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A confidence region for topologies is a data-dependent set of topologies that, with high probability, can be expected to
contain the true topology. Because of the connection between confidence regions and hypothesis tests, implicitly or
explicitly, the construction of confidence regions for topologies is a component of many phylogenetic studies. Existing
methods for constructing confidence regions, however, often give conflicting results. The Shimodaira-Hasegawa test
seems too conservative, including too many topologies, whereas the other commonly used method, the Swofford-Olsen-
Waddell-Hillis test, tends to give confidence regions with too few topologies. Confidence regions are constructed here
based on a generalized least squares test statistic. The methodology described is computationally inexpensive and
broadly applicable to maximum likelihood distances. Assuming the model used to construct the distances is correct, the
coverage probabilities are correct with large numbers of sites.

Introduction

The use of generalized least squares (GLS) for esti-
mation and hypothesis tests about topologies was men-
tioned by Cavalli-Sforza and Edwards (1967) and is
considered in more detail in Bulmer (1991). Given a set
of distances dij, the GLS test statistic is of the formX

i,j;k,l

wij;klðdij � dijÞðdkl � dklÞ; ð1Þ

where the weights wij,kl are entries of the inverse of the
covariance matrix for the estimated distances. For a given
topology, dij is the sum of the branch lengths along the
path from i to j; the branch lengths are chosen to minimize
equation (1). Because the choice of dij is topology
dependent, the test statistic calculated in equation (1) will
be dependent on the topology T of interest; call it the GLS
test statistic, gT. The reason that the GLS test statistic is
more suitable for hypothesis testing and confidence region
construction than, for instance, the unweighted least
squares test statistic is that, under the null hypothesis the
GLS test statistic has a known chi-square distribution. The
null hypothesis here is that the given topology is the true
topology. Implicitly the null hypothesis also assumes that
the substitution model used in constructing distances
is correct. Under this null hypothesis, a random gT has
a chi-square distribution with degrees of freedom
TðT � 1Þ=2� ð2T � 3Þ, where T is the number of taxa.
In contrast, the least squares value would have a complex
distribution that requires knowledge of covariances
between distances for the computation of P values.

For the GLS test statistic, a P value is calculated as
the probability, under the chi-square distribution, of
observing a value at least as large as gT. This is a P value
for a test of the null hypothesis that the given topology is
the true topology. Equivalently, because of the more
general duality between testing and confidence region
construction, the GLS test statistic can be seen as
providing a means for constructing confidence regions of
topologies. A ð1� aÞ3 100% confidence region for the

true topology is a data dependent, and hence random, set
of topologies that contains the true topology with prob-
ability 1� a. The confidence region based on the GLS test
statistic is the set of all topologies with P values �a.

As a brief illustration, consider the mammal data set
previously considered in Shimodaira and Hasegawa
(1999), Goldman, Anderson, and Rodrigo (2000), and
Shimodaira (2002). There are six taxa in the data set, so
that 105 topologies are possible. For each of these 105
topologies, a modification of the non-negative least
squares routine of Lawson and Hanson (1974) was used
to obtain the optimal dij for equation (1) with weights wij,kl

calculated using the sample average approximation de-
scribed below. With these dij, the GLS test statistic was
calculated for each of the topologies. The P values
corresponding to these test statistics were calculated as
the probabilities that a chi-squared random variable with 6
degrees of freedom is greater than the test statistic
(generally, the degrees of freedom are TðT � 1Þ=2�
ð2T � 3Þ, where T is the number of taxa). The topolo-
gies were then ranked from largest P value to smallest
P value. The topologies corresponding to P values greater
than or equal to 0.05 give a 95% confidence region and
are given in table 1. Note that some of the topologies
have exactly the same P values. This occurred because
some of the estimated branch lengths were 0, making these
topologies equivalent.

The use of GLS for hypothesis tests of topologies was
considered previously in Bulmer (1991). However, the
methods presented there, in particular the formulas given
for the covariances that give rise to the wij,kl, were specific
to the distances described in Tajima and Nei (1984). The
work presented here extends Bulmer (1991): The methods
for the calculation of covariances presented are generally
applicable to most maximum likelihood (ML) distances
and the use of chi-square distributions for calculating P
values is given a justification that will apply to most ML
distances. Software derived from the PHYLIP package
source code (Felsenstein 1993) that will sort a set of input
trees according to their P values, as in the mammal ex-
ample, is available for download at http://www.mathstat.
dal.ca/~tsusko.

Although GLS could provide a framework for both
estimation and testing of topologies, our primary interest is
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in testing and the construction of confidence regions. Other
methods that can be used to construct confidence regions
for trees include the bootstrap selection probability (BP) of
Felsenstein (1985), which is usually used to assign
confidence levels for clades but can be used to assign
confidence levels for trees. The approximately unbiased
(AU) test of Shimodaira (2002) adjusts the BP for possible
curvature. Hillis and Bull (1993) and Newton (1996) raise
concerns about BP, however. A number of likelihood-
based statistical tests have been developed, and the more
commonly used ones include the Kishino-Hasegawa (KH)
test (Kishino and Hasegawa 1989), the Shimodaira-
Hasegawa (SH) test (Shimodaira and Hasegawa 1999),
and the Swofford-Olsen-Waddell-Hillis (SOWH) test; the
SOWH test is a parametric bootstrap likelihood ratio test
described in Swofford et al. (1996) and discussed in
Goldman, Anderson, and Rodrigo (2000). Each of these
tests has difficulties. The KH test is appropriate for
comparisons of competing topologies but is inappropriate
for the construction of confidence regions (cf. Goldman,
Anderson, and Rodrigo 2000). The SH test seems to be too
conservative in the sense that hypotheses are too in-
frequently rejected, whereas the SOWH test, in contrast,
frequently rejects every tree except the ML tree (Goldman,
Anderson, and Rodrigo 2000) and requires long compu-
tational times for the repeated ML fitting required. In
contrast, the GLS method for testing and confidence region
construction presented here does not require expensive
calculation, is widely applicable, and has correct large-site
coverage probabilities: as the number of sites gets large,
a 95% confidence set of trees will contain the true tree with
probability 0.95. As with most other testing procedures,
however, the GLS method requires that the substitution
model used in reconstructing the distances be correct. Poor
substitution models can lead to distances that are not
consistent with any trees or, worse, attribute high
confidence to topologies having certain artifacts like long
branch attraction.

Methods
Matrix Formulation of the GLS Test Statistic

To be clear about how the wij,klweights in equation (1)
are obtained, it is necessary to give a matrix algebra
expression for the test statistic. Let the taxa under
consideration be labeled 1; . . . ; T and let y be the vector
of distances ðd12; . . . ; d1T ; d23; . . . ; dT�1TÞ. This vector will
be estimated from the data and will not require a topology
for estimation. In contrast, the corresponding vector d of
distances consistent with a topology will depend on what
topology is being considered. Fixing a particular topology,
let the vector of branch lengths of that topology be
a ¼ ½a1; . . . ; a2T�3�T . The distance for the kth pair, say taxa
i and taxa j, is the sum of the branch lengths for branches
along the path from i to j. This can be expressed as

di; j ¼
X
l

xklal; ð2Þ

where xkl is 1 if the lth branch is in the path from i to
j and 0 otherwise. Let X be the matrix with k, l entry

xkl. Then equation (2) can be expressed in matrix nota-
tion as

d ¼ Xa:

Note that the ordering of the branch lengths is not
important but that a change of ordering would have to be
accompanied by a corresponding change in the ordering of
the columns of the X matrix. We will let V denote the
covariance matrix for the estimated branch length vector y:
the i, j entry of V is the covariance between the distance for
pair i and pair j, and the ith diagonal entry is the variance
for the ith distance yi. The GLS test statistic can then be
expressed as

ðy� XaÞTV�1ðy� XaÞ
This expression is the same as the one given in equation
(1) with wij, kl equal to the r, s entry of the V�1 matrix,
where r is the index for the (i, j) pair and s is the index for
the (k, l ) pair.

In most applications of GLS outside of phylogenetic
estimation, the vector a is unrestricted. Here, as a vector of
branch lengths, it is desirable to restrict the a vector to be
non-negative. In practice this can give estimates of branch
lengths that differ from the usual GLS estimates. In theory,
as long as the branch lengths for the true tree are non-
negative, which we will assume throughout, with a large
number of sites, the difference between the unrestricted
GLS estimate and the restricted GLS estimate will be
negligible for the true topology.

The GLS Test Statistic and Its Chi-Square Distribution

If the y vector is normally distributed, the GLS test
statistic will have a v2 distribution with degrees of freedom
equal to the difference of the length of the y vector and the
length of the a vector. In the present case this gives
TðT � 1Þ=2� ð2T � 3Þ degrees of freedom. However,
this result requires that the y vector be at least ap-
proximately normally distributed. In the phylogenetic
applications being considered here, the y vector is a vector
of distances that we will assume are ML distances with
respect to some substitution model.

THEOREM. Assume that the vector y of distances is
a set of ML distances. Then, with a large number, n, of
sites, the distribution of y is approximately multivariate
normal. Let pj(x; d) denote the probability of the data x at
a site for the jth pair of taxa., calculated when the distance
between them is d. Then the variance of the jth estimated
distance is

Vjj ¼ VarðyjÞ ¼ E � @2

@d2j
log½pjðx; djÞ�

( ) !�1�
n: ð3Þ

The covariance between the jth distance and the kth
distance is

Vjk ¼ nVjjVkkE
@

@dj
log½pjðx; djÞ�

@

@dk
log½pkðx; dkÞ�

� �
: ð4Þ

PROOF. The result is very similar to general ML
estimation results like that of Lehman (1983, Theorem 4.1,
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p. 429). The main difference arises because, whereas ML
estimation is usually done jointly for all of the unknown
parameters of interest, ML distance estimation is done
separately for each of the distances.

Let the score function for the jth pair be

ujðdÞ ¼
Xn
i¼1

@

@d
log½pjðxi; dÞ�;

where there are n sites. Then general ML results give thatffiffiffi
n

p
ðyj � djÞ ¼ �

ffiffiffi
n

p
VjjujðdjÞ þ opð1Þ; ð5Þ

where dj is the true unknown distance between the pair.
Let u*(d) be the vector with jth entry �

ffiffiffi
n

p
Vjjuj(dj); then

equation (5) can be combined across all pairs in vector
notation as ffiffiffi

n
p

ðy� dÞ ¼ u*ðdÞ þ opð1Þ:

The quantity
ffiffiffi
n

p
u*(d) is a sum of independent random

variables and so by the multivariate central limit theorem,
u*(d) has a multivariate normal distribution with co-
variance matrix nV where the entries of V are as given in
equations (3) and (4). Since, up to higher order terms,ffiffiffi
n

p
(y� d) is equal to u*(d), the result follows. n
The implication of the large-site normality of y is

that, under the null hypothesis that the true topology is the
one that is being used to construct the GLS test statistic,
the GLS test statistic has a chi-square distribution with
TðT � 1Þ=2� ð2T � 3Þ degrees of freedom. Because the
entries of the covariance matrix V are not known, they
need to be estimated. As long as they are estimated with
statistically consistent methods of estimation, the chi-
square limiting distribution will still be applicable.
Because this is the distribution used to calculate the P
values, it follows that a P value calculated for the true
topology will be greater than a, and hence the true
topology will be contained in the confidence region,
ð1� aÞ 3 100% of the time. Thus, in theory, the
coverage probabilities (the probability that the true
topology is in the confidence region) will be correct with
large numbers of sites. In practice, the coverage probabil-
ities will differ from 1� a for 3 reasons: (1) The number
of sites is always finite. (2) The substitution model used in
constructing distances is always an approximation to the
true substitution process. (3) In theory, V�1 and all other
quantities are calculated exactly. In practice they contain
numerical errors.

Estimation of the Covariances Matrix V

A complication enters into construction of the GLS
test statistic because the covariances Vij depend on the
unknown topological relationship between the 4 taxa
involved in the two pairs. We present here two methods
for estimating the covariance matrix entries.

Sample Average Method

The first method of estimation utilizes the forms of
equations (3) and (4) and uses a sample average to approxi-

mate these expectations. The estimate of the variance is
given as

V̂Vjj ¼ n�1
Xn
i¼1

� @2

@d2
log½pjðxi; dÞ�

( )�1�
n;

and the estimate of the covariance is

V̂Vjk ¼ V̂VjjV̂Vkk

Xn
i¼1

@

@dj
log½pjðxi; djÞ�

@

@dk
log½pkðxi; dkÞ�:

Bootstrap Estimation

The second method of estimation is a nonparametric
bootstrap method (Efron and Tibshirani 1993).

1. From the original data set of n sites, select n sites at
random and with replacement, giving a new data set.

2. For the new data set calculate the ML estimates. Label
the vector of estimated distances y(b) to distinguish it
from the original vector of estimated distances, y.

3. Repeat steps 1 and 2 B times where B is fairly large.
This will give a set of bootstrapped distance estimates
yð1Þ; . . . ; yðBÞ.

4. The estimates of the variances are then

V̂Vjj ¼ B�1
XB
b¼1

ðyðbÞj � yjÞ2; ð6Þ

and the estimates of the covariances are

V̂Vjk ¼ B�1
XB
b¼1

ðyðbÞj � yjÞðyðbÞk � ykÞ: ð7Þ

The bootstrap estimate of V is easier to implement but
requires much longer computational times. Both methods
are large-site approximations to V, although they can be
expected to give reasonable results with moderate numbers
of sites if the number of taxa is not too large.

Implementation

The calculation of the GLS test statistic requires that
branch lengths be calculated once for each topology
considered. In contrast, the calculation of bootstrap
support or the implementation of the SOWH test requires
repeated fitting of branch lengths for bootstrap samples
from the original data. Thus the GLS test will generally be
relatively fast compared to these procedures, especially by
comparison with cases when ML estimation is used. GLS
estimation will, however, require more computation than
ordinary or weighted least squares estimation. Because
the calculation can be implemented by converting to
an ordinary least squares problem, one can consider the
additional cost more carefully.

The calculation of the covariance matrix V requires
on the order of nT4 operations (additions and multi-
plications). Because the matrix V is a covariance matrix, it
is positive definite, and so a Cholesky decomposition
V ¼ UTU can be obtained for it, where U is an upper
triangular matrix; calculation of U requires on the order
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of T6 additional operations. The problem, originally stated
as that of minimizing

ðy� XaÞTV�1ðy� XaÞ
can then be restated as minimizing

ðU�1y� U�1XaÞTðU�1y� U�1XaÞ: ð8Þ
Solving the triangular systems of equations

y* ¼ Uy X* ¼ UX ;

which requires on the order of T5 operations, allows one to
express equation (8) as

ðy*� X*aÞTðy*� X*aÞ;
which is an ordinary least squares problem with y* and X*
replacing y and X. Note that the computation of V, U, and
y* needs to be done only once for a given data set; it does
not matter how many topologies the GLS test statistic is
calculated for.

In theory, theGLS test statistics canbecalculatedwith or
without the restriction that the branch lengths be non-
negative. However, the simulation results of Kuhner and
Felsenstein (1994) indicate that branch lengths and topologies
aremore accurately estimatedwithnon-negativity restrictions
using Fitch-Margoliash least squares; because of the
similarity of the forms of estimation, it can be expected that
those results would generalize to GLS estimation. Perhaps
more important, while for ‘‘good’’ topologies branch lengths
can expected to be non-negative or close to 0, for very poorly
supported topologies this need not be the case, and thus
negative branch lengths allow additional freedom in fitting
estimated distances that could give rise to small GLS test
statistics. The version of GLS used here imposes the non-
negativity constraint using a version of the NNLS routine of
Lawson and Hanson (1974), a globally convergent method
that successively solves unrestricted least squares problems
with successive subsets of branches set to 0 or, equivalently,
ignored in the estimation.

Results

As examples we will consider two data sets, the amino
acid mammal data set considered in Shimodaira and
Hasegawa (1999), Goldman, Anderson, and Rodrigo
(2000), and Shimodaira (2002) and the nucleotide data set
considered in Goldman, Anderson, and Rodrigo (2000).

Mammal Data

The mammal data set consisted of 3,414 aligned
amino acids from six mammals: human, harbor seal, cow,

rabbit, mouse, and opossum. The PAM substitution model
(Dayhoff, Schwartz, and Orcutt 1979) as implemented in
PHYLIP 3.6a2 (Felsenstein 1993) was used, and a gamma
rates-across-sites correction was used in calculating the
distances. The a parameter for the gamma model was
estimated using Tree-Puzzle version 4.02 (Strimmer and
von Haeseler 1996) as 0.34. Because there are six taxa,
there are 105 possible topologies. The GLS test statistics
were obtained for all 105 topologies and the topologies
were ranked from smallest GLS statistic to largest GLS test
statistic. Again because there are six taxa, the P values for
the individual tests for the topologies were calculated using
a chi-square distribution with 6 � 5=2� ð2 � 6� 3Þ ¼ 6
degrees of freedom. The topologies with P values �0.05
give a 95% confidence region for the true topology and are
tabulated in table 1.

The GLS values gave very clear evidence for the
grouping (harbor seal, cow). Each of the topologies that
did not have this pair had a P value ,0.00001. Note that
this illustrates more generally how to test an alternative
hypotheses with a less specific topological structure: the P
value for the test is the maximum P value from GLS test
statistics calculated for all of the topologies inconsistent
with the topological structure. In the present example the
alternative hypothesis is that the grouping (harbor seal,
cow) is present in the true topology and the P value is
calculated as 5 3 10�6, the largest P value from the set of
95 six-taxa topologies without the grouping (harbor seal,
cow).

In theory the GLS test statistics can be calculated with
or without the restriction that the branch lengths be non-
negative. We expect that the GLS statistic will be better
able to detect very poor topologies with the non-negativity
restriction imposed and have chosen to implement
a variation of the NNLS routine of Lawson and Hanson
(1974) in order to accomplish this. This is the reason that
some of the topologies estimated have exactly the same P
values. Some branch lengths for these topologies were
estimated as 0, making them equivalent.

The PAM substitution model used here is different
from the mtREV model (Adachi and Hasegawa 1996a)
that was used in Shimodaira and Hasegawa (1999),
Goldman, Anderson, and Rodrigo (2000), and Shimodaira
(2002). Nevertheless the main conclusions and results are
in general agreement. Differences arise only for inferences
where there is no agreement between competing methods.

The grouping (harbor seal, cow) inferred here was an
a priori feature of the topologies considered in Shimodaira
and Hasegawa (1999), Goldman, Anderson, and Rodrigo
(2000), and Shimodaira (2002). The rankings of the top

Table 1
The Topologies for the Mammal Data Set Having a P Value >0.00001

GLS Test Statistic P Value Topology

6.12 0.410 ((((harbor seal, cow), human), rabbit), (mouse, opposum))
6.40 0.380 ((((mouse, opposum), human), rabbit), (harbor seal, cow))
6.66 0.353 ((human, rabbit), (harbor seal, cow), (mouse, opposum))
12.58 0.050 2 topologies equivalent to (((human, mouse, opposum), rabbit), (harbor seal, cow))
14.51 0.024 2 topologies equivalent to (((harbor seal, cow), human), (mouse, rabbit, opposum))
16.05 0.013 2 topologies equivalent to ((human, opposum), (harbor seal, cow), (rabbit, mouse))
16.14 0.013 6 topologies equivalent to ((human, mouse, rabbit, opposum), (harbor seal, cow))
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three topologies, done here on the basis of the GLS test
statistic, are the same as the rankings of topologies from
the log likelihoods. All three of these topologies are
included in the GLS 95% confidence region for trees, and
the same holds true for the AU test and SH test reported in
Shimodaira and Hasegawa (1999) and Shimodaira (2002).
The BP test, however, rejects the hypothesis that the third
topology is the true topology, and a big difference arises
between the other methods and the SOWH test for the
second topology, which gave a P value of ,0.001; the
P value here is 0.380 and was greater than 0.30 for all
of the tests reported in Shimodaira (2002).

Differences arise with the remaining topologies. The
version of GLS used here, with branch lengths restricted to
be non-negative, seems much more likely to assign zero
branch lengths than ML estimation, and so some of the
different topologies reported in SH are equivalent here.
The topology (((human,mouse,opposum),rabbit), (harbor
seal,cow)) gives a P value of 0.050 and is included
marginally in a 95% confidence region. The remaining
topologies would not be. In this case the GLS region
seems to provide a trade-off between the SOWH test,
which only includes the ML topology in a 95% confidence
region, and the SH test, which as reported in Shimodaira
(2002), includes the 15 topologies with a (harbor seal,
cow) grouping as well as, marginally, an additional
topology without that grouping.

HIV Data

The HIV data set consisted of a set of six homologous
sequences, each containing 2,000 base pairs from the
gag and pol genes for isolates of HIV-1 subtypes A, B, D,
and E: A1 (Q23), A2 (U455), B (BRU), D (NDK), E1
(90CF11697), and E2 (93TH057). Maximum likelihood
distances were calculated using an F84 model (Felsenstein
1984) and gamma rate correction. The transition/trans-
version ratio was estimated as 4.70; the a parameter for the
gamma rate distribution was estimated as 0.23 in Tree-
Puzzle. Only one topology is included in a 99% con-
fidence region for the topologies, although one other is
marginally excluded. Interestingly, the P value for the best
GLS topology is only 0.016, which suggests that this
topology can be rejected, leaving no suitable topology.
This may be in indication of a lack of fit for the F84 model
for this data. Generally, the possibility of a poor substitu-
tion model giving a small P value needs to be considered
when applying the test.

The SOWH and SH tests were applied in Goldman,
Anderson, and Rodrigo (2000) for the null hypothesis that
the second topology listed in table 2 was the true topology.
The SH test gave a P value of 0.002, smaller than the GLS
P value 0.005 but resulting in the same conclusion. The

SH test P value was 0.26; however, as reported in Buckley
(2002), this P value was highly dependent on the sub-
stitution process used and was 0.077 for the HKY85
model, which is similar to the F84 model considered here.

Estimation of Covariance Matrices

The results for the HIV data set and for the mammal
data set used the sample average method for the cal-
culation of the covariance matrix V. To cross-check the
estimation of the covariance matrix, we did the estimation
using the bootstrap method. Plots of the estimated co-
variance matrices from the bootstrap method against the
estimated covariance matrices from the sample average
method are given in figures 1–3. The estimates are very
similar. Interestingly, a comparison of figures 2 and 3
suggests that the sample average method may give better
bootstrap estimates than a bootstrap with a smaller number
of bootstrap replicates. The bootstrap estimates in figure 3,
being based on B ¼ 5; 000 bootstrap replicates, should be
considered better than the bootstrap estimates in figure 2,
which are based on B ¼ 100. The sample average
estimates are more similar to the bootstrap estimates with
B ¼ 5; 000 that with B ¼ 100, so much similar that it is

Table 2
The Topologies for the HIV Data Set Having a P value
>0.00001

GLS Test Statistic P Value Topology

15.53 0.017 ((((E1, E2), A2), A1), (D, B))
18.58 0.005 ((E1, E2), (A1, A2), (D, B))

FIG. 1.—The bootstrap estimates with B ¼ 5000 bootstrap replicates
of the entries of the V matrix plotted against the corresponding estimates
from the sample average method for the mammal data set.

FIG. 2.—The bootstrap estimates with B ¼ 100 bootstrap replicates
of the entries of the V matrix plotted against the corresponding estimates
from the sample average method for the HIV data set.

866 Susko



clear that they provide better approximations to the
bootstrap estimates with B ¼ 5; 000 than the estimates
with B ¼ 100.

Discussion

The GLS method for constructing confidence regions
for topologies provides a reasonable way of addressing
uncertainty in topological estimation. It is does not require
long computational times and, assuming the correct
substitution model is used in constructing the distances,
is theoretically sure to have the correct coverage prob-
ability. With poor substitution models, it is possible that
the GLS test statistics will reflect a lack of fit and be
larger than expected, giving rise to smaller coverage
probabilities.

The methods presented here are an extension of
Bulmer (1991) that allow for general ML distances and
provide more general methods for the calculations of the V
matrix. One other difference is the restriction of branch
lengths to be non-negative, which was not a feature of the
Bulmer implementation. For estimation, this restriction is
not expected to be very important; the true topology can be
expected to have branch lengths that are estimated as
almost all non-negative anyway. However, in constructing
confidence regions it is possible that for poor topologies
there will exist choices of a vectors with negative entries
that make no topological sense but give small GLS test
statistics.

Two methods for the calculation of covariance
matrices have been presented: a bootstrap method and
a sample average method. The examples considered here,
and others not reported here, suggest that the estimates
from either of these methods will be very similar. Because
the bootstrap can require much longer computational
times, we have chosen to implement the sample average
method in the available software.

The theory behind the methods presented here
assumes that the number of sites is large. In practice it
will usually be the case that the number of sites required
will be more if there are a large number of taxa than if
there are a small number of taxa. This is so because the
number of variances and covariances requiring estimation

in the V matrix increases with the number of taxa, so that
the effects of errors in estimation of the weights in the
original GLS test statistic given in equation (1) are
aggregated over more terms. Careful analysis decisions
may allow one to avoid difficulties associated with larger
numbers of taxa without losing much information. One
strategy is to use a full data set to estimate transition/
transversion ratios, rate distributions, and any other
auxilliary parameters in the model. Once estimates for
these parameters have been obtained, the number of taxa in
the data set can be reduced by taking out closely related
taxa, leaving a few representative taxa to address the
topological questions of interest. One must be cautious,
however, in reducing the number of taxa. Several studies
involving four taxon subsamples with a constant set of
three taxa but differing choices for an outgroup taxon
indicate that inferences about the placement of the three
taxa is highly dependent on the choice of the outgroup
taxon (Philippe and Douzery 1994; Adachi and Hasegawa
1995, 1996b).

In some cases, investigators will have a relatively
small prespecified set of topologies that are of interest
because of the results of previous analyses. These
topologies can be tested for inclusion in, say, a 95%
confidence region by checking whether P values are �0.05
or not. In other cases, the entire 95% confidence region is
desired. In principle this requires calculation of the GLS
test statistics for all possible topologies, which is feasible
with a relatively small number of taxa but becomes
infeasible with larger numbers of taxa. With larger
numbers of taxa, tree search algorithms (stepwise addition,
star decomposition, tree bisection, and reconnection; cf.
Hillis, Moritz, and Mable (1996) pp. 478–485) might be
implemented as they are for least squares estimation and
ML estimation. Keeping all trees found in the search with
P values �0.05 would give an approximate 95%
confidence region. The advantage with this approach is
that the number of trees for which GLS test statistics are
calculated would be relatively small. However, because
trees with large GLS values may be missed during a search,
the region might miss trees that would have been in the
region had an exhaustive search been done.
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