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Abstract

As a consequence of structural and functional constraints, proteins tend to have site-

specific preferences for particular amino acids. Failing to adjust for heterogeneity of frequen-

cies over sites can lead to artefacts in phylogenetic estimation. Site-heterogeneous mixture-

models have been developed to address this problem. However, due to prohibitive computa-

tional times, maximum likelihood implementations utilize fixed component frequency vectors

inferred from sequences in a database that are external to the alignment under analysis. Here

we propose a composite likelihood approach to estimation of component frequencies for a

mixture model that directly uses the data from the alignment of interest. In the common

case that the number of taxa under study is not large, several adjustments to the default

composite likelihood are shown to be necessary. In simulations, the approach is shown to
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provide large improvements over hierarchical clustering. For empirical data, substantial

improvements in likelihoods are found over mixtures using fixed components.

Key words: mixture model, site-specific model, phylogenetics, protein models

Introduction

Phylogenomic methods that analyze large numbers of orthologous genes are increasingly

used to resolve deep phylogenetic divergences in the tree of life (Brown et al. 2013; Wickett

et al. 2014; Pisani et al. 2015). Variability of estimation decreases with larger alignment

lengths but computational cost increases substantially and the possibility of systematic bias

makes it important to accurately model the underlying amino acid substitution process

(Philippe et al. 2011).

Amino acid substitutions are usually modeled as occurring independently at sites in an

alignment and according to a Markov process along a tree. The most common approach

assumes a constant rate matrix throughout the tree, determined by stationary frequencies

that are constant across sites and an empirically derived exchangeability matrix. Exchange-

abilities are fixed in advance of analyses and empirically determined. Examples include the

JTT exchangeability matrix (Jones, Taylor and Thornton 1992), the WAG matrix (Whelan

and Goldman 2001) and the LG matrix of Le and Gascuel (2008). Frequencies are usually

determined from the alignment as the observed frequencies of amino acids over all sites and

taxa. Allowance is made for heterogeneity of substitution processes over sites through a

mixture model of rates for sites, arising from a discretized Gamma distribution (Yang 1994).

Rate heterogeneity, however, is not usually sufficient to adjust for the differing structural

or functional constraints that lead to different sites having different preferences for specific
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amino acids. Many sites appear to allow a relatively limited set of amino acids with the

nature of the set often varying across sites (Halpern and Bruno 1998; Lartillot and Phillipe

2004). For instance, some sites show a restricted alphabet of amino acids. This restricted

alphabet of amino acids is determined by the structural and functional constraints at those

sites in the protein. Such constraints can include requirements for amino acids that are

hydrophobic and aliphatic (e.g. V, I, and L), aromatic (e.g. F, Y and W), acidic (e.g. D and

E), basic (e.g. R, K and H) or with other biophysical properties. Generally, frequencies at

sites are often less uniform than those predicted by the observed aggregate frequencies over

sites that are used in conventional models (Lartillot et al. 2007; Wang et al. 2008). Sites with

highly skewed composition tend to become saturated with changes at smaller evolutionary

distances than when frequencies are uniform. At such sites, patterns for subsets of taxa

that are not very distantly related can appear similar to those of subsets of taxa that are

distantly related, leading to an underestimation of relative evolutionary divergences (large to

small). As a consequence, conventional models have shown a tendency towards long-branch

attraction (LBA) biases in phylogenetic estimation (Lartillot et al. 2007; Wang et al. 2008).

By contrast, site-heterogeneous models effectively downweight the importance of sites with

highly skewed composition to the inference of relative divergences, implicitly recognizing

that saturation is a potential explanation for the patterns at these sites.

To adjust for heterogeneity of frequencies over sites, mixture models (Lartillot and

Philippe 2004; Wang et al. 2008; Le et al. 2008) and partitioned models (Yang 1996; Pupko

et al. 2002; Lanfear et al. 2012) have been developed. We focus attention on the mixture

approach here. A widely used class of mixture models implemented according to Bayesian

principles are the CAT models of Lartillot et al. (2013). The mixing distribution of sta-
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tionary frequencies over sites is modeled without restriction using a Dirichlet process model.

While CAT models have been shown to fit data better and alleviate LBA bias (Lartillot et

al. 2007), a concern has been that the Markov chain Monte Carlo computational techniques

used to approximate posterior probabilities can suffer from convergence difficulties with large

data (Whelan et al. 2015; Pisani et al. 2015; Whelan and Halanych 2016).

Due to their substantial additional computational burden, maximum likelihood (ML)

models of mixtures of frequencies (Wang et al. 2008; Le et al. 2012) assume a mixing

distribution with component frequency vectors that are fixed in advance, rather than being

estimated from the data. Several sets of fixed frequency vectors are available (Wang et al.

2008, 2014; Le et al. 2008), each having been determined from differing previous empirical

data and using different methods. Simulations and empirical studies have shown that these

mixture models are more robust to LBA bias than a model that uses a single stationary

frequency vector (Wang et al. 2017).

When applied to new data, current mixture models (Wang et al. 2008; Le et al. 2012)

utilize fixed frequency profiles determined from external data. Consequently, these fixed fre-

quency profiles may not be consistent with the actual frequency profiles present in the data

under consideration. In theory, frequency profiles can be included among the parameters op-

timized in ML estimation. Because each profile has 20 elements such an approach increases

the dimension of the optimization problem substantially. Moreover, whereas the rate matri-

ces using fixed frequency profiles remain fixed throughout optimization, each new frequency

profile considered when they are being optimized requires additional eigenvalue decompo-

sitions in order to calculate substitution matrices from the rate matrices through matrix

exponentiation. Finally, by contrast with derivatives for edge-lengths which can be calcu-
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lated efficiently using single sweeps of the pruning algorithm of Felsenstein (1981), repeated

pruning algorithm applications are required to approximate derivatives for each element of

each frequency profile. The increase in computation complexity of likelihood evaluations and

the difficulties with derivative calculations, renders the approach prohibitive in practice.

In this study we investigate feasible methods for estimating component frequency vec-

tors in the mixing distribution. Through simulations the main methods are shown to provide

substantial improvements over hierarchical clustering. For empirical data, substantial im-

provements in likelihoods are found over mixtures using fixed pre-determined components.

Theory and Methods

Conventional and Frequency Mixture Models

Throughout this article we assume a mixture-of-frequencies model generated the align-

ment. Let x1, . . . , xn denote the columns of the alignment. Here xi is a site pattern,

xi1, . . . , xim, where xis is the amino acid at site i for taxa s, s = 1, . . . ,m. For instance

xi = AAAR denotes that the first three taxa were observed to have amino acid A and the

fourth taxon, amino acid R. As with conventional models we assume the xi are independent.

Consequently the log likelihood for the data is of the form

l(θ) =
n∑

i=1

log p(xi; θ),

where θ denotes all unknown parameters in the model and p(xi; θ) the probability of observing

site pattern xi at a site.

A conventional site-homogeneous model provides the basis for the frequency profile mix-

ture model. In the site-homogeneous model, at a site, evolution along any edge in the tree
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occurs according to a Markov chain with rate matrix Q. In conventional models the rate

matrix is parameterized as Qij = Sijπj, for i 6= j, where the Sij are fixed exchangeabil-

ity parameters determined from emprical data. Common choices include the JTT matrix

(Jones, Taylor and Thornton 1992), the WAG matrix (Whelan and Goldman 2001) or the

LG matrix of Le and Gascuel (2008). We use the LG matrix throughout most of this article.

With Qij parameterized as Qij = Sijπj, the πj are interpretable as the stationary frequencies

of amino acids under the model. For conventional models, usually πj is estimated by the

observed aggregate frequency of amino acid j over all taxa and sites. In such cases the model

nomenclature is JTT+F or LG+F depending on the exchangeability matrix.

Rate variation is allowed in a conventional model through a finite gamma mixture model

described in Yang (1994). In that model rates arise independently from a discrete distribution

that assigns probability 1/K to rates r1, . . . , rK ; in all applications we use K = 4. The rk

are chosen to provide a discrete approximation to a gamma distribution and depend on the

shape parameter α for that gamma distribution. For a site having rate rk, the probability

of observed data x can be directly calculated using the pruning algorithm of Felsentsein

(1981). We denote that probability as p(x|k; ζ, π)/K, where we have indicated dependence

on the stationary frequencies π and the other parameters ζ, which includes α, the unrooted

topology τ and edge lengths t. Since the rk are unobserved, the unconditional probability

of the data actually observed is p(x; ζ, π) =
∑

k p(x|k; ζ, π)/K. The model nomenclature for

discrete gamma rate variation, is JTT+F+Γ or LG+F+Γ depending on the exchangeability

matrix.

The frequency mixture model is a mixture on top of the gamma mixture. Frequency

vectors arise independently from a discrete distribution that assigns probabilities w1, . . . , wC
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to frequency vectors π(1), . . . , π(C). Similarly as for the gamma mixture, the probability of

observing x at a site is p(x; θ) =
∑

cwcp(x; ζ, π(c)), where now p(x; ζ, π(c)) denotes the con-

ditional probability of x given the frequency vector π(c) for the site. The parameter vector θ

includes the parameters ζ that are present in a conventional model and also the frequency

vectors and weights, wc. In current applications of frequency mixture models, the wc are

estimated from the data but the frequency vectors, π(1), . . . , π(C), are fixed and do not neces-

sarily reflect the amino acid preferences at sites for the data at hand. A particular choice that

will be utilized in what follows are the C-series frequency vectors from Le et al. (2008) which

are a set of C frequency vectors derived from empirical data, C = 10, 20, . . . , 60. The model

is frequently applied with a discrete gamma rate model and an additional frequency vector,

determined as the observed frequencies of the amino acids, and is denoted as LG+C20+F+Γ

for an LG exchangeability matrix and when C = 20.

Composite Likelihood - The Multinomial Mixture Likelihood

By comparison with conventional models, the frequency mixture model includes addi-

tional weight parameters, w1, . . . , wC and frequency vectors π(1), . . . , π(C). Estimation of the

weights through ML requires a relatively minor additional computational cost. Estimation of

frequency vectors, however, is usually prohibitive. First, because each frequency vector intro-

duces 19 additional parameters, there are 19C additional parameters requiring optimization;

with C = 20 components, for instance, this gives 380 additional parameters. Second, the new

frequency vectors encountered in the course of optimization give new rate matrices which

result in completely different pij(t) along all edges of the tree. As a consequence, likelihood

evaluation for a new set of frequency vectors requires a completely new application of the
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pruning algorithm. By contrast, edge-length estimation, which similarly involves relatively

large numbers of parameters, can re-use previous calculations to more efficiently calculate

likelihoods. Finally, optimization requires derivative calculations. Whereas derivatives of log

likelihoods for edge-lengths can be calculated exactly and efficiently, derivatives for frequency

parameters need to be approximated.

Even in the case of a conventional model where there is only a single frequency vector,

estimation is not usually through ML. Instead the observed aggregate frequencies of amino

acids over sites and taxa are directly calculated. An alternative characterization of the

observed frequencies is that they are ML estimates of the frequencies for a tree with infinite

edge lengths. The log likelihood in this case is a multinomial log likelihood,

∑
i

log(
∏
s

πxis
) =

∑
a

na log(πa), (1)

where na is the number of times the amino acid a occurred in the alignment. This character-

ization as ML estimation is useful in suggesting that observed frequencies can be expected to

perform well by comparison with full ML estimation when evolutionary distances are large.

However, even in the case that evolutionary distances are small, observed frequencies are

statistically consistent estimators of stationary frequencies. Indeed, because of site indepen-

dence, even for a single taxon, the frequency of a given amino acid has the properties of a

binomial proportion, and thus, as a consequence of the Law of Large Numbers, converges

upon the true frequency with increasing numbers of sites. That likelihood methods can be

expected to work even when models are misspecified is a phenomenon that has been ex-

ploited in a variety of data settings involving complex dependencies including space-time

and longitudinal data modelling (Varin et al. 2011). Log likelihoods like (1) are referred
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to as composite log likelihoods (Lindsay 1988; Varin et al. 2011). Key properties are that

they sum over independent units (sites in the present case) and that while the probability of

observing xi is misspecified (that probability is not
∏

s πxis
in the present case), the marginal

probability of xis (πxis
in the present case) is correctly modelled (which in the present case

amounts to the assumption that frequencies are stationary throughout the tree).

In the case of a frequency mixture the composite likelihood that corresponds to a tree

with infinite edge lengths is ∑
i

log(
∑
c

wc

∏
s

π(c)
xis

) (2)

which we refer to as the multinomial mixture log likelihood. Because the class c for a site

is unobserved, the simple reduction in (1) is not applicable and there is no simple formula

allowing explicit calculation of the maximizer, π
(c)
a . The EM algorithm of Dempster, Laird

and Rubin (1977), however, provides a simple and intuitively appealing scheme to obtain

updated frequencies and weights, π(cu) and wu
c , from old ones π(c) and wc. Let nia denote

the number of occurrences of amino acid a at site i. Let p(c|xi) ∝ wc

∏
s π

(c)
xis denote the

conditional probability of class c for a site, under the multinomial mixture model, given

the data x at the site; the constant of proportionality is determined by the constraint that∑
c p(c|xi) = 1. Then updates are obtained through

π(cu)
a ∝

∑
i

p(c|xi)nia, w(u)
c ∝

∑
i

p(c|xi) (3)

where constants of proportionality are determined from the constraints that
∑

cw
(u)
c = 1

and
∑

a π
(cu)
a = 1; derivation is given in Supplementary Material. Updating continues until

the difference between old and updated parameters becomes small. The updating scheme

(3) establishes a relationship between the observed frequencies and those inferred from the
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mixture model. Had the sites corresponding to class c been known, the observed frequencies

would be over those sites. Since they are unknown, estimation takes a weighted average of

the frequencies, weighting the contribution from site i more heavily if it was likely from class

c.

There are several biases that can be expected to occur with approximate methods like

the multinomial mixture approach. We discuss these below and present adjustments.

Penalized Likelihood

Because alignments tend to have few taxa, it is to be expected that some frequencies will

be underestimated. With less than 20 taxa, for instance, because there are 20 amino acids,

at least one amino acid will not be present at a site. Zero frequencies are likely artefactual

in this case. In addition, very small frequencies can cause numerical difficulties in likelihood

calculations. An adjustment for small numbers of taxa is to use a penalized log likelihood

that adds a penalty term η
∑

c

∑
a log[π

(c)
a ] to the multinomial mixture log likelihood. Here

η > 0 is a tunable parameter that controls the amount of penalization; we investigate a

few choices through simulation. Because log(π
(c)
a ) becomes large in magnitude but negative

for π
(c)
a small, adding a penalty term to the multinomial log likelihood prevents frequencies

from getting too small. Adding penalization leads to a relatively simple adjustment to the

updating scheme (3). Updates of w
(u)
c are the same as before but the appropriate update for

π
(cu)
a is shown in Supplementary Material to be π

(cu)
a ∝

∑
i p(c|xi)nia + η. The approach is

consequently comparable to the pseudo-count adjustment discussed, for instance, in Chapter

1 of Durbin et al. (1998). When site classes are known, the pseudo count approach estimates

π
(c)
a as [

∑
i∈c nia+η]/[mNc+20η], where the sum is over the Nc sites that correspond to class
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c. Penalized likelihood estimation gives rise to an estimate [
∑

i p(c|xi)nia+η]/[m
∑

i p(c|xi)+

20η], where uncertainty about class membership is adjusted for by weighting sites according

to how likely they were to correspond to class c.

Rate Variation Adjustments

Another source of difficulty for multinomial ML is dealing with rate variation across

sites. Even with a substantial number of taxa, if a site evolves at a relatively low rate, it is

frequently the case that only one or a few amino acids will be present. This is not because

the actual frequencies are highly skewed but simply because there is not enough evolutionary

distance to observe other amino acids. Since low rate sites are not uncommon, they can give

rise to estimated frequency components, π(c), that assign mass to one or a few amino acids.

Our adjustment is to restrict estimation to sites having rates exceeding the qth percentiles of

rates; the choice of q will be investigated. To ensure a range of rates we use the DGPE rate

estimates described in (Susko et al. 2003). In brief, DGPE estimates are obtained by fitting

a discrete approximation to the gamma rates-across-sites mixture model but with a larger

number of components (101 by default). By contrast with the usual approach where rates,

rk(α), depend on the α shape parameter and probabilities, pk = 1/K are fixed, DGPE fits

with rates, rk, that are fixed and with probabilities, pk(α) that depend on α. This avoids

repeated application of the pruning algorithm and gives an estimate of α. Rates at sites

are then estimated on a fixed tree as the conditional means for those sites:
∑

k rkp(k|xi) is

the rate for site i where p(k|x) is the conditional probability of rate class k as a site, given

the data x at that site. The approach gives a larger range of rates at sites than would be

estimated under a usual discrete mixture with a few rate classes.
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Likelihood Weights for Taxa

The final source of bias that we consider is due to phylogenetic relatedness. Because

closely related taxa frequently share the same amino acid at a site, observed frequencies

can be dominated by an amino acid shared by a set of closely related taxa. This gives rise

to frequency vectors, π(c), where the largest π
(c)
a is overestimated and makes it difficult to

estimate frequency vectors that are closer to homogeneous (π
(c)
a = 1/20). Our adjustment

for this is a form of likelihood weighting.

To motivate the approach we begin by considering estimation of frequencies at a single

site. The weighted composite likelihood is

∑
s

vs log[πxs ] (4)

The case vs = 1 corresponds to the usual composite log likelihood that ignores phylogenetic

relatedness. We restrict the likelihood weights so that vs ≥ 0 and
∑
vs = m, the number of

taxa; a condition that holds for the usual composite log likelihood. The weights give some

flexibility so that closely related taxa can be downweighted and taxa that are more distant

from the majority can be upweighted. We implicitly do this by choosing the weights to

minimize the variance of the resulting π̂a.

The maximizer of (4) is π̂a = vT δ(a)/m, where δ(a) has sth component δ
(a)
s = 1 if xs =

a and 0 otherwise; see Supplementary Material. It follows that Var(π̂a) = vTΣ(a)v/m2

where Σ(a) is the covariance matrix of δ(a). That covariance matrix can be calculated (see

Supplementary Material) as

[Σ(a)]sj =


πa(1− πa) if s = j

paa;sj − π2
a otherwise

(5)
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Here paa;sj is the probability of taxa s and j having amino acid a at the site. The average

variance of the πa estimates is then vTΣv/m2 where Σ =
∑

a Σ(a)/20. Thus to minimize the

average variance one needs to minimize vTΣv, subject to the constraint that
∑

s vs = m and

vs ≥ 0. An explicit expression for the optimal weights is unavailable but the minimization

is a quadratic programming problem and has a global minimizer that can be determined

numerically given a Σ. We utilized the R package quadprog of Turlack and Weingessel

(2013) which implements the methods of Goldfarb and Idnani (1983). Since Σ is unknown

in practice it requires estimation. The simple approximation that we use approximates πa by

the observed frequency of amino acid a over all sites and taxa, and paa;sj by the proportion

of sites where both s and j had amino acid a. Alternatively, one might obtain an estimate

from the pairwise substitution matrix for s and j where evolutionary distance between the

pair is either calculated on a tree or using the pairwise data alone.

To extend the approach above to mixtures of frequencies, we take the composite likelihood

contribution at a site for a given class to be weighted:
∏

s π
vs
xis

. The resulting weighted

composite or multinomial mixture likelihood is then

∑
i

log(
∑
c

∏
s

[π(c)
xis

]vs).

This continues to give rise to a simple updating scheme similar to (3) but where nia is

replaced by
∑

s vsδis. Allowing for the possibility of penalization, the updates are

πcu
a ∝

∑
i

p(c|xi)
∑
s

vsδis + η w(u)
c ∝

∑
i

p(c|xi).

In principle the matrix Σ used to obtain likelihood weights should be approximated separately

for each class but preliminary experiments suggested the optimal weights were not very

sensitive to the stationary frequencies. In all cases we used the simple approximation that
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approximates πa by the observed frequency of amino acid a over all sites and taxa, and paa;sj

by the proportion of sites where both s and j had amino acid a.

Tree-Based EM-Updating

The EM-updating scheme given by (3) can be expected to more generally give good

estimates of the frequency vectors whenever p(c|x) provides a good approximation to the

true p(c|x), the posterior probability calculated using the true generating parameters for

the model. Calculating p(c|x) using the multinomial is fast and using weighted composite

likelihoods adjust for phylogenetic relatedness to some degree but it is possible that a p(c|x)

calculated using a tree will improve upon initial multinomial estimates of the frequency

vectors.

EM-updating is generally expected to give good estimates when p(c|x) gives a good

approximation to the true p(c|x). To see this, suppose the true p(c|x) is used in (3). Since

nia =
∑

s I{xis = a}, using the convention that uppercase letters are random, the expected

value of an update is

E[n−1
∑
i

p(c|Xi)Nia] = E[p(c|Xi)
∑
s

I{Xis = a}]

=
∑
s

∑
xi|xis=a

p(xi|c)wc

p(xi)
p(xi)

= wc

∑
s

∑
xi|xis=a

p(xi|c) = wc

∑
s

P (Xis = a|c) = wcmπ
(c)
a

where m is the number of taxa and the sums only consider xi satisfying that xis = a. The

final expression is the same as the true frequency π
(c)
a up to a constant of proportionality

that vanishes upon rescaling.

We consider two approaches to obtaining a tree for tree-based EM-updating. One is to
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calculate a distance matrix for the LG+F model and obtain a neighbour joining (NJ) tree

using the neighbour joining method of Saitou and Nei (1987). The second is to calculate a star

tree with edge-lengths estimated from the distance matrix through least-squares estimation.

The second approach has the advantage that subsequent EM-updates are faster due to there

being a single internal node in the tree.

Cross-validation to Estimate the Number of Classes

In many of the simulations we treat the number of mixture classes as fixed and known.

In practice, however, they need to be estimated from the data. This cannot be done through

multinomial mixture ML estimation since increasing the number of components will always

increase the log likelihood; the models are nested. The approach we take is to use cross-

validation. The k-fold procedure can be described as follows.

1. Randomly partition the alignment into k separate alignments, A1, . . . , Ak of roughly

the same size and having no overlap; since n/k might not be an integer the alignment

sizes might vary slightly.

2. For each number of classes C = 2, . . . , Cmax,

(a) For each predictive alignment Ap, p = 1, . . . , k

i. Concatenate A1, . . . , Ap−1, Ap+1, . . . , Ak to create a new alignment A(e). Use

this alignment to estimate the frequencies.

ii. Obtain lC,p =
∑

i∈Ap
log[pC(xi)], the cross-validated log likelihood, where

pC(xi) denotes the probability of x under the model but with parameters

estimated from A(e).
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(b) The cross-validated log likelihood over all folds is calculated as lC =
∑

p lC,p.

Using cross-validated log likelihoods as criteria measures avoids the difficulties associated

with models having differing numbers of parameters. Because the data that the log likelihood

is being calculated for is completely separate from the data that was used to get estimates,

there is little reason to be concerned about the differing numbers of parameters for differing

class sizes. There is a caveat to this in that frequency vectors having a number of small

entries are likely to be present in both estimated and predictive data sets, and might be

predicted via additional classes having small weight. In all applications we considered 10-

fold cross-validation with a maximum of 30 frequency classes.

There are two ways of estimating a class from the procedure. The traditional approach is

to choose the number of classes, C giving the largest cross-validated lC (Stone 1977; Smyth

2000). Another, more conservative approach, is to choose C as the first class that gives a

larger cross-validated log likelihood than C + 1. The conservative approach is motivated by

the caveat discussed above whereby excess classes may be estimated as a result of observed

frequency vectors having a number of small entries. Similar approaches have been used

with other criteria measures in clustering (Gori et al. 2016). Additional motivation for the

conservative approach is given in Supplementary Material.

The natural approach to cross-validation is to calculate predicted log likelihoods using the

multinomial mixture model. We also consider cross-validated log likelihoods calculated using

a NJ tree and using a star tree both constructed as for tree-based EM-updating. Calculation

of cross-validated log likelihoods is then more expensive but because parameters are not

being estimated under trees, it remains feasible.
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Maximum Likelihood Estimation of a Mixture of Frequencies Model on a Fixed

Tree

Full ML estimation of frequencies and weights is computationally demanding and depen-

dent on starting frequencies. However, to evaluate how the methods described here compared

with ML estimation, we implemented ML estimation using a fixed tree and edge-lengths.

The EM algorithm of Dempster, Laird and Rubin (1977) was used. Similarly to multinomial

mixture estimation, at each iteration, weight updates are obtained through w
(u)
c ∝

∑
i p(c|xi)

but with p(c|xi) calculated as the posterior probability using the fixed tree and current π(c).

The updates of the class frequencies at each iteration require numerical optimization. Fol-

lowing the EM scheme, the frequencies for the cth class are obtained by maximizing the

contribution to expected complete log likelihood from class c,

∑
i

p(c|xi) log p(xi; ζ, π
c).

Here ζ includes the tree, edge-lengths and α parameter and are fixed in updating. In simu-

lations and for empirical data we used a NJ tree and DGPE to obtain an α estimate. There

is no closed-form expression of the maximizer and so the L-BFGS-B routines of Byrd et al.

(1995) and Morales and Nocedal (2011) were required.

Simulation Setting

To evaluate the performance of the multinomial mixture likelihood approach with the

adjustments above we consider simulation from a true 21-class mixture model. The classes

include the C20 frequency vectors from Le et al. (2008) plus one additional class having the

stationary frequencies of the LG model of Le and Gascuel (2008). The frequencies for the
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21 classes are given in Figure 1. For a given data set, we generated 1000 sites from each

of the 21 classes, using the LG exchangeability matrix and a 4-component discrete gamma

rates-across-sites process. The result is a concatenated alignment with 21,000 sites. Data

were generated for 74 taxa using the tree given in Figure 2 and α = 0.74 for the gamma rate

distribution. That generating tree and α were estimated from an expanded version of the

Brown et al. (2013) data set with a larger number of taxa.

As a simulation in a more complex setting we also consider estimation for a single sim-

ulated data set where each site has its own frequency vector. The tree, edge-lengths and α

parameter were the same as above. Frequency vectors at sites were obtained from the poste-

rior mean frequencies at the sites in Brown et al. (2013) data set under a fitted C20+LG+F

model. A total of 21,000 site-frequencies were selected at random from the source data for

simulation with an LG exchangeability matrix.

Hierarchical clustering of observed frequency vectors over sites provides a default method

for frequency estimation. Results for simulated data used the R function hclust and average

distances between clusters to determine clustering. Because large distance matrices are

required, memory constraints can make the approach prohibitive with a large number of sites

using implementations like hclust that require distance matrices as input. A simpler source

of starting frequencies for multinomial mixture ML are provided by the C20 frequencies

or other empirical choices. Because the C20 frequencies were the generating frequencies

for the simulations, hierarchical frequencies were used for starting values to avoid biasing

results. To evaluate how well a set of multinomial mixture ML frequencies did at estimating

the true underlying frequencies we calculated the percentage error decrease in L1 distance

over hierarchical clustering: 100 × [L1(h) − L1(m)]/L1(h), where L1(h) and L1(m) denote
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the L1 distances for hierarchical clustering and multinomial mixture ML. For a given set

of estimated frequencies, π̂(c), the L1 distance is calculated as a sum over amino acids and

classes, ∑
c,a

|π(c)
a − π̂(c)

a |.

A complication arises in that class labeling is arbitrary. For an estimated set of frequencies,

π̂(c), it is possible, for instance, that the estimated class that best fits the class 1 frequencies

of C20 is labeled as class 2. To determine well-fitting classes we used the following scheme.

1. Determine the L1 distance dck =
∑

a |π
(c)
a − π̂(k)

a | for all pairs of classes c (true) and k

(estimated). Continue the following two steps until all classes are matched.

(i) Determine the two class labels c (true) and k (estimated) giving the smallest dck

among all classes that have not been matched; initially this includes all classes.

(ii) Class k is the matching class for class c. Remove c (true) and k (estimated) from

the set of classes that have not been matched and go to (i).

Classes are then relabeled so that estimated class c has the same label as the class it

matches.

It should be noted that the above approach doesn’t guarantee that relabeled classes are

best in the sense of minimizing the overall L1 distance between the estimated frequencies.

Computing the minimizer through exhaustive search is not feasible.

Empirical Data

We consider 4 empirical data sets listed in Table 1. For each data set, there has been

some controversy over the correct topology with different topologies being estimated under
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mixtures than under a conventional models; see Lartillot et al. (2007) and Wang et al.

(2017). Conventional site-homogeneous models differ from frequency profile mixtures in

placing Amborella as a sister to all other angiosperms for the Amborella data set. For the

Microsporidia data set, site-homogeneous models place Microsporidia close to archaea. For

the Nematode and Platyhelminth data sets, site-homogeneous models estimate a tree with

nematodes or platyhelminths branching at the base of Metazoa, grouping with Fungi to the

exclusion of arthropods and deuterostomes. Finally, for the Obazoa data, the position of

the breviate protists in the eukaryote tree differs depending on whether a site-homogeneous

or frequency profile mixture model is used. Competing trees are given in figures S1-S4 in

Supplementary Material. The trees estimated under a conventional, non-mixture model and

under the C20 model were included in each case. For the Amborella data, we also calculated

log likelihoods for trees previously recovered in Bayesian analyses using the CAT model

(Wang et al. 2017). For each tree and data set, edge-lengths and the α parameter were

re-estimated via ML estimation.

The JTT exchangeability matrix was found to be the best-fitting matrix for the Amborella

data and was used in both non-mixture and mixture fitting. For all other data, the LG

exchangeability matrix was used. We adopted the common approach of including a +F

component. For default methods, this means that the stationary frequencies of amino acids

were determined as the observed frequencies over all taxa and sites. For mixture approaches,

the observed frequency vector was used as an additional frequency class, as described in Wang

et al. (2014).

Results and Discussion
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In what follows we start by considering the extent to which the strategies for estimation

described give good estimation of true frequency classes in simulation. Strategies considered

include restricting attention to high rate sites in frequency estimation, penalized estima-

tion and using likelihood weights. Starting with unadjusted multinomial ML estimation

and considering a sequence of adjustments in turn, results successively lead to set of rough

recommendations for frequency class estimation that are utilized in subsequent subsections.

For instance, the recommendation to use high rates is used in investigating penalized esti-

mation. Simulation results conclude by considering the effectiveness of cross-validation in

estimating the number of classes. Results for empirical data are then considered showing

large likelihood increases over default mixture models and good tree estimation.

Restricting Attention to High Rate Sites Improves Estimation

Figure 3 plots the percentage error decrease of multinomial mixture ML (with no penal-

ization or weighting) over hierarchical clustering as a function of q, where only those sites

having a rate at or above the qth quantile of rates were used for estimation. It is clearly im-

portant to exclude low-rate sites in estimation. Performance is comparable to or even worse

than hierarchical clustering if no exclusions are made whereas estimation error decreased by

more than 50% over each of the 10 data sets when a quantile threshold of q = 0.75 was used;

q = 0.75 is used in all following analyses.

Inclusion of low rate sites is not problematic when considering a single frequency profile

for all of the data. If A has frequency 0.07, for instance, then among sites with a single amino

acid, approximately 7% will be A. The difficulty with mixtures is that, since it is unknown

which class corresponds to which site, when a large set of sites have a single predominant
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amino acid (eg. 7% have A) there is a tendency to erroneously group those sites into a single

class rather than attributing them to low rates.

The results reported throughout make comparisons with hierarchical clustering. Other

clustering approaches are available. As an alternative we compared hierarchical clustering

with the popular kmeans clustering algorithm (Hartigan and Wong 1979). We considered

two starting strategies: (i) choosing the frequency classes over 100 random starting points

that give the largest between-to-total sum of squares over 100 random starting points and

(ii) using the frequency classes coming from hierarchical clustering as starting points. For

both starting strategies, hierarchical clustering was found to perform better. The average

percent decrease in error (standard deviation) of hierarchical clustering over kmeans was 4.4

(2.1) for starting strategy (i) and 6.1 (2.5) for (ii).

Penalized Estimation Has a Small But Important Effect

Penalized estimation had a relatively small effect on estimation results. Table 2 summa-

rizes results for penalized multinomial ML estimation using high rate sites, no taxa weighting

and penalty parameters η = 2, 5 and 10. The reduction of error over hierarchical clustering

was comparable to no penalization, being within 0.5% of the reduction of error without pe-

nalization (53.8%); the standard deviations of the reduction were approximately 2%. Clear

linear relationships existed between estimated frequencies with penalty to estimated frequen-

cies without penalty (η = 0). Over all data sets and classes the average R2 (over data sets)

was at least 0.96 over choices of penalty parameter η =2, 5 and 10.

The expectation with penalization is that, for any given class, small frequencies under

η = 0 will be estimated as larger under η > 0 and large frequencies will consequently
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decrease. This is supported by fitted regression relationships (η > 0 frequencies regressed on

η = 0 frequencies) over data sets. The average intercepts suggest an estimated zero frequency

with no penalization would be increased to roughly 0.001-0.002 with penalization but the

regression slopes, being less than 1, suggest large estimated frequencies with penalization

will be reduced.

While the effect of penalization in reducing error is small, it remains valuable as a means

of avoiding zero frequencies. With no penalization, over all data sets, classes and amino

acids, there were 7 estimated frequencies that were less than 1.0e-8 with η = 0 but none

with η > 0; one estimated frequency was less than 1.0e-4 with η = 2. Since it reduces the

chance of zero estimates while maintaining comparable performance, we used η = 5 as a

penalty in all following analyses.

Likelihood Weights for Taxa Improves Estimation

Using likelihood weights for taxa gives a substantial improvement over approaches that

do not use likelihood weighting. Table 3 shows the reduction in error over hierarchical

clustering. Although estimation of frequencies is restricted to high rate sites, it turned

out to be valuable to use all of the sites in estimating likelihood weights. Weights using

only high rate sites tended to be more homogeneous than those using all sites. Figure 2

gives the average estimated likelihood weights for each of the taxa. The maximum standard

deviation in these weights over data sets was 0.33. The weighting is to some degree intuitive.

Taxa that are distantly related to most other taxa, and consequently provide less dependent

information about frequencies, are upweighted and there is a sampling of relatively large

weights throughout the tree.
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Figure 1 gives the true frequencies for the frequency classes. Some classes are distinct

enough from each other that one can expect that they will be well estimated, but the simi-

larity of many of the frequency classes, suggests difficulties in separating contributions from

similar classes. As a measure of how well individual classes were estimated, for each true

class and restricting attention to high rate sites for that class, we calculated the average

posterior probability for each of the estimated classes; we restricted attention to high rate

sites, since it is much more difficult to assign posterior probability to low-rate sites. The

results are in Table 4. If an estimated class is highly linked with a particular true class, its

average posterior probability will be large only for sites from that true class. We see that

this is the case for true classes like Class 5, which exhibits a very unique frequency pattern,

but not for Class 21 which has more homogeneous frequencies that are similar to those of a

number of other classes.

While large improvements over hierarchical clustering have been found, improvements

can be expected to be less when fewer sites are considered. Table S1 in Supplementary

Material considers frequency estimation using the same approach as in Table 4 and the same

simulation setting but with only 500 sites and with different numbers of classes; separate

simulations were conducted using the first C = 5, 10, 20 and the full 21 classes in Figure

1. Average percent decreases were smaller than the 71.2% reported in Table 4. With only

500 sites, decreases were in the range 8.9%-18.1% with larger standard deviations over the

10 simulated data sets.

Tree-Based EM-Updating Improves Estimation with a Small Number of Itera-

tions
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Table 5 gives the results of tree-based EM-updating on a full phylogenetic tree applied

with starting frequencies coming from the best performing method in Table 3; the average

error, |π̂(c)
a − π

(c)
a |, in estimation is reported in Supplementary Material Table S1. For all

approaches, performance improves in initial iterations but then remains relatively stable or

decreases. Similarly, log-likelihoods after updating, increased most substantially from 1 to

10 iterations and then became more stable (Supplementary Material Figure S6). Since error

decreases were best with 5 or 10 iterations, one possible stopping strategy for updating is to

stop when log likelihoods on the tree show relatively small increases. In practice the true tree

is unknown, but performance with it provides an upper bound on what may be achievable

with good estimates of the tree. Using an estimated NJ tree gives comparable performance.

Part of the reason for the lack of improvement in performance as the number of iterations

increases, which occurred across methods, likely has to do with numerical instabilities due

to some frequencies being estimated as close to 0. Due to the penalized likelihood estimation

used to obtain the starting frequencies, for each data set, the minimum starting frequency

over all classes and amino acids was at least 2 × 10−4. This minimum decreased over all

data sets as the number of iterations increased. Using the true tree, after 50 iterations the

minimum frequency ranged between 5 × 10−5 and 5 × 10−11. Since the true tree adjusts

for phylogenetic relatedness, the small frequencies are primarily a consequence of using a

relatively small number of taxa. In the case that the number of taxa are small, if an amino

acid, a, has low frequency for a particular true frequency class, c′, then a might not be

observed (nia = 0) at sites i corresponding to c′. If in addition, the frequencies for this

true class differ substantially from those of other classes, then it will be easy to distinguish

site patterns that correspond to c′ from those of other classes. Consequently, p(c∗|xi) will
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be large for the estimated class, c∗, that best fits c′ if, and only if, xi corresponds to true

class c′. Since nia is small or zero at such sites, the weighted average,
∑

i p(c
∗|xi)nia, used

to update the frequency of a in (3), will be small.

A variation on the explanation above is also important in understanding why updating

mixture weights lead to performance decreases with increasing numbers of iterations. The

added flexibility of updating weights often leads to mixture weights that are small with

corresponding frequency classes that are dominated by a few frequencies. With 50 iterations,

some data sets had classes that, up to machine precision, had frequencies for some amino

acids equal to 0.

A difficulty with tree-based EM-updating is that it comes with a substantial computa-

tional cost due to the need to repeatedly calculate likelihoods on trees. Using a star tree

reduces this computational cost substantially. No attempt was made to optimize the soft-

ware used and results will vary depending on hardware but, using one particular data set

for illustration, the elapsed (wall clock) time required for 50 posterior updates was approxi-

mately 5.5 hours using an NJ tree and 10 minutes using a star tree. There was however, a

small performance decrease due to using the star tree.

Cross-validation Requires Log Likelihoods Calculated on a Tree

Figure 4 gives plots of the cross-validated log likelihoods for estimation of the number of

classes in the mixture; the number of classes in the simulating model is C = 20. Regardless

of how the log likelihood is calculated, the initial rate of increase, as a function of the number

of classes, is large. There is clear evidence that smaller numbers of classes are not sufficient.

Using the multinomial log likelihood for fitting does not work well at estimating a sufficient
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number of classes. The cross-validated log likelihood increases steadily. Some of this may be

due to the presence of low rate sites in the test samples. Adding classes allows for frequency

vectors that are large for a few amino acids and that fit low rate sites well. Adjusting for

rate variation is thus important which is why using the star tree or NJ tree to estimate

the number of classes gives cross-validated likelihood curves that become relatively flat with

larger numbers of classes. The star tree, however, still gives log likelihoods that increase

too quickly. As Table 6 indicates, for 3 of the simulated data sets, the cross-validated log

likelihood was maximized using 29 classes, but for the other 7 data sets, it continued to

increase over all numbers of classes. Using the NJ tree gave much better performance but

tended to over-estimate the number of classes.

An alternative approach to estimation of the number of classes via cross-validated log

likelihoods is to choose the first class, C, which has a larger cross-validated log likelihood than

C+1. Using this approach tended to gives smaller numbers of estimated classes regardless of

the way in which cross-validated log likelihoods were calculated. The star tree still tended to

over-estimate whereas the NJ tree tended to under-estimate the number of classes. Because

many of the frequency classes were similar to each other (Figure 1) under-estimation of the

number of classes might not cause difficulties for downstream analyses.

That estimation under a tree is needed for cross-validation is further illustrated in Figure

S7 of Supplementary Material where simulation is from a single frequency vector (C = 1).

Cross-validated estimation with a star or NJ tree give the correct number of components

whereas the cross-validated multinomial log likelihood is increasing as a function of C.

Maximum Likelihood Estimation on a Tree is Expected to Improve Performance
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with Good Tree Estimates

Table 7 gives the results of full ML estimation on a fixed tree and with fixed edge-

lengths, applied with starting frequencies coming from the best performing method in Table

3. Using the NJ tree gives performance improvements over the starting frequencies but the

improvements are comparable to those using posterior weighting (Table 5). No attempt

has been made to optimize software but, using one particular data set for illustration, the

elapsed (wall clock) time required for 50 posterior updates was approximately 5.5 hours

whereas more than 8 days were required for ML estimation.

Maximum likelihood estimation using the true tree is not possible in practice but per-

formance with it provides an upper bound on what is achievable with good estimates of

the tree. Comparing results with those of tree-based EM-updating on the true tree (Table

5), a substantial improvement is obtained and the approach gave the best percentage error

decrease of any method considered.

Large Variability of Frequency Vectors Makes Estimation Harder

The final simulation result we briefly consider is for the setting were each site has a

completely different frequency vector. To ease computation multinomial ML estimation was

used with no EM-updating; high rate sites, likelihood weights and penalization continued to

be used and a +F component was included. Results were compared with C20+F frequency

vectors and from hierarchical clustering.

The log likelihoods were largest for frequencies estimated using multinomial ML (With

20 classes +F 4LnL=269.6 by comparison with hierarchical clustering and 4LnL=81.4 by

comparison with C20+F) suggesting it gave the best fit. Because each site has its own fre-
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quency vector, it is not longer possible to evaluate the abilities of the methods to estimate the

class frequency vectors. To compare methods we considered the average difference between

frequencies at a site and the posterior mean frequency estimate using the frequencies for 20

class and 60 class models but with different frequency estimates. All choices of frequencies

gave similar errors in estimation of approximately 3.0 with comparable standard deviations

of approximately 4.0.

Large Likelihood Increases are Obtained with Empirical Data

We obtained frequency vectors using multinomial mixture estimation and tree-based EM-

updating for the four empirical data sets listed in Table 1. Due to the good performance

found in simulations, for each data set, multinomial mixture estimation was applied to sites

with rates larger than the 75th percentile, using estimated likelihood weights and penalized

estimation with η = 5. Tree-based EM-updating was conducted using the estimated NJ tree

and a gamma rates-across-sites distribution with 4 rate categories and α estimated using

DGPE. In each case models were fit with 10, 20, . . . , 60 classes with starting frequencies

coming from the C-series frequency classes.

Figure 5 gives the log likelihood increases for fixed trees when frequencies used in likeli-

hood calculation were estimated using multinomial mixture ML estimation and tree-based

EM-updating; increases are over the likelihoods for the C-series model with the same number

of components. Regardless of the tree or data set considered, enormous gains in likelihood

were obtained. The smallest likelihood increase over all data sets, trees and methods is

1649.4. The C-series models are nested within the mixture models, and the mixture model

has 380 = 19 × 20 additional parameters. Using likelihood theory, if the C20+F+Γ model
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were correct, the chance of observing a likelihood increase as large as 1649.4 is approximately

P (χ2
19C > 2 × 1649.4), which up to machine precision is 0, for any C = 10, 20, . . . , 60. In

most cases, the log likelihood increase gets larger with larger C, with the Amborella and

Platyhelminths data sets providing exceptions when C = 60. Using likelihoods as a measure

of fit, tree-based EM-updating tended to give substantially larger likelihood increases than

using multinomial frequencies; the Obazoa data provided an exception, however.

Figure 6 gives the log likelihood differences between the mixture tree over the default

tree when frequency classes are obtained using multinomial ML estimation or EM-updating.

The relatively small increases in Figure 6 may be a bit surprising because of the enormous

increases in likelihood using the new approaches over C-series models fitted to a fixed tree

(Figure 5). In each case considered in Figure 6, a positive log likelihood difference implies

that the mixture tree was favoured over the true tree. With the exceptions of some settings

for the Platyhelminths and Microsporidia data, the mixture tree is always favoured.

By contrast with simulated data, starting frequencies came from the C-series frequency

classes. Since C-series generating frequencies were used in simulation, the intent in sim-

ulations was to avoid bias in making comparisons to hierarchical clustering. Because the

behaviour of hierarchical clustering is not clear in more complex real data settings, fixed

C-series frequency classes may be considered preferable. Figures S7-S8 in Supplementary

Material give results for multinomial mixture ML estimation like those of Figures 5-6 but

using starting frequencies coming from hierarchical clustering; due to the large memory re-

quirements, the R package Rclusterpp (Linderman and Bruggner 2013) was used in place of

the default clustering algorithm hclust. While different starting points often give different

solutions, the general trends and conclusions are the same as for Figures 5-6.
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For the Microsporidia, Nematode and Obazoa data the estimated C20+F+Γ tree usu-

ally gave the largest likelihood for the mixture models. The support for the correctness

of the Obazoa tree is primarily through mixture model-based analyses (Brown et al. 2013)

whereas additional support (Keeling and Fast 2002, Brinkmann et al. 2005) has been given to

microsporidia+fungi grouping in the C20+F+Γ tree. For the Nematode data, the C20+F+Γ

Ecdysozoa tree is also not controversial. In addition to being supported by mixtures, Lar-

tillot et al. (2007) show that the Ecdysozoa tree (nematodes+arthropods) is obtained with

conventional models when closer outgroups to bilaterian metazoans are included in the data

set; specifically, choanoflagellates and a cnidarian.

The Platyhelminths data consider the same proteins and sites as in the Nematode data.

Many of the taxa are the same but the Platyhelminths dataset replaces the data for the 10 ne-

matodes with sequences from 5 platyhelminths. The CAT+GTR tree for the platyhelminths

data differs from the LG+F+Γ tree in supporting a Protostomia grouping (platyhelminths +

arthropods to the exclusion of deuterostomes) rather than a Coelomata grouping (deuteros-

tomes + arthropods to the exclusion of platyhelminths). That tree was also obtained using

the PMSF methodology of Wang et al. (2017). However, the C-series mixtures estimate

the incorrect Coelomata tree. While the log likelihood difference in favour of the Coelomata

tree gets smaller for C-series mixtures as C increases, the Coelomata topology continues to

be estimated. Using multinomial and updated mixture frequencies in place of the C-series

frequencies, the correct Protostomia position is favoured with C ≥ 20 for the multinomial

frequencies and C ≥ 30 with tree-based EM-updating.

For the Amborella dataset, the main difference between trees, whether Amborella is

at the base of the angiosperms (JTT+C20 tree) or forms a clade with the water lilies,
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remains contentious (Leebens-Mack et al. 2005; Wickett et al. 2014; Drew et al. 2014;

Goremykin et al. 2015; Rokas et al. 2017). Perhaps not surprisingly then, the pattern of

likelihood increases differed for the Amborella dataset by comparison with the other data sets.

Whereas multinomial and updated mixture frequencies usually showed comparable or larger

increases for mixture-derived trees over default estimation, for the Amborella dataset, the

log likelihood increases tended to be smaller and decreased with increasing C. Nevertheless,

the C20+F+Γ and CAT+GTR trees tend to be favoured. Interestingly, whereas the C-series

models consistently favoured the C20+F+Γ tree over the CAT+GTR tree, which differ only

in their placement of Calycanthus, the multinomial and updated mixture frequencies gave

much more comparable likelihoods for the two trees.

Figure 7 gives the results of cross-validation for the multinomial mixture ML frequencies.

By contrast with the simulated data, the additional frequency variability for the empirical

data suggests a large number of components. The largest cross-validated log likelihood for

the range of C considered is always at C = 60. For the Platyhelminth data, the NJ-Tree

cross-validated log likelihood for C = 20 is larger than for C = 30 and the star tree cross-

validated log likelihood increases slowly going from C = 20 to C = 30. Similarly for the

related Nematode data, the NJ-Tree increase from C = 20 to 30 is relatively small, suggesting

that for these data sets, C = 20 might give a reasonable choice with limited computational

resources. The biggest increase in cross-validated log likelihood for all methods is from

C = 10 to 20. Thus cross-validation always supports least 20 classes; the only choice of C

that sometimes did not support the mixture tree with multinomial mixture ML frequencies

was C = 10 (Figure 6).

Because frequency classes with a few relatively large frequencies will give rise to fewer
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distinct amino acids at a site, it is possible that they can be explained to some degree by

allowing a richer rates-across-sites distribution. We expect, however, that richer rates-across-

sites will not completely explain frequency classes with a few relatively large frequencies

because sites corresponding to such classes are expected not only to show fewer amino acids

but fewer amino acids of particular type; eg. consistently R and K for Class 4 in 1. To test

this hypothesis we fit much richer, effectively unconstrained, rate distributions referred to

as the discrete estimate (DE) in Susko et al. (2003). The mixtures allow any distribution

on a set of 100 rates logarithmically equal-spaced from 0.01 to 10, plus a zero rate. If it

is true that richer rates-across-sites distributions do not provide a sufficient explanation,

it is expected that log likelihood increases of a frequency mixture model over the single

frequency will continue to increase substantially as a function of C when DE is used as the

rate distribution. This is indeed the behaviour exhibited in Supplementary Material Figure

S10. The rapid increases due to richer mixture of frequency models is the predominant feature

of Figure S10, suggesting that frequency variation was the more important model element.

However, the increases in log likelihood over the single frequency model were usually smaller

using DE than gamma rate variation and the rate of increase was usually slower. Thus

the frequency mixtures seem to be explaining some of what may be rate variation and/or

richer rate models help to explain frequency variation to some degree. Further evidence

that the rate variation is entangled with frequency variation is provided by Supplementary

Material Figure S11 which gives the estimated cumulative distribution functions of rates.

These usually are closer to continuous (fewer plateaus) when fitted with a single frequency

class.
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Conclusions

Multinomial mixture ML estimation showed good performance in computational experi-

ments provided that several adjustments were made to the base methodology. It is important

to restrict use to sites with relatively high rates. While we found that restricting attention to

the top quartile of rates gave optimal performance, optimal rate thresholds may vary depend-

ing on the nature of the data. Likelihood weighting helps and using penalized estimation can

prevent frequencies from getting too small. Tree-based EM-updating was found to sometimes

provide further performance improvements albeit with additional computational cost.

Several additional adjustments to the approaches might be considered. One is to use

cross-validation to estimate the penalty parameter η in penalized approaches. This increases

computational costs and was not pursued here due to the similarity of frequencies with

different choices of η and due to the modest performance gains.

Most of the adjustments to the base methodology were motivated by difficulties estimat-

ing vectors of 20 frequencies at a site using the limited information provided by relatively

small number of dependent taxa. Performance with very large numbers of well-separated

taxa might not require as many adjustments. For the commonly occurring case that there are

less than 100 taxa, however, multinomial mixture ML estimation provides a computationally

feasible means of estimating mixture profiles that can be expected to give good performance.
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Table 1: Empirical data sets.

Dataset Proteins Taxa Sites Source

1 Amborella 61 24 15688 Leebens-Mack et al. (2005)

2 Microsporidia 133 40 24291 Brinkmann et al. (2005)

3 Nematode 146 37 35371 Lartillot et al. (2007)

4 Platyhelminths 146 32 35371 Lartillot et al. (2007)

4 Obazoa 159 68 43615 Brown et al. (2013)
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Table 2: Summary of results for penalized estimation. The first row gives the average per-

cent reduction of error (standard deviation) over hierarchical clustering for different penalty

parameters. The second row gives the average R2 for the regression of frequencies with pe-

nalization on frequencies without penalization (η = 0); class labels with penalization were

chosen to best match frequencies without penalization. The third and fourth rows give the

intercept and slope of the regressions.

Penalty Parameter η

0 2 5 10

Percent Decrease 53.8 (1.8) 53.3 (2.4) 53.8 (2.4) 54.0 (2.3)

R2 0.98 (0.04) 0.98 (0.04) 0.96 (0.04)

Intercept × 100 0.09 (0.13) 0.11 (0.13) 0.20 (0.12)

Coefficient 0.98 (0.03) 0.98 (0.03) 0.96 (0.02)

Table 3: The average percent error decrease of multinomial mixture ML over hierarchical

clustering for simulated data when likelihood weights for taxa are used. Weights were ap-

proximated from the entire data set as well as for only those sites with rates larger than the

75th percentile of rates.

Method Error Decrease SD

Optimal Weights for Entire Data 71.2 1.8

Weights Optimized for High Rate Sites 64.8 3.8

No Weights 53.8 2.4
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Table 4: For each true class and restricting attention to high rate sites for that class, the

average posterior for the esimated classes. Top-ranked estimated classes are listed with, in

parenthesis, the average posterior probability. Results are for one of the simulated data sets

and posteriors were calculated using the true tree and edge-lengths.

True Class Estimated Classes (Posteriors) True Class Estimated Classes (Posteriors)

1 6 (0.96) 14 7 (0.94)

2 12 (0.93) 3 15 (0.92)

12 2 (0.87) 8 (0.10) 13 8 (0.33) 15 (0.33) 19 (0.22) 12 (0.08)

4 13 (0.82) 10 (0.16) 5 21 (0.95)

6 18 (0.73) 1 (0.20) 20 4 (0.49) 18 (0.42)

7 16 (0.96) 10 17 (0.97)

16 3 (0.98) 17 5 (0.95)

8 20 (0.79) 14 (0.10) 8 (0.05) 9 8 (0.54) 19 (0.43)

11 10 (0.46) 1 (0.42) 19 (0.07) 15 11 (0.96)

18 19 (0.89) 1 (0.05) 19 9 (0.65) 19 (0.14) 10 (0.11)

21 19 (0.42) 20 (0.31) 8 (0.11) 1 (0.08)
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Table 5: The average percent error decrease (standard deviation) over hierarchical clustering

for simulated data when tree-based EM-updating is used with a fixed number of iterations.

Tree-based EM-updating uses (Weight Updating): an estimated neighbour-joining tree and

updating of mixture weights, (Star Tree): an estimated star tree with likelihood weights

but no updating of mixture weights (NJ Tree): an estimated neighbour-joining tree with

likelihood weights but no updating of mixture weights, and (True Tree): the true tree,

edge-lengths and mixture weights with no likelihood weighting.

Iteration Weight Update Star Tree NJ Tree True Tree

0 71.2 (1.8) 71.2 (1.8) 71.2 (1.8) 71.2 (1.8)

1 78.7 (1.8) 78.8 (1.8) 78.7 (1.7) 80.9 (1.7)

5 80.2 (3.1) 81.2 (2.9) 83.7 (3.0) 85.0 (2.2)

10 77.6 (4.0) 81.0 (3.3) 84.1 (3.8) 84.2 (2.7)

25 69.4 (4.6) 79.2 (4.4) 83.1 (4.7) 82.8 (3.7)

50 57.9 (6.5) 76.5 (4.6) 81.5 (5.3) 82.5 (4.0)
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Table 6: The estimated number of classes using either the estimated NJ tree or star tree

to calculate log likelihoods. The estimated class was chosen either to maximize the cross-

validated log likelihood (LnL) or as the first class C such that the cross-validated log likeli-

hood for C was large than the cross-validated log likelihood for C + 1 (4LnL). The number

of classes in the simulating model is C = 20.

NJ (LnL)

Number of Classes 20 21 22 24 25

Number of Datasets 3 1 2 3 1

NJ (4LnL)

Number of Classes 16 17 19 20

Number of Datasets 1 3 2 4

Star (LnL)

Number of Classes 29 30

Number of Datasets 3 7

Star (4LnL)

Number of Classes 20 21 22 24 25 27

Number of Datasets 3 1 3 1 1 1
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Table 7: The average percent error decrease (standard deviation) over hierarchical clustering

for simulated data after full ML estimation of frequencies and weights after a fixed number

of iterations and using a fixed tree. For comparison, some results from Table 5 corresponding

to tree-based EM-updating are repeated.

Updating ML Estimation

Iteration NJ Tree True Tree NJ Tree True Tree

0 71.2 (1.8) 71.2 (1.8) 71.2 (1.8) 71.2 (1.8)

1 78.7 (1.7) 80.9 (1.7) 79.8 (1.6) 82.9 (1.5)

5 83.7 (3.0) 85.0 (2.2) 79.6 (1.5) 88.9 (1.2)

10 84.1 (3.8) 84.2 (2.7) 79.9 (1.3) 91.3 (2.0)

25 83.1 (4.7) 82.8 (3.7) 80.7 (3.2) 92.5 (4.1)

50 81.5 (5.3) 82.5 (4.0) 80.6 (3.3) 93.1 (4.3)

Table 8: The average error in estimation, |π(c)
a − π̂(c)

a |, multiplied by 100 (standard devia-

tion) and average percent error decrease (standard deviation) over hierarchical clustering for

simulated data with n = 500 sites and n = 21, 000 sites.

Sequence Length

500 21,000

Average Error 4.16 (0.17) 1.38 (0.08)

Percent Decrease 15.8 (2.3) 71.2 (1.8)
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Figure 1: The frequencies for the 21 classes used to simulate data. Similar frequency classes

have been grouped together.
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Figure 2: The tree used to simulate the data sets and the average estimated optimal likelihood

weights for the tree over data sets.
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Figure 3: Error decrease of multinomial mixture ML over hierarchical clustering for simulated

data when sites with rates at or above the qth quantile of rates are used in estimation. At

each values of q, performance was evaluated over the same 10 simulated data sets.
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Figure 4: For each of the 10 simulated data sets, the cross-validated log likelihoods and

changes in cross-validated log likelihoods (LnL for class C+1 - LnL for class C) as the number

of classes, C, increases. Log likelihoods were calculated under the multinomial mixture, using

the NJ tree and an estimated star tree. The number of classes in the simulating model is

C = 20.
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Figure 5: Increases in log likelihoods for fixed trees when frequencies used in likelihood cal-

culation were estimated using multinomial mixture ML (Mult) and tree-based EM-updating

(Up). Each increase is the difference in log likelihood over that of the C-series model with the

same number of classes. Models used in tree-estimation and likelihood evaluations always

included a +F+Γ component.
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Figure 6: Log likelihood differences for mixture trees over trees estimated using default

models that do not allow mixtures of frequencies. Models used in tree estimation always

included a +F+Γ component. Values above the indicated y = 0 line imply that the mixture

tree was favoured by the approach.
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Figure 7: Rescaled and shifted cross-validated log likelihoods for the multinomial mixture

ML frequencies. To allow comparisons across different likelihood calculations, cross-validated

log likelihoods have been rescaled and centered to have minimum 0 and maximum 1.

Downloaded from https://academic.oup.com/mbe/advance-article-abstract/doi/10.1093/molbev/msy026/4904159
by Dalhousie University user
on 22 March 2018


