions, the power of the KH test is sub-
stantially smaller than the other tests. The KHns test has
performance almost identical to the chi-bar test, both of
which are the best performers. As expected, given the simi-
larities and differences between the conditional and naive
tests, the conditional test always does better. In simulation
settings where all of the edge-lengths that are 0 under the null
were set to a positive value, the improvement is small, parti-
cularly as edge-lengths get larger. This makes sense as the
number of estimated positive edge-lengths in such cases
should tend to be close to the maximum degrees of freedom,
so that the two tests frequently use the same degrees of
freedom. Similarly, when only one of the edge-lengths was
positive, the conditional test shows a substantial improve-
ment over the naive test and is more comparable to the
KHns test. In this case, the conditional test frequently uses
only 1 degree of freedom where the naive test always uses 3.

Figure 4 gives the result for the conditional test using either
the correct log LR 2�3 where edge-lengths are constrained to
0 (this was what was used in fig. 3) or 2�2 where the edge-
lengths estimated under Tree 2 are unconstrained. The latter

Table 2. The Numbers of False Positives for 0.05-Level Tests over 1,000 Simulated Data Sets from Null Trees 3A–3C.

Tree t KHns Chi-Bar Chi-Bar(�2) Cond Cond(�2) Naive Naive(�2) KH

3A 0.02 30 26 25 16 15 0

0.10 48 44 40 24 23 0

0.50 36 32 32 13 13 1

3A 0.02 39 31 27 33 29 13 11 0

0.10 50 39 31 35 28 18 15 0

0.50 42 47 44 26 24 9 7 0

3C 0.02 37 27 21 44 32 6 6 0

0.10 40 31 23 29 22 10 6 0

0.50 51 45 30 33 20 12 8 1

NOTE.—The nonzero edge-lengths in the generating trees were each set to t. Here, cond refers to the conditional test and cond(�2) to the conditional test using �2 in place of
�3. For Tree 3A, the conditional test is the same as the naive test.

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

opposum

mouse

rabbit

human

seal

cow
Tree 3: 1 vs 2

FIG. 2. Tree 1 gives the tree that significant evidence is being sought for
in comparison to Tree 2 when using the mammalian mitochondrial
data. Tree 3 gives the null tree that makes Trees 1 and 2 equivalent.
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will always give lower power. It is of interest because most
phylogenetic implementations of ML estimation do not allow
estimation with zero edge-lengths. The conservative versions
of conditional and naive tests can be obtained with such
software by using 2�2 in place of 2�3. The loss in power is
smallest when all of the unresolved edges under the null are
positive in the generating tree. This makes some sense as
when all the edge-lengths in Tree 1 are positive, those
edges associated with splits in Tree 2 that are not present
in Tree 1 will naturally be more likely to be estimated close to
0 and thus give likelihoods more comparable to those when a
zero constraint is imposed.

Discussion
The chi-bar and KHns tests are expected to generally have
approximately correct type I error probabilities, whereas the
conditional and naive tests are expected to be conservative.
Simulation results were consistent with this but suggested
that the KH test will be much more conservative than the
other tests. Because a number of these tests used the same

KH test statistic and because the KH null is approximately the
same as the consensus tree null, the main reason for the KH
test difficulties must be that thresholds tend to be too large.

The chi-bar and KHns tests gave almost identical power in
the simulations considered and better power than the other
tests. These are results that can be expected to generalize. The
chi-bar and KHns test can be expected to give similar perfor-
mance as they are both based on good approximations to,
respectively, the null distributions of 2�3 and 2�2, two sim-
ilar test statistics. The other tests are based on the same test
statistics but are known to be conservative with a consequent
loss of power.

The KH null hypothesis is not exactly the same as the
consensus tree null of the other tests. However, as a generat-
ing Tree 2 satisfying the exact KH null but differing from the
consensus tree would not be compatible with any Tree 1,
smaller KH test statistic values can be expected under such
a null than under the consensus null. Thus, tests with approx-
imately correct or conservative type I errors under the con-
sensus null can reasonably be expected to be conservative
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under an exact KH null. Consequently, the better power of all
of the alternatives to the KH test is not likely a consequence of
inflated type I error under an exact KH null.

The chi-bar test has the best performance and is simple to
implement in the case that there is a single zero edge-length
in the null tree. In the case that two or three edge-lengths are
zero under the null, information matrix calculations are re-
quired similar to those of the KHns test. When more than
three edge-lengths are set to zero under the null, however, the
chi-bar test is no longer feasible.

The conditional test has the complication of determining
whether an edge-length is 0 where most software implemen-
tations do not allow zero edge-lengths. A simple adjustment
is to use a small threshold. In practice, 1.0e�9 was used, but
experience looking at differences in log likelihoods when
edge-lengths are close to 0 suggests the behavior of the test
would be similar if edge-lengths less than 1.0e�6 were treated
as 0. As the conditional test always does better than the naive
test, there is little reason to use the latter. Serious discussion of
it has been included here because one can envision some
settings where it might prove useful. One example would
be the reanalysis of literature results where likelihoods

were reported for two trees and where the number of zero
edge-lengths required to obtain the null tree could be deter-
mined from the graphical or Newick representation of the
two trees, but where estimated edge-lengths could not be
obtained without refitting the model.

A difficulty with KH implementations was noted in the
course of this work. Because simulation was often from a
poorly resolved Tree 1 or an unresolved Tree 3, there were
a number of instances where the estimated edge-lengths for
Trees 1 and 2 were such that they were either the same or
almost the same trees. Indeed, when there was a single zero-
length edge in a generating Tree 3, the ML Tree 1 and Tree 2
were identical a substantial proportion of the time, as pre-
dicted by theory. Such cases were recorded, appropriately, as
failures to reject Tree 2. The site log likelihoods in this case are
identical so that both �d ¼ 0 and sd ¼ 0. For practical imple-
mentations of the KH test, this creates substantial difficulties.
Due to round-off error or lower bounds on allowable edge-
lengths, �d and sd will differ slightly from 0, making the nor-
malized KH test statistic,

ffiffiffi
n
p �d=sd, a numerically unstable

value that can be large and positive, leading to an incorrect
conclusion of rejection.
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In simulations, the KH test performed much worse
than the other tests. Its false-positive rate was much smaller
than necessary, leading to a consequent loss of power.
Relative to KHns, it is easy to implement. However, the
conservative chi-square tests are as easy to implement. The
much better performance of these tests suggests they are to
be recommended in cases where KHns is difficult to
implement.

Parametric and nonparametric boostrapping provide alter-
native but computationally more expensive approaches to
testing. For the mammalian data set, parametric bootstrap-
ping from a tree with zero-constrained edge-lengths gave
larger P values than the SOWH test and parametric boot-
strapping from Tree 2 with edge-lengths estimated without
constraint. Bootstrapping from the zero-constrained tree
gives a fairer chance to the null hypothesis and likely
should be part of most SOWH implementations. In theory,
however, if the consensus null tree is the generating tree,
edge-lengths that are 0 in the consensus tree should be esti-
mated as approximately 0 and bootstrapping from the fitted
Tree 2 should give similar P values.

Nonparametric bootstrapping is expected to give rise to
approximately correct type I error probabilities with large
enough sequences. It is interesting to note that the RELL
version of the KH test, which gives very similar results to
the normal theory version, can be viewed as a time-saving
approximation to nonparametric bootstrapping that skips
the step of estimating parameters for each bootstrap
sample. The difficulties of the KH test then suggest that dif-
ficulties can arise due to RELL.

One-sided tests have been considered throughout the ar-
ticle. This is consistent with implementations of the KH test in
software like PAML and TREE-PUZZLE. It can sometimes be
the case that interest is in a two-sided hypothesis: whether
there is significant evidence for a well-resolved version of
either Tree 1 or Tree 2. The KHns test extends naturally to
this case. Rejection at the �-level occurs when the observed
�2 is less than the �=2th quantile of the ��2 or greater than
the ð1� �=2Þth quantile. Extension of the chi-bar test is
more difficult but a simple, conservative approach is to
apply a Bonferroni correction to the two separate tests:
Tree 1 against Tree 2 and vice versa.

Software for the conditional, chi-bar, and KHns tests is
available at http://www.mathstat.dal.ca/~tsusko (last accessed
January 23, 2014) for many commonly used phylogenetic
models. Although the conditional and naive tests cannot be
expected to perform as well as KHns, they have the advantage
of being relatively simple to implement. Software is also pro-
vided which computes the degrees of freedom given a tree file
containing the estimated Tree 1 and a version of Tree 2. If 2�2

is used in place of 2�3, this software allows such tests to be
applied to the output of any existing phylogenetics software.

Supplementary Material
Supplementary Material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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Appendix: The Weights of the Chi-Square
Mixture
Theorem 2.1 of Shapiro (1985) gives as a special case that a
mixture of chi-squares distribution applies to

ðy�bgÞTIcbðy�bgÞ ð14Þ

wherebg minimizes equation (14) over g � 0 and q-dimen-
sional y has a multivariate normal distribution with mean 0
and variance–covariance matrix ½Icb�

�1.
As explained in the proof of Theorem 1 of Susko (2013),

the limiting distribution of 2�3 is the same as that ofbgTIcbbg.
It too has a mixture of chi-squares distribution but whenever
the degrees of freedom of its distribution is v, the degrees of
freedom of the distribution of equation (14) is q� v. It follows
that the weights of the mixture wv in equation (9) are the
same as the weights wv,qðUÞ in equation (4.9) of Shapiro
(1985). In the case that q = 3 edges are set to 0 in the null
tree, this directly gives equation (11). In the case that q = 2
edges are set to 0, using the formula for the inverse of a 2	 2
matrix and that cos�1ðxÞ ¼ �� cos�1ð�xÞ, an expression is
obtained that is more similar to that of Case 7 in Self and
Liang (1987). Let A ¼ ½Icb�

�1 then

w2 ¼ ½�� cos�1ðA12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A22

p
Þ�=ð2�Þ

¼ ½�� cos�1ð�Icb12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Icb11Icb22

p
Þ�=ð2�Þ

¼ cos�1ðIcb12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Icb11Icb22

p
Þ=ð2�Þ:
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