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Abstract.—Among models of nucleotide evolution, the Barry and Hartigan (BH) model (also known as the General Markov
Model) is very flexible as it allows separate arbitrary substitution matrices along edges. For a given tree, the estimates of
the BH model are a set of joint probability matrices, each giving the pairwise frequencies of nucleotides at the ends of the
edge. We have previously shown that, due to an identifiability problem, these cannot be expected to consistently estimate
the actual pairwise frequencies. A further consequence is that internal node frequency estimates are likely to be incorrect.
Here we define a nonstationary GTR model for each edge that we refer to as the NSGTR model. We fit the NSGTR model by
minimizing the sums of squares between the estimates of transition probabilities under the NSGTR model and the estimates
provided by a fitted BH model. This NSGTR model provides estimates that avoid the identifiability difficulties of the BH
model while closely fitting it. With the best-fitting NSGTR estimates, we are able to get interpretable frequency vectors at
internal nodes as well as edge length estimates that are otherwise not yielded by the BH model. These edge lengths are
interpretable as the expected number of substitutions along an edge for the model. We also show that for a nonstationary
continuous-time model these are not the same as the edge length parameters for conventional substitution matrices that are
output by nonstationary model phylogenetic estimation programs such as nhPhyML. [Average substitutions; BH model;
identifiability; nonstationary; NSGTR model]

The time-reversible Markov model assumes a
continuous-time stationary process of nucleotide
substitution occurs over the tree and is often used in
phylogenetic estimation (see Chapter 13 in Felsenstein
2004). For this model, the evolutionary processes
are at equilibrium and therefore the root position
is not important as the entire topology shares one
stationary frequency vector and one substitution rate
matrix. The equilibrium assumption is restrictive and
violations of this assumption for real data sets have been
demonstrated by a number of studies including Yang
and Roberts (1995), Foster and Hickey (1999), Foster
(2004) and Ababneh et al. (2006). Two commonly used
nonstationary models have been proposed in Yang and
Roberts (1995) and Galtier and Gouy (1998). Yang and
Robert’s (YR) model used the Hasegawa-Kishino-Yano
(HKY) model proposed in Hasegawa et al. (1985) as
the base model, but allowed each edge to have its
own edge length and stationary frequency vector.
However, in this case the entire tree still shares the same
transition and transversion ratio. Galtier and Gouy
(1998) suggested a simpler model (the GG model) that
allows G+C-content to change throughout the tree. It
uses the model in Tamura (1992) as a base and assumes
a common transition and transversion ratio along all
edges. This model is a special case of the YR model; for
each edge, the GG model has two parameters less than
the YR model. Compared with these two nonstationary
models, the model in Barry and Hartigan (1987) is much
more flexible.

The general Markov phylogenetic model first
introduced by Barry and Hartigan (1987), known as
the BH model, is one of the most flexible models
currently available. As with most models, it assumes an
independent and identical distribution among sites but
differs in that it allows separate arbitrary substitution
matrices along edges that need not correspond to a
continuous-time Markov process. Work by Jayaswal
et al. (2005) and Oscamou et al. (2008) have shown
that this model has better phylogenetic estimation
properties than simple models when evolutionary
processes are nonstationary. However, we previously
showed that the estimates of the BH model suffer from
identifiability problems that lead to difficulties with
correctly estimating internal node frequencies (Zou
et al. 2011). A further complication is that the BH model
does not directly involve edge length estimation and
thus neither conclusions nor subsequent analyses (e.g.,
molecular clock estimation) can be made that require
such information.

A model can be described as nonidentifiable when
two or more distinct parameter settings yield the same
probability distribution on the data. The maximum
likelihood (ML) estimates of a BH model are joint
probability matrices. When using the BH model to
reanalyze a recently published multigene data set from
the malaria parasites of the genus Plasmodium described
in Davalos and Perkins (2008), we found that permuting
the rows of some of the joint probability matrices
gave exactly the same likelihood. Lemma 4.1 of Chang
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(1996) states that in a three-taxon tree, if the conditional
probability matrix is reconstructible from rows, the full
model is identifiable. This restriction does not hold for
the BH model. Our observations from the Plasmodium
data set confirmed that the estimates of transition
matrices of the BH model are not unique and there are
always at least 24 ML estimates. This differs significantly
from the general time reversible (GTR) model because,
as shown by Allman et al. (2008), this model with four
states is identifiable for all parameters. For the BH model,
although the estimates of leaf node state frequencies
match the observed frequencies for the corresponding
taxa (Jayaswal et al. 2005), there is no guarantee that the
estimates of nucleotide frequencies at the internal nodes
will be fitted to the right permutations. In this article, we
define the best-fitting nonstationary GTR models along
edges, referred to as nonstationary best-fit GTR (NSGTR)
models, and propose a method that employs the sum of
squared differences between NSGTR estimates and BH
estimates to identify the estimates of permutations.

The edge length is a useful and informative parameter
in phylogenetic analysis that is missing from the BH
modeling framework. Although edge lengths were not
the primary focus of Jayaswal et al. (2005), ideas
were provided for estimating them. In most stationary
models, edge lengths are interpretable as the expected
numbers of substitutions. This interpretation is desirable
for nonstationary models as well but does not apply
for some current implementations. Jayaswal et al. (2005)
estimated approximate edge lengths for the BH model
by averaging the GTR distances for the two opposing
evolutionary directions. However, this solution is
difficult to justify if the process is nonstationary. Yang
and Roberts (1995) pointed out that for nonstationary
evolutionary processes, the base frequency vector of an
edge will often change along the lineages. The edge
lengths in Yang and Roberts (1995) and Galtier and
Gouy (1998) were the conventional edge length ts in
P(ts)=eRts

for an edge where
∑

j�
s
j Rjj =1, �s

j is the

stationary base frequency and R is the rate matrix. Here
superscript s indicates parameters of a stationary model
which need not match up with those of a nonstationary
model if the frequencies at time 0 differ from the
stationary frequencies �s, for instance. Because both
of the YR and GG models are nonstationary, the edge
length parameters they employ do not correspond to the
conventional interpretation as the expected number of
substitutions per site. Fortunately, Minin and Suchard
(2008) recently introduced a method to compute the
conditional expected number of substitutions in the
interval [0, t). This method can be used to obtain
edge lengths interpretable as the expected numbers
of substitutions per site for the YR, GG, and NSGTR
models.

The BH model is particularly valuable when
evolutionary processes are nonstationary. However, it
suffers from the lack of identifiable internal node
frequencies and does not directly provide edge length
parameters both of which can be useful to researchers.

Here we present methods that allow internal node
frequencies and edge length estimates to be obtained
from a phylogenetic analysis that utilizes the BH model.
The methods introduced here utilize some of the
computational advantages of the BH model relative to
ML fitting of continuous-time nonstationary models
including avoiding computationally expensive repeated
eigen decompositions. Our methods complement rather
than replace the BH model methodology which, with
its greater flexibility, may, in some cases, be able to
model some types of processes that no nonstationary
continuous-time model could. Example applications we
envision include using BH to obtain a tree estimate
which is then supplemented with NSGTR edge lengths
and frequencies. Alternatively, large differences between
NSGTR and BH fits might be used to diagnose unusual
evolutionary behavior.

MATERIALS AND METHODS

The BH model assumes that the evolutionary
processes at all sites are independent and share a
constant rate (there is no rates-across-sites variation in
the model), and that a Markov process of substitution
occurs along each edge. This process, however, need
not correspond to a continuous-time Markov process.
What is required is only that substitutions along an
edge (a,b) occur with probabilities given by a matrix
Pa,b with positive entries and row sums equal to 1; here
Pa,b(i,j) is the probability that nucleotide i at node a is
replaced by nucleotide j at node b. Conditional upon
the nucleotide at an internal node, the processes along
adjacent edges are independent. For instance, for the
star tree in Figure 1a, the processes along edges (a,i),
(i,b), and (i,c) are independent of each other given the
nucleotide at i. The parameters of the joint probability
matrices along the edges, may or may not correspond
to a continuous Markov chain, but they must satisfy
the internal consistency constraint for edges (a,i), (i,b),
and (i,c) connected to internal node i whereby state
frequencies at node i are the same regardless of the edge
matrices. Let Fa,i,Fi,b, and Fi,c denote the BH parameters,
joint probability matrices, for edges (a,i), (i,b), and (i,c);
Fa,i(j,k) is the probability that nucleotide j is observed
at node a and nucleotide k at node i. Using the BH
parameters, joint probability matrices Fa,i, Fi,b, and Fi,c,
and the frequency �i

j for nucleotide j at node i, the
likelihood of a site pattern x={xa,xb,xc} in Figure 1a is

P(x|Fa,i,Fi,b,Fi,c,�
i)=

∑
j

Fa,i(xa,j)Fi,b(j,xb)Fi,c(j,xc)

(�i
j)

2

(1)

Because the site likelihood in (1) does not depend upon
a root node, while the model is nonstationary, it is root-
independent. Equation (1) can be extended to a n-taxon
tree. Generally, a root is not required for the BH model.
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FIGURE 1. Trees of three and four taxa. a) Three taxa; b) four taxa.

In contrast, the NSGTR model described below is
a nonstationary model that requires a root for its
specification. The model assumes GTR substitution
processes along edges away from the root node.
However, these GTR substitution processes are allowed
to be different for different edges. In addition, the
frequencies at the root node need not be the stationary
frequencies of a GTR model for an edge connected to
the root.

Let P̂a,b denote the BH estimate of the substitution
matrix for edge (a,b) and let P̂�

a,b denote substitution

matrix P̂a,b after a permutation � of either its rows,
columns or possibly both. For the NSGTR model, we
denote the estimates of the instantaneous rate matrix,
the diagonal matrix of stationary frequencies and the
evolutionary distance as R̂�

a,b, �̂�s
a,b, and t̂�s

a,b. These give a

different estimate of substitution matrix P̂�s
a,b. The R̂�

a,b,

�̂�s
a,b, t̂�s

a,b, and consequently P̂�s
a,b are estimated from

P̂�
a,b as described below. A measure of the fit of P̂�s

a,b
to P̂�

a,b is given by SS�
a,b =∑

i,j(P̂
�
a,b(i,j)−P̂�s

a,b(i,j))2. The
sum of squares, SS�

b,a is also computed for the reverse
direction (b,a) using the same procedure. Our procedure
considers all possible locations for a root node although,
to simplify calculation, we only allow root nodes to
be placed at an internal or terminal node, not midway
along an edge. Because we consider all root locations,
we first obtain the SS�s for each edge in both forward
and backward directions. Given a root, the total SS
is obtained the sum of SS�s over all edges, for each
edge, choosing the direction implied by the root. In our
approach, the internal consistency requirement plays
an important role in determining the permutations. For
instance, considering the three-taxon tree in Figure 1a,
internal consistency gives FT

a,i1=Fi,b1=Fi,c1, where 1
is a column vector with ones as its elements. If the
row permutation of Fi,b of edge (i,b) is changed, the
row permutation of Fi,c and the column permutation of

Fa,i should be changed accordingly to satisfy internal
consistency.

The Best-Fitting Nonstationary GTR Model
Under the assumptions of the NSGTR model above,

for any edge (a,b), using the joint probability matrix Fa,b
and the frequency vector �a =∑

bFa,b, we can compute
a transition matrix Pa,b =�−1

a Fa,b =eRa,bts
a,b , where Ra,b

is the instantaneous rate matrix of Pa,b; ts
a,b is the

evolutionary time associated with Ra,b of Pa,b. In Markov
chain theory, if the process is at equilibrium, the largest
of the eigenvalues is equal to 1 and the corresponding
left eigenvector is the stationary frequency vector:
�s

a,bPa,b =�s
a,b, where �s

a,b is the base frequency vector

at the equilibrium. Using Pa,b =eRa,bts
a,b , we can compute

Ra,bts
a,b. The GTR model obtained above is the best-

fit GTR model along edge (a,b) in the direction a→b.
Although there is only one correct direction, it is possible
that there will be an Rb,a and ts

b,a corresponding to a
model in the reverse evolutionary direction that gives
the same joint probabilities and, a priori, we may not
know which is the correct direction. However, in general,
Ra,b �=Rb,a and ts

a,b �= ts
b,a, so knowing the direction of

evolution matters and hence specification of a root of
the tree will ultimately be necessary (discussed further
in more detail).

In any case, when estimating the best-fitting NSGTR
model in direction a→b, we first obtain the stationary
frequencies �s

a,b through eigenvector decomposition

of Pa,b =�−1
a Fa,b where Fa,b and �a come from the

BH model; �−1
a is the inverse matrix of frequency

matrix �a at node a. As mentioned above, the row of
left eigenvectors of Pa,b corresponding to the largest
eigenvalue gives the stationary frequencies up to a
normalization factor that is subject to

∑
j�

s
(a,b)j =1.

Then we calculate a symmetric joint probability matrix
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Fs
a,b = (�s

a,b�
−1
a Fa,b +(�s

a,b�
−1
a Fa,b)T)/2. We calculate a

symmetric estimate since this is implied by the
corresponding true joint probability matrix for a time-
reversible model. Using Fs

a,b and �s
a,b, we can then

compute the rate matrix and the conventional edge
length of the transition matrix Ps

a,b = (�s
a,b)−1Fs

a,b for this
edge. The rate matrix and conventional edge length
are then estimated as log Ps

a,b through eigenvector
decomposition.

Forcing Fs
a,b to be symmetric guarantees a real-valued

eigenvector decomposition for Ps
a,b. To see this, note

that if Fs
a,b is symmetric, so is [�s

a,b]−1/2Fs
a,b[�s

a,b]−1/2.
Because symmetric matrices always have real-valued
eigenvector decompositions of the form V�VT , we have
that

[�s
a,b]1/2Ps

a,b[�s
a,b]−1/2 =[�s

a,b]−1/2Fa,b[�s
a,b]−1/2

=V�VT (2)

By pre- and post-multiplying (2) by [�s
a,b]−1/2 and

[�s
a,b]1/2 we see that the eigenvector decomposition

of Ps
a,b =U�U−1 is related to the eigenvector

decomposition of [�s
a,b]−1/2Fa,b[�s

a,b]−1/2 through

U =[�s
a,b]−1/2V and U−1 =VT[�s

a,b]1/2.
For permutations that do not give valid rate

matrices, some corrections were needed. If Ps
a,b has

eigenvector decomposition U�U−1, then, up to a
constant of proportionality, the rate matrix is estimated
as U log[�]U−1. In practice, it is possible that some of the
eigenvalues in � will be negative, making it impossible
to take logarithms. In this case, we set the corresponding
entries of log[�] to a large (in magnitude) negative
number. One further correction was to set negative
entries of the estimated rate matrix to 0 and then adjust
diagonal entries accordingly so that rows of the rate
matrix sum to 0.

Iteratively Estimating the Permutations of Frequencies at
Internal Nodes

As we have previously shown in Zou et al. (2011),
different permutations of the rows of the BH substitution
model can yield the same distribution of observed data.
To illustrate, assume that (xa,xb,xc) are the character
states for species a, b, and c in Figure 1a and that these
are each 0 or 1. Assume that �0 and �1 are the base
character frequencies at the internal node i and that P0,xa ,
P1,xa , P0,xb , P1,xb , P0,xc , and P1,xc are the elements of
transition matrices Pi,a, Pi,b, and Pi,c. Now if the rows
of Pi,a, Pi,b, and Pi,c are permuted and �0 and �1 are
exchanged, then we have ��

0 =�1, ��
1 =�0, where ��

0 and
��

1 are the state frequencies after permuting at node i;
P�

0,xa
=P1,xa , P�

0,xb
=P1,xb , P�

0,xc
=P1,xc , and etc., where

P�
i,j are the ij-th entry in the transition matrices after

permuting. Comparing the probabilities of the observed
character states we obtain

P�(xa,xb,xc)=��
0 ∗P�

0,xa
∗P�

0,xb
∗P�

0,xc

+��
1 ∗P�

1,xa
∗P�

1,xb
∗P�

1,xc

=�1 ∗P1,xa ∗P1,xb ∗P1,xc

+�0 ∗P0,xa ∗P0,xb ∗P0,xc

=P(xa,xb,xc) (3)

The pattern probabilities are the same before and after
permuting regardless of the observed character states.
Because of this lack of identifiability due to permutation,
in a DNA data set, 24 sets of estimates of joint probability
matrices could give the same likelihood in the three-
taxon tree of Figure 1a. In general, for an internal edge
which is connected by two internal nodes, there are
576 permutations of the rows and columns of the joint
probability matrix for that edge that will give the same
probability of data at two internal nodes; for an edge
which is connected to an internal node and a leaf node
or the root node, there are 24 permutations of the joint
probability matrix for that edge that will give the same
probability of data at the internal node.

We introduced a parsimony-like method for
estimating the correct permutation of frequencies
at internal nodes in Zou et al. (2011). For this method
to work the frequency vectors at two adjacent nodes
should not be too different. Although we have used
this method in the analysis of nonstationary data, it
will be valuable to have a method that applies in more
complicated and general cases. In the following, we
introduce a method which can be used to estimate
permutations of internal node frequencies without
requiring frequencies at adjacent nodes to be similar.

The method for estimating permutations of interval
node frequencies obtains the best-fitting NSGTR model
above for each permutation of the BH estimated joint
probability matrices. The estimated permutations along
all edges are taken as those that give the overall
minimum distance between the BH substitution matrices
and the NSGTR substitution matrices as measured by the
sum of squares of differences between these two sets of
matrices.

Using the four-taxon tree shown in Figure 1b, we
will illustrate in more detail how the permutations are
estimated. Our procedure takes all nodes in the tree as
valid rooting positions and examines them one by one.
For each rooting position, we assign initial permutations
for the joint probability matrices of all edges. Taking
node a as the root, we compute the total minimum sum
of squares minSS from the bottom of the tree to the root
a. We start from the node j. In this subtree, we first fix the
row permutation of the joint probability matrix of edge
(i,j) and pick a permutation �j which gives us minSSj:

minSS1
j =min

�j
SS

�j

ij +SS
�j

jc +SS
�j

jd (4)
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The index �j is the column permutation of Fij and the
row permutation of Fjb and Fjc. Having determined
the permutation for j, we move to the node i. Keeping
the column permutation of Fij as �j, we determine �i
giving minSSi using the same criterion of Equation (4)
but applied to the three edges connected to the node i.
We calculate the total sum of squares of the first iteration
using the SSs obtained for edges (a,i), (i,b), (j,c), (j,d), and
(i,j) such as minSS1 =SS�i

ai +SS�i
ib +SS

�j

jc +SS
�j

jd +SS
�i,�j

ij .
For the second iteration, �i is the initial row permutation
of Fij. With this different initial permutation, we repeat
the process to obtain another set of �i and �j and minSS2.
Iterations continue as long as minSSm <minSSm−1. The
permutation indices �i and �j of the final minSST are
the estimated permutations of the BH estimates when
rooting at node a. For each node in the tree, we repeat
the procedure with that node being the root. The �i and
�j that minimize SS over all root choices are the estimated
permutations of BH estimates. To rapidly search over sets
of permutations and roots, we pre-computed the SS�

a,b
for all permutations and both evolutionary directions.
This computation can be completed quickly since there
are 24 possible permutations to consider for terminal
edges and 576 for internal edges. Given these values, to
obtain an overall SS, the algorithm simply needs to select
the appropriate SS�

a,b corresponding to the current set of
permutations and rooting being considered.

Defining the Number of Substitutions
For most phylogenetic models, rate matrices are

conventionally rescaled so that edge lengths are
interpretable as expected numbers of substitutions. For
a stationary model, if R is the rate matrix and �s the
stationary matrix, R is rescaled so that

∑
j�

s
j Rjj =1.

For nonstationary models, however, this rescaling will
not necessarily give edge lengths with the correct
interpretation (Minin and Suchard 2008). Below we give
a formula for the expected number of substitutions
under a nonstationary continuous-time Markov model
with an unscaled rate matrix.

Let N(t) be the number of substitutions over an edge
of length t; let R be the instantaneous rate matrix
of a continuous time Markov model; P(t)=eRt is the
corresponding substitution matrix. Let Xt denote the
character state of the process at time t and let RL denote
the rate matrix R but with diagonal entries set to zero.
Equation (2.3) of Minin and Suchard (2008) gives

E[N(t)I{Xt = j}|X0 = i]=
∫ t

0
(eRzRLeR(t−z))ijdz

Thus, if �i =P(X0 = i),

E[N(t)]=
∑
i,j

�iE[N(t)I{Xt = j}|X0 = i]

=
∑
i,j

�i

∫ t

0
(eRzRLeR(t−z))ijdz

=
∑

i

�i

∫ t

0

∑
l

[eRz]il
∑

k,k �=l

[R]lk
∑

j

[eR(t−z)]kjdz

Because
∑

j[eR(t−z)]kj =
∑

j Pk,j(t−z)=1 and
∑

k �=lRlk =
−Rll, we obtain that

E[N(t)]=−
∑

i

�i

∫ t

0

∑
l

[P(z)]ilRlldz

For a time-reversible model, P(t) has an eigenvector
decomposition as P(t)=Ue�tU−1 where e�t is a diagonal
matrix in which the ii-th diagonal entry gives i-th
eigenvalue e�it so that one of the �i is zero and the rest are
negative; the i-th column of U gives the i-th eigenvector
of P. Using the eigenvector decomposition

E[N(t)]=−
∑
ijl

�iRll[U]ij[
∫ t

0
e�jzdz][U−1]jl (5)

When j=1, the eigenvalue is zero which is the largest
eigenvalue of the rate matrix. Thus

∫ t
0 e�1zdz= t. When

j �=1,
∫ t

0 e�jzdz= e�j t−1
�j

. Thus,

E[N(t)]=−t
∑

il

�iRll[U]i1[U−1]1l

−
∑

ijl,j �=1

�iRll[U]ij[ e�jt −1
�j

][U−1]jl (6)

Given an edge with substitution matrix P(t)=eRt for an
unscaled R, if we take our edge length as te =E[N(t)]
and rescale R by 1

te Rij, then te will be interpretable as the
expected number substitutions.

If the �i are the stationary frequencies �s
i for R, this

gives the conventional rescaling where −∑
j�

s
j Rjj =1.

The edge lengths coming from this rescaling will be
denoted ts and ts = te only in the case of a stationary
model. For the NSGTR model, the appropriate �i
required to calculate te are the frequencies at the starting
node which need not coincide with the stationary
frequencies.

RESULTS

Simulation Settings
We used the INDELible sequence simulator (Fletcher

and Yang 2009) to create data sets under the GG and
BH models to test the performance of our methods.
The parameters of interest are joint probability matrices
along edges, frequencies at all nodes and edge lengths.
In our simulations, we evaluated both “mild” and
“extreme” settings for parameters. The mild parameters
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FIGURE 2. The tree used in the simulations. In the figure, nodes
b, c, f, g, k, r, v, and y represent the taxa of P. berghei, P. chabaudi, P.
falciparum, P. gallinaceum, P. knowlesi, P. reichenowi, P. vivax, and P. yoelii.

corresponded to the parameter estimates obtained for
the NSGTR model fitted to a real phylogenomic data set
consisting of data from the genus Plasmodium (Davalos
and Perkins 2008). The extreme parameters had extreme
stationary frequencies and exchangeabilities but the
same NSGTR edge lengths as in the mild parameters data
set. The tree in Figure 1 A in Davalos and Perkins (2008)
was treated as the true tree and has been reproduced in
Figure 2.

Estimated Permutations
Our experience suggests that optimization of

parameters under the BH model can sometimes yield
local maxima. To check whether this was the case in our
analysis, for a given data set simulated using the mild
parameters setting, we randomly generated 100 sets of
joint probability matrices under the true tree as our
initial values to seed the optimization. When estimating
parameters of the BH model for each of the 100 sets
of joint probability matrices, we found that 94 out of
the 100 had the same maximum log-likelihood up to
one decimal place, −335974.1. In the following, we will
ignore the six sets of estimates which had much smaller
suboptimal log-likelihoods corresponding to local
maxima. For each of the 94 set of estimates, we obtained
the best-fitting NSGTR joint probability matrices. The
best-fitting NSGTR joint probability matrices for the
estimated permutation had much smaller distances
between the estimates and true values than the best-
fitting NSGTR matrices for other permutations. None
of the 94 sets of best-fitting permutations corresponded
to the original BH estimates reinforcing our results
indicating that BH estimation alone is only accurate up
to permutation (Zou et al. 2011).

We performed tests to see if our algorithm can
find the set of permutations, over internal nodes, that
gives the minimum overall sum of squares. These
tests were conducted for 18 simulated data sets under
both mild and extreme parameter settings. In each of
these cases, and for almost all root choices, the overall
minimum sum of squares from our algorithm was the
same as the sum of the separately minimized sums of

squares for each of the edges. This implies that our
algorithm found the global minimum in each case.
(Note that any permutation at an internal node implies
the permutations of rows or columns of substitution
matrices for each of the edges connected to that node.
Because separately minimizing sums of squares along
edges does not enforce this constraint, it does not give
a global minimizer of the overall sum of squares except,
as here, when it matches up with a set of permutations
that satisfy the constraint.) For any root, the global
minimizing permutation was unique. However, except
for one of the data sets simulated under extreme settings,
the same overall minimum sum of squares was obtained
no matter which root was selected.

The results of Zou et al. (2011), reviewed here,
established that joint probability matrices for edges can
only be identified up to permutation in the BH model.
For the NSGTR model, this is no longer the case. As
we establish in supplementary material, for a given
topology and rooting, all parameters of the NSGTR
model are identifiable.

Edge Length Estimation
We compared the parameter estimates obtained from

our NSGTR fit to the estimated BH model on the
data sets with results estimated under a stationary
GTR model using PhyML (Guindon and Gascuel 2003)
and the GG nonstationary model implemented in
nhPhyML (Boussau and Gouy 2006). Estimated edge
lengths from PhyML and nhPhyML are the ts parameter
using the conventional rescaling for stationary models,∑

j�
s
j Rjj =1, where � is the stationary frequency vector.

For the GTR model, this ts is equivalent to the expected
number of substitutions per site. However, for the
nonstationary evolutionary processes accommodated by
the GG or the BH models along edges, the standard
ts edge length parameter is not the expected number
of substitutions; the latter (i.e., te) is instead correctly
computed using (6). In our experiments, we obtained
estimates of the ts parameter edge lengths from the
GTR and GG models using PhyML and nhPhyML. We
also computed the estimates of the expected number of
substitutions (the tes) along edges using the estimates of
joint probabilities of the GG and NSGTR models in (6).
Because this is a simulated data set, we also present the
true average numbers of substitutions in Figure 3.

For the tree in Figure 3, we can separate the edges
into two groups: a long edge group containing edges
(5, 2), (6, 1), (6, g), and (5, 4) and a short edge group
containing edges (1, f), (1, r), (4, c), (3, b), and (3,y).
The estimates of edge lengths for the short edge group
are very similar across different models and methods
for calculating edge lengths. In the long edge group,
the NSGTR estimates tend to be the closest to the true
edge lengths. The estimates of t output by nhPhyML, ts,
and the expected number of substitutions for this data
set, te, obtained by correcting the ts parameter with (6)
did much better than the estimates of the GTR model
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FIGURE 3. Estimates of edge lengths for data simulated from four models with extreme parameters.

from PhyML. For the GTR model, the estimates for all
edges were poor, and especially for edge (6, 5) that was
estimated to be zero when its true value was 0.033.
Notably, the GTR model estimates stretched all edges
in the long edge group. That the GTR model performed
worst under these conditions is not surprising given that
it was badly misspecified.

By assuming a general reversible continuous-time
Markov process for the direction from the root to the
terminal nodes along each edge, we can fit the NSGTR
models along edges. In this model, the parameters are
the root frequencies, exchangeabilities, and stationary
frequencies vectors for each edge. Using bppml in the
BppSuite in Dutheil and Boussau (2008), we are able to
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TABLE 1. The branch lengths and expected numbers of substitutions
in the simulation for testing nhPhyML estimates of branch lengths

ts te

True∗ Estimate∗ True∗∗ Estimate∗∗

0.1 0.159 0.115 0.141
0.2 0.293 0.224 0.260
0.3 0.410 0.327 0.361
0.4 0.508 0.426 0.451
0.5 0.624 0.520 0.569
0.6 0.720 0.610 0.630
0.7 0.806 0.697 0.798
0.8 0.909 0.782 0.793
0.9 0.996 0.864 0.880
1.3 1.377 1.176 1.199
1.4 1.472 1.251 1.203
2.0 2.080 1.683 1.333

True∗: branch length in T92 model.
Estimate∗: the estimates of nhPhyML.
True∗∗: the true expected numbers of substitutions.
Estimate∗∗: the estimates of the expected numbers of substitutions.

obtain ML parameter estimates for the NSGTR models,
referred to as the NSGTR-ML method. We compared the
estimates of edge lengths obtained using our method
(i.e., fitting the BH model and then finding the best-fit
NSGTR models) with those estimated by the NSGTR-ML
method. For this comparison, we used an eight-taxon
data set simulated under the BH model and the mild
parameter settings. For each comparison, we calculated
the average difference (in absolute value) between the
estimates and the true values. The average differences
for edge lengths are 0.022 for our method and 0.030 for
the NSGTR-ML method.

We did an additional simulation to explore the effects
of edge lengths estimated by nhPhyML under a correctly
specified GG model. Using INDELible, we simulated
a series of pairs under the GG model with 77313
sites. All pairs had the same starting state frequency
vector {0.41,0.10,0.16,0.33} for nucleotides A, C, G, T,
G+C-content of 0.9 and transition/transversion ratio
parameter 2, but each pair has a unique edge length.
The results are presented in Table 1. As can be seen, the
estimates of the expected numbers of substitutions te are
much closer to the true values than the ts edge lengths
output by nhPhyML.

In a nonstationary model, the edge lengths ts

determined by
∑

j�
s
j Rij =1 are not equal to the edge

lengths te calculated by (6). Figure 4 shows the
differences between te and ts vs. ts of a pair of
taxa. In this set of calculations, we set the root
frequencies to {0.4,0.1,0.1,0.4} and created substitution
matrices under the T92 model with parameters
satisfying that (1) the frequency of nucleotide C is in
{0.05,0.10,0.15,0.35,0.40,0.45}; (2) the ratio of transition
and transversion processes is 4.0; (3) the stationary
evolutionary distance is in [0.05,2.0]. The six plots in
Figure 4 showed that when the evolutionary distances
are small, the differences between te and ts are
small; when the evolutionary distances are large, the
differences between te and ts increase. The frequencies of

nucleotides also contributed to the size of the difference
between te and ts. When the stationary frequencies of
nucleotides are close to the root frequencies, which
is close to stationary status, the differences between
te and ts are small. The smallest difference, zero,
happens when the nucleotide’s frequencies at root is
equal to the stationary frequencies, which indicates the
stationary status. Results for other ratios of transition
and transversion in [0.5, 5] with the same set of
frequencies of nucleotide C and evolutionary distances,
which are not presented here, showed similar patterns.

Compositional Heterogeneity
The Plasmodium data set in Davalos and Perkins (2008)

has evidence of nonstationarity. The A+T-content in
Plasmodium knowlesi and Plasmodium vivax are higher
than in others. Also, as shown in Table 2, the frequencies
of nucleotides C and G are not similar for taxa P. berghei,
P. chabaudi, P. falciparum, P. gallinaceum, P. reichenowi, and
P. yoelii.

We fitted the GTR, GG, NSGTR, and BH models for the
Plasmodium data set. The log likelihoods for the GTR, GG,
NSGTR-ML, and BH estimates ranged from −348615.7
to −335974.1. As there are 8 taxa in the Plasmodium data
set, for a fixed topology, there are 22 free parameters
using the GTR model, 30 free parameters in the GG
model, 129 free parameters in the NSGTR-ML method,
and 159 free parameters in the BH model. The differences
of log likelihoods and degrees of freedom between the
BH and GTR models are 6320.5 and 137 respectively,
the corresponding differences between the BH and GG
models are 2446 and 93 respectively, and the same
differences between the BH and NSGTR-ML methods
are 197 and 30 respectively; likelihood ratio tests clearly
reject the simpler models in favor of BH. We compared
the estimates of joint probability matrices along edges
of the BH and NSGTR-ML methods and obtained 0.011
as the average difference among all entries. Among the
entries of joint probability matrices of the BH estimates,
the average value is 0.0625. Although the difference in
log likelihoods indicates that BH gives a significantly
better fit, this significant departure does not seem to
correspond to a large departure in estimated parameter
values.

The results for node frequencies are given in Figure 5.
Up to numerical/optimization error, the BH estimates
of terminal node frequencies match the empirical
frequencies as was shown analytically in Jayaswal et al.
(2005). The NSGTR and BH frequencies are very similar
with 10−3 as the maximum difference (in absolute value)
across all nodes. The average difference of the estimates
of the leaf node frequencies between the NSGTR-ML and
BH models was 0.031, which is much larger than the
maximum difference of 10−3 between the estimates of
the NSGTR and BH models. Because they are constant,
the GTR model estimates are unable to capture the
frequency changes over the topology in Figure 5. Because
A=T and C=G in the GG model which is clearly not
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FIGURE 4. The differences between expected numbers of substitutions te and stationary distance ts for T92 model. For each plot, the title
indicates the stationary frequency of state C in T92 model; the x-axis is the stationary edge lengths ts in T92 model; the y-axis is the differences
between ts −te.

TABLE 2. The character frequencies of eight taxa in Plasmodium data set

Plasmodium Plasmodium Plasmodium Plasmodium Plasmodium Plasmodium Plasmodium Plasmodium
berghei chabaudi falciparum gallinaceum knowlesi reichenowi vivax yoelii

A 0.41 0.41 0.41 0.41 0.35 0.41 0.32 0.42
C 0.11 0.11 0.11 0.10 0.18 0.11 0.21 0.11
G 0.16 0.16 0.16 0.16 0.21 0.16 0.24 0.16
T 0.32 0.32 0.32 0.32 0.26 0.32 0.23 0.32

the case at terminal nodes, the GG model did not fit
much better than the GTR model except at nodes P.
knowlesi and P. vivax. At these two nodes, the frequencies
of nucleotides A and T are close.

Normally, a large edge length indicates a large change
of frequencies at two nodes. For the real Plasmodium data,

the largest edge length estimate is for edge (5, 2). This
largest value also corresponds to the largest frequency
changes with the average difference 0.069. For other
edges, the average differences of frequencies at two end
nodes is at most 0.022. The edge (5,2) separates the
taxa k, v from the others. Figure 5 also showed that
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FIGURE 5. Estimates of frequencies at internal and external nodes for the Plasmodium data set. In the figure, nodes b, c, f, g, k, r, v, and y
represent the taxa of P. berghei, P. chabaudi, P. falciparum, P. gallinaceum, P. knowlesi, P. reichenowi, P. vivax, and P. yoelii. In a bar chart for a given
nucleotide, bars from left to right give frequencies for PhyML, nhPhyML, NSGTR, and BH respectively.

the NSGTR estimates do well at fitting the changes in
frequencies; the NSGTR-ML and nhPhyML estimates
also had the largest change along edge (5, 2), but their
estimates are not as close due to the restriction of the
stationary assumption in the NSGTR-ML model and the
GG model restriction that frequencies of states C and
G be the same. Because there is only one frequency
vector for the entire topology, unsurprisingly, PhyML
was unable to accurately estimate the frequencies for
nodes k, v, and 2.

The results for the simulated data set in Figure 6 show a
more complex example with extreme parameters models
along edges. In the true model, node g, which is the root
when estimating BH estimates, has a high A+T-content
with nucleotide A having the highest frequency. The
cluster of nodes 1, k, and r have high G+C-content with
nucleotide C having the highest frequency. The cluster
of nodes 2, k and v have roughly equal A+T-content
and G+C-content with nucleotide G having the highest
frequency. Finally, the cluster of nodes 4, c, 3, b, and y have
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FIGURE 6. Estimates of frequencies at internal and external nodes for simulated data from a model with extreme parameters. In a bar chart
for a given nucleotide, bars from left to right give frequencies for PhyML, nhPhyML, NSGTR, and true values, respectively.

high A+T-content with nucleotide T having the highest
frequency. The estimates of the BH under the estimated
permutations were within 10−4 of simulated values.

Similar to the observed results for the Plasmodium data,
large changes in frequency vectors are expected over
longer evolutionary times. When the edge lengths are
small, the frequency vector did not change much. For
instance, the average difference between the frequency
vectors at nodes 1 and f is 0.0056 over an edge of
length 0.02. In contrast, the average difference between
the frequency vectors at nodes g and f is 0.18 over
an edge of length 0.62 for the simulated data set with
extreme parameters. The estimates of the NSGTR-ML
and nhPhyML models showed a similar pattern, with
the frequency vector changes being largest along the
longest edge. Again, estimates from PhyML could not
accommodate the changing frequencies.

DISCUSSION

Our NSGTR implementation is intended to
supplement a BH model analysis, which is a more
flexible nonstationary model, by providing edge
lengths and internal node frequencies that, in most

cases, are meaningful. If one was only interested in
NSGTR model fits, it could be directly fit in an ML
framework and this would, in theory, provide parameter
estimates with smaller variance. We used the methods
described in Dutheil and Boussau (2008) to obtain
such fits for the data and simulations considered here.
Alternatively, Jayaswal et al. (2011) recently provided
an R implementation allowing model selection over
continuous-time reversible models with varying
degrees of heterogeneity. Our results for the data and
simulations considered here suggest that our NSGTR
fits will be comparable with NSGTR-ML. In fact, for
the comparisons here, our parameter estimates were
closer to the true generating parameters in some
cases. Due to the statistical consistency of the BH joint
probability matrix estimates, our approach can be
expected to give statistically consistent estimates of
NSGTR parameters.

Surprisingly, the total computational time required
to fit both the BH and the NSGTR models was much
less than the time required for a single NSGTR-ML
fit. The total time required for both BH and NSGTR
fits to the Plasmodium data set was <2 min where for
this data, the time required for NSGTR-ML fitting was
>1 h. The reason for the shorter time has much to do

 at D
alhousie U

niversity on O
ctober 23, 2012

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Copyedited by: EU MANUSCRIPT CATEGORY: Article

[14:57 9/10/2012 Sysbio-sys046.tex] Page: 938 927–940

938 SYSTEMATIC BIOLOGY VOL. 61

with the computational advantages of the BH model
implementation. Jayaswal et al. (2005) provide explicit
updating formulas that do not require eigenvector
decompositions. In our experience, estimation can be
done quickly. In contrast, an NSGTR ML implementation
requires repeated eigenvector decompositions through
all edges of a tree, every time new NSGTR parameters
are considered as well as when derivatives of these
parameters are required.

The stationary GTR model has a closure property:
if one taxon is taken out, the implied model for the
remaining taxa is a GTR model. For the NSGTR model,
if one taxon is taken out, the implied model will be
approximately NSGTR if the rate matrices do not change
much near the terminal branch for that taxon. Results
in Sumner et al. (2012) imply that the NSGTR is not
generally closed, however. Thus, for the NSGTR model
to give a good fit, it is important that taxon sampling be
conducted in such a way that, for any given edge, a single
GTR model provides a reasonable approximation to the
evolutionary process along that edge.

When edge lengths are short, the estimates from
GTR, GG, and NSGTR are quite similar. However, when
an edge length was large, NSGTR estimates tended to
estimate the changes of frequencies and edge lengths
much better than the alternative methods. For the
Plasmodium data set shown in Figure 7, the edge lengths
output from GTR and GG are not very different from
expected numbers of the substitutions obtained using
(6) and the estimates of NSGTR model. This is not
surprising for this particular data set because the NSGTR
estimates of parameters for this data set indicated that
exchangeabilities and stationary frequencies did not
change much over the tree except at the edge (5, 2). The
processes along most edges are, therefore, close to being
stationary processes. However, our simulation study
under more extreme nonstationary parameter settings
clearly shows the improved accuracy of the NSGTR
method relative to the GG and GTR models.

While the NSGTR model estimated many parameters
well, it did not do a good job at locating the root.
Evaluating the minSS values rooting at different nodes of
Plasmodium data set yielded two distinct values. Rooting
at the nodes 1, 3, 4, 5, 6, b, c, f , g, r, and y gave a minSS
value of approximately 2.34E−04, whereas rooting at the
nodes 2, k, and v gave a minSS value of approximately
1.48E−03. This difference in minSS allows us to rule out
node 2, k, and v as the true root but does not distinguish
between the others.

One of the pragmatic decisions made in fitting
was to only consider internal or external nodes as
potential roots. Allowing roots along an edge may seem
desirable by comparison but comes with the additional
complication of optimizing the location along that edge.
For the examples considered here, because of the small
SS obtained between BH and NSGTR, it is doubtful
that substantial further decreases would be obtained via
the additional flexibility of allowing a root anywhere
along an edge. More generally, since by comparison with
our current implementation allowing a root along an

edge will only change the fit for that one edge, it is
doubtful that such additional flexibility will appreciably
improve fit.

To explain our observations, we obtained the NSGTR
substitution matrices for one of the rootings giving the
minimum minSS. These NSGTR substitution matrices
were used to obtain joint probability matrices, which
were given as input to the NSGTR routine. We used
this routine to compute NSGTR models from true joint
probabilities in the reverse directions along edges. We
found that the true joint probability matrices coming
from NSGTR in the reverse direction were almost
identical (data not shown). Based upon these numerical
results, it appears that the evolutionary direction for an
edge under the NSGTR model is not always recoverable.
For the Plasmodium data set, the estimates of edge
lengths of the forward and reverse directions show few
differences. However for the case of extreme data sets in
our simulation, the direction effects were significant.

A natural follow-up question is whether there always
exists an NSGTR model in the reverse direction if there
exists a NSGTR model in the forward direction. We
tested 18 data sets simulated under GTR models and BH
models and obtained BH estimates. For each set of BH
estimates, we examined 14 rooting positions. Among a
total of 18∗14=252 rooting trials, we only had two cases
in which NSGTR models did not give exactly the same
fit in both forward and backward directions.

Finally, it should be pointed out that there may be cases
where the fitted BH model is not well-approximated
by any NSGTR model. In this case, the resulting
edge lengths from NSGTR could be misleading. Such
cases can be expected to be diagnosed through large
differences between NSGTR and BH model substitution
matrices.

CONCLUSIONS

The parameters of the BH model of Barry and
Hartigan (1987) are joint probabilities along edges and
they have identifiability problems whereby multiple
sets of estimates give the same likelihoods. Because of
this, frequencies at internal nodes cannot be correctly
estimated although frequencies at leaf nodes will
converge to true values as sequence length gets large.
A further problem is that edge lengths are informative
parameters but are not available from the BH model.
By defining NSGTR models along edges, our algorithm
finds the estimates of the transition matrices under
the NSGTR model that best fits the BH estimates.
Our simulations show that our algorithm is effective
in resolving identifiability problems in both mild and
extreme parameter settings.

In our solution, because the NSGTR model is
nonstationary, nonstandard methods were required to
compute the edge length interpretable as the expected
number of substitutions along an edge. Our approach of
using NSGTR estimates of the best-fitting BH estimates
allows interpretable edge lengths to be estimated.
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FIGURE 7. Estimates of edge lengths for the Plasmodium data under four different models. In the figure, nodes b, c, f, g, k, r, v, and y represent
the taxa of P. berghei, P. chabaudi, P. falciparum, P. gallinaceum, P. knowlesi, P. reichenowi, P. vivax, and P. yoelii.

The formulas given for edge length calculation are
more broadly valuable for obtaining interpretable edge
lengths for all nonstationary models. For instance,
the estimates of edge lengths currently given by the
nhPhyML implementation of the GG model correspond
to stationary model calculations but can be corrected
using (6).

Software implementing the methods discussed in
this article is available at http://www.mathstat.dal.
ca/˜tsusko.

FUNDING

This work was supported by Discovery grants from
the Natural Sciences and Engineering Research Council
of Canada awarded to C.F., E.S., and A.J.R.

ACKNOWLEDGMENTS

We would like to thank Dr Vivek Jayasawal for helpful
advice and discussions concerning the BH model and
software implementation, and allowing us to use the
code for Jayaswal et al. (2005) in our implementation. We
appreciate the valuable comments and suggestions from
Dr Peter Foster, Dr John Robinson, Dr Bastien Boussau,
and an anonymous reviewer.

REFERENCES

Ababneh F., Jermiin L.S., Ma C., Robinson J. 2006. Matched-pairs
tests of homogeneity with applications to homologous nucleotide
sequences. Bioinformatics 22:1225–1231.

Allman E., Ane C., Rhodes J.A. 2008. Identifiability of a Markovian
model of molecular evolution with gamma-distributed rates. Adv.
Appl. Prob. 40:229–249.

Barry D., Hartigan J.A. 1987. Statistical analysis of hominoid molecular
evolution. Stat. Sci. 2:191–210.

Boussau B., Gouy M. 2006. Efficient likelihood computations with
nonreversible models of evolution. Syst. Biol. 55:756–768.

Chang J.T. 1996. Full reconstruction of Markov models on
evolutionary trees: identifiability and consistency. Math. Biosci. 137:
51–73.

Davalos L.M., Perkins S.L. 2008. Saturation and base composition
bias explain phylogenomic conflict in Plasmodium. Genomics 91:
433–442.

Dutheil J., Boussau B. 2008. Non-homogeneous models of sequence
evolution in the Bio++ suite of libraries and programs. BMC Evol.
Biol. 8:255.

Felsenstein J. 2004. Inferring phylogenies. Sunderland Massachuetts
(MA): Sinauer Associates, Inc.

Fletcher W., Yang Z. 2009. INDELible: a flexible simulator of biological
sequence evolution. Mol. Biol. Evol. 26:1879–1888.

Foster P.G. 2004. Modeling compositional heterogeneity. Syst. Biol.
53:485–495.

Foster P.G., Hickey D.A. 1999. Compositional bias may affect both
DNA-based and protein-based phylogenetic reconstructions. J. Mol.
Evol. 48:284–290.

Galtier N., Gouy M. 1998. Inferring pattern and process: maximum-
likelihood implementation of a nonhomogeneous model of DNA
sequence evolution for phylogenetic analysis. Mol. Biol. Evol.
15:871–879.

 at D
alhousie U

niversity on O
ctober 23, 2012

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://www.mathstat.dal.ca/~tsusko.
http://sysbio.oxfordjournals.org/


Copyedited by: EU MANUSCRIPT CATEGORY: Article

[14:57 9/10/2012 Sysbio-sys046.tex] Page: 940 927–940

940 SYSTEMATIC BIOLOGY VOL. 61

Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood. Syst. Biol.
52:696–704.

Hasegawa M., Kishino H., Yano T. 1985. Dating of the human-ape
splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.
22:160–174.

Jayaswal V., Jermiin L., Robinson J. 2005. Estimation of phylogeny using
a general Markov model. Evol. Bioinf. Online 1:62–80.

Jayaswal V., Jermiin L.S., Poladian L., Robinson J. 2011. Two
stationary nonhomogeneous markov models of nucleotide
sequence evolution. Syst. Biol. 60:74–86.

Minin V.N., Suchard M.A. 2008. Fast, accurate and simulation-free
stochastic mapping. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
363:3985–3995.

Oscamou M., McDonald D., Yap V.B., Huttley G.A., Lladser M.E.,
Knight R. 2008. Comparison of methods for estimating the
nucleotide substitution matrix. BMC Bioinformatics 9:511.

Sumner J.G., Fernández-Sánchez J., Jarvis P.D. 2012. Lie markov
models. J. Theor. Biol. 298:16–31.

Tamura K. 1992. Estimation of the number of nucleotide substitutions
when there are strong transition-transversion and G+C-content
biases. Mol. Biol. Evol. 9:678–687.

Yang Z., Roberts D. 1995. On the use of nucleic acid sequences
to infer early branchings in the tree of life. Mol. Biol. Evol. 12:
451–458.

Zou L., Susko E., Field C., Roger A.J. 2011. The parameters of
the Barry and Hartigan general Markov model are statistically
nonidentifiable. Syst. Biol. 60:872–875.

 at D
alhousie U

niversity on O
ctober 23, 2012

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/

	Fitting Nonstationary General-Time-Reversible Models to Obtain Edge-Lengths and Frequencies for the Barry--Hartigan Model
	L. Zou, Edward Susko, Chris Field, and Andrew J. Roger

