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Introduction

There are two main routines for the methods of Susko (2003).

1. glsprot: for amino acid data

2. glsdna: for DNA data

The routine glsprot is a modification of the protdist routine of the alpha PHYLIP

distribution, version 3.6 and requires the same user input as the protdist routine in

addition to a treefile for the trees that are being tested for inclusion in a confidence

region. The same format of treefile is used as input to glsdna, the routine that is to be

used with DNA data. This however is a standalone command line routine that requires

an additional parameter file and the data file to be specified on the command line.

Unix installation

At the command prompt type

$ gzip -d gls_soft.tar.gz

$ tar xvf gls_soft.tar

This will create a directory gls. To create the executables type

$ cd gls

$ make

The make command creates the executable files glsdna, glsprot, glsdna eig and

glsprot eig. After copying these files to a directory in your PATH, you can remove

the gls directory and its contents.

The routine glsprot

The routine glsprot should be called at the command line with
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$ glsprot ntrees treefile

where treefile gives the name of the file containing the trees that are to be tested

for inclusion in a confidence region and ntrees is the number of trees in this file. The

form of the treefile is described below. The routine is a modification of the protdist

routine of the alpha PHYLIP distribution, version 3.6 and requires, in addition, the

same user input as the protdist routine.

In addition to the usual output for this routine, a file called glsprot.outfile will

be created. This will have the same format as the output for glsdna and is described

below.

The routine glsdna

The routine glsdna should be called at the command line with

$ glsdna treefile paramfile infile

Here infile should be a standard PHYLIP format data file and treefile should

be a treefile of the form described below. An example paramfile is given below

ttratio: 2.00

nrates: 8

rate: 0.0000 0.0017 0.0177 0.0830 0.2685 0.7163 1.7816 5.1312

prob: 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

ntrees: 105

Any additional lines will be ignored. Here

ttratio: The transition/transversion ratio. This is the same transition transversion

ratio as would be input to dnaml in PHYLIP. It can be interpreted as the limiting

ratio of transitions to transversions occurring along a tree, as the length of the

tree gets large.

nrates: The number of rates for the rate distribution that will be used

rate: The rates for the rate distribution. There should be nrates entries that follow.

prob: The corresponding probabilities for the rate distribution.
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ntrees: The number of trees in the treefile.

Different descriptive names can be given to the entries in the paramfile; for instance,

ttratio: might be replaced by transition.transversion.ratio:. However, names

are expected (the entry 2.00 would not be appropriate for a first line) and spaces are not

allowed in descriptive names. The order of input should be the same as in the example

paramfile.

The output is to the screen, stdout and is of the same format as the glsprot.outfile

described below.

The treefile

The treefile required for both glsdna and glsprot should give the topologies that are

to be tested for inclusion in the confidence region. Each of these trees should be in the

bracketed format acceptable to the PHYLIP package. Listings of bootstrap supporting

present in the output trees of some routines must be deleted. Each tree should end with

a semi-colon, ;. The names used in the treefile should be consistent with the names

present in the input data file.

The output

The output from the glsprot routine is to the file glsprot.outfile whereas for the

glsdna routine it is to the screen, stdout. The input trees from the treefile are output

after sorting them from the tree that gave the best (smallest) GLS value to the one that

gave the worst (largest) value. Each row of output consists of

1. First column: The GLS objective value..

2. Second column: The p-value for a test of the null hypothesis that the topology for

the row is the true topology.

3. Third column: The topology for the row.

4. Fourth column: The index of the topology in the input file (starting from 0 and

going to ntrees-1).

Note that each “row” will require several lines if the individual input topologies required

more than one line.

3



Limitations

The number of taxa considered should be less than 100. The individual trees in the

input treefile should contain at most 240 characters (about 30 lines); this should allow

for at least 60 taxa.

Very few reasons for error are output. With large numbers of taxa it is possible

covariance matrices will become (almost) singular and the programs will crash. Remov-

ing closely related taxa prior to testing might provide a way to continue testing. An

alternative is to use glsprot eig and glsdna eig.

The glsdna eig and glsprot eig routines

The glsdna eig and glsprot eig routines are additional routines not described in

Susko (2003) that allow construction of confidence regions when the estimated covari-

ance matrix V is not invertible. Both routines require an additional eigenvalue cutoff

argument. For example

glsdna_eig treefile paramfile infile 0.0001

and

glsprot_eig ntrees treefile 1.0e-7

would implement the routines with eigenvalue cutoffs of 0.001 and 1.0e-7 respectively.

The definitions of the eigenvalue cutoffs is given below but generally, while larger values

have the advantage of being less susceptible to problems with non-invertible covariance

matrices, they can be expected to be more conservative and include more topologies

in a confidence region than is required. In cases that the glsdna eig or glsprot eig

routines need to be used we recommend comparing results with a few choices of cutoffs.

In brief, generalized least squares is interpretable as weighted least squares for a

set of approximately independent linear transformations of the distances. In the case

that V is non-invertible, some subset of these linear transformations have an estimated

variance of 0. The approach here is to ignore the linear transformations with estimated

variance equal to 0 and make an adjustment to the degrees of freedom.

Linear transformations with variance close to 0 can be expected to have good discrim-

inatory power. Consequently, although, similarly as in Susko (2003), it can be shown
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that with a large number of sites the probability that the true topology is contained

in a (1 − α) × 100% confidence region is approximately 1 − α, the confidence region

can be expected to be larger than it would have been if the linear transformations with

variance close to 0 had been used.

In more detail, if the actual covariance matrix V were known and did not need to

be estimated, it would have the eigenvector/eigenvalue decomposition

V = UΛUT (1)

where U is an orthogonal matrix and Λ is a diagonal matrix with positive diagonal

entries. It follows that the GLS test statistic can be expressed as∑
(y∗i − x∗Ti α)2λ−1

i (2)

where y∗ = Uy and x∗i is the ith row of the matrix X∗ = UX. In fact, the λi are the

variances of the y∗i which are linear transformations of the original distances y. Thus

the GLS test statistic is a weighted least squares statistic for the linearly transformed

distances.

In any case, since V is not known but rather estimated, it is possible that some of

the λi ≈ 0. These λi will give large contributions to (2) that are extremely sensitive

to small changes in λi. For a given eigenvalue cutoff, ce, glsdna eig and glsprot eig

adjust for this by summing over all contributions in (2) that have λi > ce. If there are np

contributions in the resulting sum, then the p-value for the topology under consideration

is the probability that a chi-squared random variable with np − (2T − 3) degrees of

freedom is greater than the observed test statistic.
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