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Heterotachy is a general term to describe positions in a sequence that evolve at different rates in different lineages.
Kolaczkowski and Thornton (2004. Performance of maximum parsimony and likelihood phylogenetics when evolution
is heterogeneous. Nature 431:980–984.) recently described an intriguing heterotachy model that leads to topological
bias for likelihood-based methods and parsimony methods. In this article, we show that heterotachy can generally be
viewed as multivariate rates-across-sites variation, which can be described as randomly drawing rates (or branch lengths)
from a multivariate distribution for each branch at each site. Motivated by this idea, we propose a pairwise alpha het-
erotachy adjustment model, which gives us much improved topological estimation in the settings by Kolaczkowski and
Thornton (2004).

Introduction

Functional constraints on sites in a gene sequence
often change through time, causing shifts in site-specific
evolutionary rates, a phenomenon called heterotachy
(meaning “different speeds”) (Fitch 1976; Tuffley and
Steel 1997, 1998; Huelsenbeck 2002; Lopez et al. 2002;
Kolaczkowski and Thornton 2004; Huelsenbeck et al.
2008; Kim and Sanderson 2008). Tuffley and Steel (1997)
were the first to consider the model with site-specific
branch lengths, now commonly called the “no-common-
mechanism” model. Huelsenbeck et al. (2008) took a
Bayesian approach to the no-common-mechanism model
and placed independent gamma prior probability distribu-
tions on the branch length parameters for each branch. Sev-
eral special cases of heterotachy models were proposed
recently. Covarion models (Fitch and Markowitz 1970;
Tuffley and Steel 1998; Galtier 2001; Huelsenbeck 2002)
assume that sites have constant probabilities over time of
switching between two or more rate categories. Wang et al.
(2007) generalized the covarion model to allow evolution-
ary rates not only to switch between variable and invariable
classes but also to switch among different rates when they
are in a variable state. A nonstationary model called tempo-
ral hidden Markov model was proposed by Whelan (2008),
which can distinguish between among-site heterogeneity
and among-lineage heterogeneity. Susko et al. (2003) pro-
posed a bivariate model. In this model, they suppose that
the rates in two subtrees should be different if it is a het-
erotachy tree.

Kolaczkowski and Thornton (K&T) (2004) described
an interesting heterotachy model where parsimony outper-
forms misspecified likelihood methods (see also Inagaki
et al. 2004). Their research resulted in a lot of discus-
sion (e.g., Philippe et al. 2005; Spencer et al. 2005; Steel
2005), much of which centered on the question of whether
maximum parsimony (MP) could be considered better than
maximum likelihood (ML) based on their results. Never-
theless, their results did indicate that failing to adjust for
heterotachy can lead to incorrect topological estimation.
Follow-up work like that of Wang et al. (2008) has sup-
ported this conclusion in different settings of heterotachy
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like that of the covarion model. On the other hand, the work
of Wu et al. (2008) indicates that when rates are varying in
an independent manner throughout the tree at sites, there
will be ways, for instance through distance methods with
LogDet distances, of adjusting for heterotachy.

In molecular sequence comparisons, rate and time
are intrinsically confounded (Felsenstein 1981; Thorne and
Kishino 2002; Yang and Yoder 2003). The likelihood of the
data depends on the distances or branch lengths (the prod-
uct or integral of rates and times) but not on evolutionary
rates and times individually.

We will give a general definition of heterotachy as
multivariate rates-across-sites (RAS) variation, where the
rates or branch lengths are modeled by an arbitrary dis-
tribution. We also show that all the commonly consid-
ered heterotachy models can be considered special cases
of this general definition. We use this result to establish
that, for pairs of taxa, heterotachy is an usual, univariate
RAS variation. Motivated by this characterization of het-
erotachy, we assume that rates between two taxa follow dif-
ferent distributions. For convenience, gamma distributions
(Yang 1993, 1994; Tuffley and Steel 1998) with different
shape parameters for different pairs are used in this arti-
cle. Through ML estimation, we find the best distance and
the best (shape) parameter for the corresponding distribu-
tion for each pair of taxa (see fig. 1). Then, the Neighbor-
Joining (NJ) method (Saitou and Nei 1987) is used to find
the best tree topology.

Similarly as in Kolaczkowski and Thornton (2004),
we simulated replicate DNA sequence alignments with
two symmetrical rate partitions along a four-taxon tree.
Our pairwise alpha heterotachy adjustment (PAHA) con-
sistently showed better phylogenetic accuracy (the fraction
of replicates from which the true tree was recovered) on
simulated data than either uncorrected ML or MP methods.

Methods
Heterotachy

Although there are a variety of heterotachy models,
they all turn out to be related. In this section, we provide
two equivalent general definitions for heterotachy. Then
we show that the equal rates (ER) model, RAS model
(Yang 1993), K&T four-taxon model (Kolaczkowski and
Thornton 2004), bivariate model (Susko et al. 2003),
random-effect rates variation (RERV) model (Wu et al.
2008), and covarion model (Tuffley and Steel 1998) are
all special cases of heterotachy. Earlier description of the
term “heterotachy” (Fitch 1976) did not exclude a possible
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FIG. 1.—The pairwise alpha heterotachy adjustment.

dependence across sites, which is more general than what
we define below. However, without the assumption of inde-
pendence, the model implementation becomes much more
difficult for a number of reasons including the difficulty of
specifying the nature of dependence.

Definition 1: Heterotachy as multivariate RAS variation.

Generally, heterotachy can be viewed as independent
draws of rates from some multivariate distribution G for
each site. We let r(h)i denote the average rate at site h for
edge i. For an unrooted tree with m taxa, there are 2m−
3 edges. Denote a rate vector r(h) = (r(h)1 ,r

(h)
2 , . . . ,r

(h)
2m−3),

then with n sites, r(1),r(2), . . . ,r(n) are independent draws
from some multivariate distribution G, where EG[r

(h)
i ] = 1.

Definition 2: Heterotachy as multivariate edge length
variation across sites and lineages.

In this model description, we draw vectors of edge
lengths t(h) = (t(h)1 , t

(h)
2 , . . . , t

(h)
2m−3) in an independent and

identically distributed fashion from some distribution H.
We can then define overall, average edge lengths as

ti = EG[t
(h)
i ], i= 1,2, . . . ,2m−3. (1)

The two definitions are equivalent. Definition 1 can be
obtained through the following equation:

r(h)i = t(h)i /ti. (2)

We will show that all common heterotachy models are
a special case of the general heterotachy model (either by
Definition 1 or by Definition 2).

(a) ER model (fig. 2a). Because the interpretation of
edge lengths is the expected number of substitutions, the
common rate is 1. If we set r(h)j = 1, we get an ER model.

(b) RAS model (fig. 2b). In this model, a single rate
r(h) is drawn independently at each site and acts as an

FIG. 2.—The distribution of RAS and lineages under six models of
evolution. Each tree plot describes the distribution of rates across lineages
for a particular site under the considered model. Rates are represented by
different line thicknesses. (a) ER model; (b) RAS model; (c) K&T four-
taxon model (settings); (d) bivariate model; (e) RERV model; (f ) covarion
model.

overall rate multiplier for the entire tree. If we set r(h)j =

r(h), we get the RAS model (Yang 1993, 1994).
(c) K&T four-taxon model (figs. 2c and 3). In this

model (Kolaczkowski and Thornton 2004), a proportion of
sites was drawn from the following tree, in Newick format,

((A : 0.75,B : 0.05) : 0.1,(C : 0.75,D : 0.05)),

and another proportion of the sites is drawn from another
tree

((A : 0.05,B : 0.75) : 0.1,(C : 0.05,D : 0.75)).

If the proportions drawn were random, this would corre-
spond to Definition 2, so the K&T four-taxon model is a
special case of the general heterotachy model.
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FIG. 3.—Simulation settings for the K&T-type scenarios. A certain
proportion of sites are generated from the tree in partition 1 and the rest
from partition 2.

(d) Bivariate model (fig. 2d). We split the tree into two
subtrees and for each site h, we let the rates at one subtree
equals r(h)a and the other subtree equals r(h)b . Without loss of
generality, assume that the edges 1,2, . . . ,m1 are in the first
subtree and m1+ 1,m2+ 1, . . . ,2m− 3 are in the second.
Then setting r(h)i = r(h)a , i= 1,2, . . . ,m1, and r(h)i = r(h)b , i=
m1+1,m2+1, . . . ,2m−3, we see that the bivariate model
(Susko et al. 2003) is a special case of Definition 1.

(e) RERV model (fig. 2e). If for each branch j, we
independently randomly draw r(h)j , from a distribution, for
example, Γ(α j), we get the RERV model (Wu et al. 2008).

(f) Covarion model (fig. 2f ). The covarion model
seems different than the heterotachy model described here
because rates can vary along a fixed edge. For a pair of
sequences, the covarion model gives results identical with
those of a suitably chosen RAS model (Tuffley and Steel
1998). This formulation applies as well to a pair of se-
quences at end nodes of a branch in a tree. Thus, for each
site and branch, the covarion process is equivalent to as-
signment of a random rate. The stochastic process that
defines a covarion model gives rise to a complicated de-
pendence between these rates. Nevertheless, Definition 1
applies.

Heterotachy as Differing RAS Distributions for Pairs

From the above discussion, all common heterotachy
models satisfy Definitions 1 and 2. However, it is difficult
to determine which of the above models gives the most re-
alistic model of heterotachy. The difficulty is in specifying
the form of dependence of rates across lineages. We show
here that this problem can be avoided by considering dis-
tances. For pairs of taxa, heterotachy turns out to be simply
RAS variation with different RAS distributions for differ-
ent pairs.

We start by considering a multivariate discrete distri-
bution for the edge lengths. This is the case in which there
are a finite number of edge lengths that might randomly
be selected at a site. We assume that there are g groups of
edge lengths and that the jth group will be selected with
probability w j.

Now, consider a pair of taxa (fig. 4). In order to differ-
entiate the rates and edge lengths in different rate groups
from those at different sites, we use upper case for groups.
Then, for group i, the distance between taxa 1 and 4 is
D(i)14 = T (i)1 +T (i)5 +T (i)4 , i = 1,2, . . . ,g. Thus, for this pair
of taxa, at each site h, drawing edge lengths at random is

FIG. 4.—(a) For each site, characters are generated from some group
in (b), which makes the edge lengths different at different sites; (b) there
are g groups of partitions, each partition comes from an ER model, and
group i has weight wi.

the same as drawing distances at random where with prob-
ability wi, d(h)14 = D(i)14, i= 1,2, . . . ,g.

Alternatively, we can view this as an RAS model as
follows. Let

d14 =
g

∑
i=1

wiD
(i)
14 (3)

and

R(i)14 = D(i)14/d14, i= 1,2, . . . ,g. (4)

Then the model is the same as the one in which taxa 1 and
4 have distance d14 and rate r(h)14 , where the rate at each
site h is selected at random and with probability wi, r(h)14 =

R(i)14. Here ∑wiR
(i)
14 = 1, so that this is a conventional RAS

model.
Up to now, we have assumed that the multivariate dis-

tribution of edge lengths describing heterotachy is discrete.
Suppose now that it is continuous. Again, considering taxa
1 and 4 for illustration, the random distance at a site h is

d(h)14 = t(h)1 + t(h)5 + t(h)4 .

But now, instead of having d(h)14 drawn from a discrete dis-
tribution, it is drawn from a continuous density, h14(x); this
density can, in principle, be determined from the multivari-
ate distribution for t(h)1 , t(h)5 , and t(h)4 . Alternatively, we can
view this as an RAS model in a similar way as we did in
the discrete case by letting

d14 =
∫

xh14(x)dx.

Defining random rates at sites as r(h)14 = d(h)14 /d14, the RAS
density is

g14(r) = d14 ·h14(d14r)

and satisfies the usual constraint that
∫

r ·g14(r)dr = 1.

Using Distance Methods to Adjust for Heterotachy

From the above discussion, heterotachy can be mod-
eled as an RAS variation for sites. In our implementa-
tion, for a pair of taxa, we assume that the rate at each
site is drawn from a distribution R(r,α); we use a gamma
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distribution (Yang 1993, 1994; Tuffley and Steel 1998) as a
parametric model. We obtain parameter estimates (the dis-
tances and the shape parameter α) through ML estimation.
Under heterotachy, different distributions apply to different
pairs. For each pair of taxa, we find the best distance and
the best shape parameter α (see fig. 1). After this, the NJ
method (Saitou and Nei 1987) is used to find the best tree
topology.

Suppose that for a pair of taxa of interest, we have
character states (ai,bi) at the ith site in sequences A and B.
Let Paibi(r

(i)d) denote the probability that character state
ai is substituted by bi along a distance of length d and a
evolutionary rate r(i). Then the conditional probability of
(ai,bi) at the site, given rate r(i) and distance d, is

P(ai,bi|r(i),d) = π(ai)Paibi(r
(i)d), (5)

where d and r(i) are the distance and evolutionary rate from
one taxa to the other at the site and π(ai) is the probabil-
ity of character state ai. Because r(i), i = 1,2, . . . ,n, is un-
known, we calculate the unconditional probability of the
observed data, (ai,bi), as

P(ai,bi;d,α) =
∫ +∞

0
π(ai)Paibi(rd)R(r,α)dr.

The likelihood is obtained by multiplying the probabilities
over all sites, which is

L(α,d) =
n

∏
i=1

∫ +∞

0
π(ai)Paibi(rd)R(r,α)dr. (6)

Let nc denote the number of character states; four for
nucleotide models and 20 for amino acid models. The to-
tal number of combinations for pairs of character states is
n2

c . For example, for nucleotide data, there are four char-
acter states: A, C, G, and T, so the combinations for pair
of character states are (A,A), (A,C), . . ., (T,T), 16 in total
(42 = 16). In order to save computation time, we count the
frequency for each character state combination as ni j, i, j=
1, . . . ,nc, and reorganize equation (6) as

L(α,d) =
nc

∏
i=1

nc

∏
j=1

{∫ +∞

0

[
π(ci)Pcic j(rd)R(r,α)

]
dr

}ni j

,

(7)
where π(ci) is the probability of character state ci and
Pcic j(rd) is the transition probability from character state
ci to c j with distance d and rate r. Maximizing the log like-
lihood in equation (7) gives estimates of d and α . After we
estimate d for each pair of taxa, we can use the NJ method
to find the best tree topology.

For the PAHA method, there is a question about
whether the parameters α and d are identifiable or not; α
and d are unidentifiable if two different sets of α and d
values give exactly the same probability of observing any
given pair of sequences. The model may include additional
(rate matrix) parameters, such as the transition/transversion
ratio κ for the HKY85 model (Hasegawa et al. 1985) and
κ1 and κ2 for the TN93 model (Tamura and Nei 1993). We
treat these as known and constant across pairs. In practice,
they can be estimated by software including Tree-Puzzle
(Schmidt et al. 2002). For amino acid data, empirical rate
matrices, such as the Jones–Taylor–Thornton (JTT) rate

matrix (Jones et al. 1992), with no unknown parameters
are commonly used.

According to Wu et al. (2008), if the rate matrix used
in the PAHA method has more than two distinct eigenval-
ues, α and d will be identifiable. Because the rate ma-
trix used in this paper is the JTT rate matrix, which has
19 distinct eigenvalues, the parameters are identifiable at
least for amino acid data. For nucleotide data, the situation
is different. For example, if the JC69 (Jukes and Cantor
1969) or F81 (Felsenstein 1981) rate matrix is used in the
PAHA method, the parameters are unidentifiable, but if the
HKY85, TN93, or general time reversible (GTR) rate ma-
trix (Tavaré 1986) is used, the parameters are identifiable
(assuming that these three models do not degenerate to the
JC69 or F81 model). The difference here is that there are
just two distinct eigenvalues for the JC69 rate matrix, but
there are at least three distinct eigenvalues for the HKY85,
TN93, and GTR rate matrix.

Results
Simulations

Kolaczkowski and Thornton (2004) simulated data
sets under each set of conditions using the JC69 (DNA)
model. However, the parameters α and d under JC69
model are unidentifiable. The JTT rate matrix has 19 dis-
tinct eigenvalues, so the parameters are identifiable for
amino acid data (Wu et al. 2008). For these reasons, we
simulated and analyzed amino acid data under JTT model
(C code implementing PAHA estimation is available on
request).

Similarly as in Kolaczkowski and Thornton (2004),
we simulated amino acid sequences along a four-taxon tree
((A,B),(C,D)) with two independent partitions that were
concatenated into one heterogeneous alignment (see fig. 3).
In partition 1, long terminal branches equal p = 0.75 and
lead to A and C and short terminals equal q = 0.05 and
lead to B and D. In partition 2, terminal branches to B
and D have length p, whereas A and C have length q. The
internal branch length r ∈ (0.0,0.5) is equal in both par-
titions. The two partitions were of equal size unless oth-
erwise noted. One thousand replicate alignments of 1,000
and 10,000 characters were simulated under each set of
conditions using the JTT model through seq-gen (Rambaut
and Grassly 1997). We simulated each of the two partition
of sites (trees) with the ER model, because the two trees
have different branch length, and then mixed them together
to get a general heterotachy tree.

We also simulated four taxon amino acid sequences
through seq-gen-aminocov (Ané et al. 2005). We set the
model of Tuffley and Steel with ON frequency 0.25 and
speed of covarion evolution 1.75. The evolution speed is
the average number of switches per (average) substitution.
One thousand replicate alignments of 1,000 and 10,000
characters were simulated under the JTT model.

After getting the simulated sequences, we compared
percentages of correctly recovery tree among the PAHA
method, uncorrected ML method, and MP method. Here,
uncorrected ML method means that we estimated tree
topology through ML method but used different model as
that of in the simulations. We use ML+ER and ML+RAS
to denote the method of estimating the trees always using

Downloaded from https://academic.oup.com/mbe/article-abstract/26/12/2689/1530229
by Dalhousie University Libraries user
on 26 February 2018



Distance Adjustments for Heterotachy 2693

FIG. 5.—The proportions of correct reconstructions as a function of internal edge length for PAHA, uncorrected ML, and MP methods when data
are generated according to the K&T scenario of figure 3.

ML method but assuming that ER and RAS (a single
shape parameter alpha is estimated) models were applied
respectively.

Figure 5a and b gives the proportion of correct recon-
structions as a function of the internal branch length under
the K&T four-taxon model simulations. Under the condi-
tion of strong heterotachy considered here (p = 0.75, q =
0.05), the accuracy of PAHA is much better compared with
ML + ER, ML + RAS, and MP.

Figure 5c and d gives the proportion of correct recon-
structions as a function of the internal branch length under
the covarion model simulations. We can see that the accu-
racy of PAHA is not apparently worse than ML + ER, ML +
RAS, and MP. However, we are a little surprise that the ac-
curacy of ML + RAS is worse than that of ML + ER in
1,000 characters case (fig. 5c).

The proportion of sites varies from 0.0 to 1.0 in the
first partition, but the internal branch lengths and the num-
ber of characters are fixed in each case. From figure 6, we
can see that heterotachy does not affect the accuracy ex-
cept when the proportion of sites in partition 1 is close
to 0.1 or 0.9. Compared with ML+ER, ML+RAS, and
MP, we can see that PAHA is much more resistant to het-
erotachy. Also the accuracy of the PAHA method is much
better compared with ML+ER, ML+RAS, and MP, es-
pecially when the number of sites is large.

Chloroplast Data

The chloroplast data consist of 61 concatenated
protein-coding genes and have 15,688 sites for 24 taxa.

These data have been considered before, and the inferred
relationship between Amborella and the Nymphaeales var-
ied when using different methods of phylogenetic re-
construction, models of molecular evolution, and subsets
of taxa (Barkman et al. 2000; Graham and Olmstead
2000; Zanis et al. 2002; Stefanović et al. 2004; Susko
and Roger 2007). The branching order of Amborella and
the Nymphaeales relative to each other and the rest of
the angiosperms remains uncertain. Using the chloroplast
genome data, Leebens-Mack et al. (2005) found weak sup-
port for Amborella and the Nymphaeales at the base of the
angiosperms.

The original sequences were used to generate 100 data
sets according to the nonparametric bootstrap scheme of
Felsenstein (1985). These data sets were then used to es-
timate 100 distance matrices for the ER and RAS models
and PAHA. We use NJ+ER, NJ+RAS, and NJ+PAHA
to denote the method of distance matrix estimation; tree
estimation is always through the NJ method. For the
NJ+RAS method, a single shape parameter alpha is es-
timated when we estimate the distance matrix. For each
method, bootstrap support values were calculated resulting
in the trees labeled NJ+ER, NJ+RAS, and NJ+PAHA in
figure 7. Tree-Puzzle (Schmidt et al. 2002) was used to es-
timate distance matrices for ER and RAS. The programs
Seqboot, Neighbor, and Consense in the PHYLIP pack-
age (Felsenstein 1993) were used for bootstrap generation,
application of the NJ algorithm, and bootstrap summary.

There are several differences between the trees in
figure 7 as well as those of Leebens-Mack et al. (2005),
which is based on nucleotide data limited to the first two
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FIG. 6.—The proportions of correct reconstructions as a function of proportion of sites in partition 1 for PAHA, uncorrected ML, and MP methods
when data are generated according to the K&T scenario of figure 3.

codon positions in contrast to the amino acid analysis here.
The first that we comment on is the placement of the out-
group taxa Marchantia with Psilotum with 100% bootstrap
support instead of with Physcomitrella as occurred with
100% bootstrap support in the NJ + ER tree and the trees of
Leebens-Mack et al. (2005) in their figure 4A–C. Notably,
the Marchantia with Psilotum grouping of NJ + PAHA oc-
curred as well in the NJ + RAS tree, the other method that
adjusts for rate variation, albeit with lower (57%) boot-
strap support. The difference in bootstrap support indicates
that RAS variation is being inferred for the distances be-
tween these taxa and some of the others in the tree. For
each pair of taxa coming from the three taxa Marchantia,
Psilotum, and Physcomitrella, the estimated α was much
smaller than the α calculated for other pairs of taxa, which
suggests that heterotachy may be present in this portion of
the tree. Therefore, the Marchantia with Psilotum group-
ing might be correct and estimated because of adjustment
for heterotachy through the PAHA method.

Other differences concerned the relative placements
of Typha, Yucca, and Calycanthus. For the NJ + PAHA
tree, these were the same as for the ML tree of Leebens-
Mack et al. (2005). The placement of Calycanthus in the
NJ + PAHA tree was more uncertain, however, with 58%
bootstrap support. The placement of Typha and Yucca is
the same as in the NJ + RAS tree and differs from the NJ +
ER tree. The placement of Typha and Yucca in the NJ + ER
tree is likely due to a failure to adjust for rate variation of
any sort.

The final difference worth noting is the NJ + PAHA
placement of Amborella and the Nymphaeales, consistent

with Leebens-Mack et al., at the base of the angiosperms
with relatively large bootstrap support. This placement has
been the source of considerable debate (Goremykin et al.
2003, 2004; Soltis et al. 2004; Lockhart and Penny 2005;
Martin et al. 2005; Jansen et al. 2007; Moore et al. 2007).
Interestingly, the NJ + RAS and NJ + ER trees place this
group with the monocots. It is possible that (lack of) ad-
justments for what is, in actuality, heterotachy are what is
causing the differences in the estimated trees.

Discussion

A large number of different heterotachy models have
been proposed during the last 15 years (Yang 1993; Tuffley
and Steel 1998; Susko et al. 2003; Kolaczkowski and
Thornton 2004; Wu et al. 2008). These heterotachy models
are seemingly very different. Some are “punctuated” mod-
els, like the K&T four-taxon model, some are “gradual”
models, like the RAS model. It will be valuable for future
work to recognize that there is a framework (the general
heterotachy model) for all these models. When considered
from the perspective of pairs, it is also useful to note that
heterotachy is an RAS variation but with different RAS dis-
tributions for different pairs. Based on this observation, we
proposed the PAHA method that can be used to estimate
the tree topology.

An alternative method to estimate the tree topology
is full ML estimation, which needs a tree and a model of
heterotachy to specify probabilities of patterns for all taxa.
The ML estimate of the phylogeny is the tree that maxi-
mizes the probability of the sequence data. Difficulties here
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Distance Adjustments for Heterotachy 2695

FIG. 7.—(a) ER model + NJ, (b) RAS model + NJ, and (c) PAHA method + NJ. Phylogenies for the chloroplast data estimated using distances
were obtained assuming a JTT substitution model. Most nodes on each phylogeny were recovered in 100% of the bootstrap replicates, and only values
<100% are shown for each node. NJ + PAHA place Amborella and the water lilies as basal lineages in the angiosperm phylogeny with 100% support
values.

include that the pruning algorithm required for estimating
the edge lengths is time consuming for large numbers of
taxa. With tree searching, computation is even more expen-
sive. The more serious problem is that full ML estimation
requires a model of heterotachy that includes specification
of the dependence structure in the multivariate distribution.
Because there are many dependence structures, for exam-
ple, the RAS model, the K&T four-taxon model, or the co-
varion model, which heterotachy model should be used in
full ML estimation is uncertain. Compared with full ML,
PAHA does not depend on the tree structure and avoids
the difficulties of modeling dependence structures because
PAHA is based on pairs of sequences. For the same reason,
PAHA also has computational advantages.

There is a concern that for PAHA, there may be not
enough information in pairs of sequences to estimate an
α and a distance. Our results suggest that there is enough
information for large data sets with at least 1,000 sites,
although we expect that full ML would show performance

improvements if heterotachy is correctly modeled. From
the results of our simulations, we found that the perfor-
mance will be improved with larger sequence length. We
expect that the PAHA method will be more useful for large
concatenated sequences. The PAHA method performs well
under the K&T four-taxon model and has much better ac-
curacy than the uncorrected full ML and MP methods for
phylogeny reconstruction in most cases (see figs. 5 and 6)
and is also simple to implement. The simulations and the
analysis of chloroplast data indicate that the PAHA method
performed well.

For phylogeny reconstruction, Ninio et al. (2007) pro-
posed five distance-based methods, including a method
where pairwise α’s were estimated. Their interest was in
estimation under an RAS model rather than as a means
of correcting for heterotachy. They found that a method
they refer to as the iterative posterior method achieved bet-
ter results than the pairwise α method. However, their it-
erative posterior method had one shape parameter (α) for
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the whole tree, so that the iterative posterior method can-
not deal with general heterotachy. The pairwise α method
estimates the α parameter for each pair of sequences
separately. These α’s contain the information about hetero-
tachy. Even though sequence generation used a single α for
the entire tree, for many generated α’s in figure 2 in Ninio
et al. (2007), the performance of the pairwise α method
was not much worse than the global α estimation methods.
A notable exception occurred with α > 1. If α > 1, the rate
variation process becomes more like an ER model. We sug-
gest caution when PAHA gives a lot of α’s larger than one
and comparison with the ER tree. The reason for bias in
case of α > 1 is unclear but deserves further investigation.

Finally, we would note that there has been some
work on testing for heterotachy (Lockhart et al. 1998; Ané
et al. 2005; Lockhart and Steel 2005; Baele et al. 2006;
Gruenheit et al. 2008). Our emphasis here has been on
estimation in the presence of heterotachy. However, the
differences and similarities of the α’s estimated through a
pairwise approach may also be used for testing, which will
be the focus of future work.
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