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Abstract

As a consequence of structural and functional constraints, proteins tend to have site-specific preferences for particular
amino acids. Failing to adjust for heterogeneity of frequencies over sites can lead to artifacts in phylogenetic estimation.
Site-heterogeneous mixture-models have been developed to address this problem. However, due to prohibitive compu-
tational times, maximum likelihood implementations utilize fixed component frequency vectors inferred from sequences
in a database that are external to the alignment under analysis. Here, we propose a composite likelihood approach to
estimation of component frequencies for a mixture model that directly uses the data from the alignment of interest. In
the common case that the number of taxa under study is not large, several adjustments to the default composite
likelihood are shown to be necessary. In simulations, the approach is shown to provide large improvements over
hierarchical clustering. For empirical data, substantial improvements in likelihoods are found over mixtures using fixed
components.
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Introduction
Phylogenomic methods that analyze large numbers of orthol-
ogous genes are increasingly used to resolve deep phyloge-
netic divergences in the tree of life (Brown et al. 2013; Wickett
et al. 2014; Pisani et al. 2015). Variability of estimation
decreases with larger alignment lengths but computational
cost increases substantially and the possibility of systematic
bias makes it important to accurately model the underlying
amino acid substitution process (Philippe et al. 2011).

Amino acid substitutions are usually modeled as occurring
independently at sites in an alignment and according to a
Markov process along a tree. The most common approach
assumes a constant rate matrix throughout the tree, deter-
mined by stationary frequencies that are constant across sites
and an empirically derived exchangeability matrix.
Exchangeabilities are fixed in advance of analyses and empir-
ically determined. Examples include the JTT exchangeability
matrix (Jones et al. 1992), the WAG matrix (Whelan and
Goldman 2001) and the LG matrix of Le and Gascuel
(2008). Frequencies are usually determined from the align-
ment as the observed frequencies of amino acids over all sites
and taxa. Allowance is made for heterogeneity of substitution
processes over sites through a mixture model of rates for sites,
arising from a discretized Gamma distribution (Yang 1994).

Rate heterogeneity, however, is not usually sufficient to
adjust for the differing structural or functional constraints
that lead to different sites having different preferences for
specific amino acids. Many sites appear to allow a relatively

limited set of amino acids with the nature of the set often
varying across sites (Halpern and Bruno 1998; Lartillot and
Philippe 2004). For instance, some sites show a restricted al-
phabet of amino acids. This restricted alphabet of amino acids
is determined by the structural and functional constraints at
those sites in the protein. Such constraints can include
requirements for amino acids that are hydrophobic and ali-
phatic (e.g., V, I, and L), aromatic (e.g., F, Y, and W), acidic (e.g.,
D and E), basic (e.g., R, K, and H) or with other biophysical
properties. Generally, frequencies at sites are often less uni-
form than those predicted by the observed aggregate frequen-
cies over sites that are used in conventional models (Lartillot
et al. 2007; Wang et al. 2008). Sites with highly skewed com-
position tend to become saturated with changes at smaller
evolutionary distances than when frequencies are uniform. At
such sites, patterns for subsets of taxa that are not very dis-
tantly related can appear similar to those of subsets of taxa
that are distantly related, leading to an underestimation of
relative evolutionary divergences (large to small). As a conse-
quence, conventional models have shown a tendency towards
long-branch attraction (LBA) biases in phylogenetic estima-
tion (Lartillot et al. 2007; Wang et al. 2008). By contrast,
site-heterogeneous models effectively downweight the impor-
tance of sites with highly skewed composition to the inference
of relative divergences, implicitly recognizing that saturation is
a potential explanation for the patterns at these sites.

To adjust for heterogeneity of frequencies over sites,
mixture models (Lartillot and Philippe 2004; Le et al. 2008;
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Wang et al. 2008) and partitioned models (Yang 1996; Pupko
et al. 2002; Lanfear et al. 2012) have been developed. We focus
attention on the mixture approach here. A widely used class
of mixture models implemented according to Bayesian prin-
ciples are the CAT models of Lartillot et al. (2013). The mixing
distribution of stationary frequencies over sites is modeled
without restriction using a Dirichlet process model. While
CAT models have been shown to fit data better and alleviate
LBA bias (Lartillot et al. 2007), a concern has been that the
Markov chain Monte Carlo computational techniques used
to approximate posterior probabilities can suffer from con-
vergence difficulties with large data (Pisani et al. 2015; Whelan
et al. 2015; Whelan and Halanych 2016).

Due to their substantial additional computational bur-
den, maximum likelihood (ML) models of mixtures of fre-
quencies (Wang et al. 2008; Le et al. 2012) assume a mixing
distribution with component frequency vectors that are
fixed in advance, rather than being estimated from the
data. Several sets of fixed frequency vectors are available
(Le et al. 2008; Wang et al. 2008, 2014), each having been
determined from differing previous empirical data and
using different methods. Simulations and empirical studies
have shown that these mixture models are more robust to
LBA bias than a model that uses a single stationary fre-
quency vector (Wang et al. 2017).

When applied to new data, current mixture models (Wang
et al. 2008; Le et al. 2012) utilize fixed frequency profiles de-
termined from external data. Consequently, these fixed fre-
quency profiles may not be consistent with the actual
frequency profiles present in the data under consideration.
In theory, frequency profiles can be included among the
parameters optimized in ML estimation. Because each profile
has 20 elements such an approach increases the dimension of
the optimization problem substantially. Moreover, whereas
the rate matrices using fixed frequency profiles remain fixed
throughout optimization, each new frequency profile consid-
ered when they are being optimized requires additional ei-
genvalue decompositions in order to calculate substitution
matrices from the rate matrices through matrix exponentia-
tion. Finally, by contrast with derivatives for edge-lengths
which can be calculated efficiently using single sweeps of
the pruning algorithm of Felsenstein (1981), repeated pruning
algorithm applications are required to approximate deriva-
tives for each element of each frequency profile. The increase
in computation complexity of likelihood evaluations and the
difficulties with derivative calculations, renders the approach
prohibitive in practice.

In this study, we investigate feasible methods for estimat-
ing component frequency vectors in the mixing distribution.
Through simulations the main methods are shown to provide
substantial improvements over hierarchical clustering. For
empirical data, substantial improvements in likelihoods are
found over mixtures using fixed predetermined components.

Results and Discussion
In what follows, we start by considering the extent to which
the strategies for estimation described give good estimation

of true frequency classes in simulation. Strategies considered
include restricting attention to high rate sites in frequency
estimation, penalized estimation, and using likelihood
weights. Starting with unadjusted multinomial ML estimation
and considering a sequence of adjustments in turn, results
successively lead to set of rough recommendations for fre-
quency class estimation that are utilized in subsequent sub-
sections. For instance, the recommendation to use high rates
is used in investigating penalized estimation. Simulation
results conclude by considering the effectiveness of cross-
validation in estimating the number of classes. Results for
empirical data are then considered showing large likelihood
increases over default mixture models and good tree
estimation.

Restricting Attention to High Rate Sites Improves
Estimation
Figure 1 plots the percentage error decrease of multinomial
mixture ML (with no penalization or weighting) over hierar-
chical clustering as a function of q, where only those sites
having a rate at or above the qth quantile of rates were used
for estimation. It is clearly important to exclude low-rate sites
in estimation. Performance is comparable to or even worse
than hierarchical clustering if no exclusions are made whereas
estimation error decreased by >50% over each of the ten
data sets when a quantile threshold of q¼ 0.75 was used;
q¼ 0.75 is used in all following analyses.

Inclusion of low rate sites is not problematic when con-
sidering a single frequency profile for all of the data. If A has
frequency 0.07, for instance, then among sites with a single
amino acid, approximately 7% will be A. The difficulty with
mixtures is that, since it is unknown which class corresponds
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FIG. 1. Error decrease of multinomial mixture ML over hierarchical
clustering for simulated data when sites with rates at or above the qth
quantile of rates are used in estimation. At each values of q, perfor-
mance was evaluated over the same ten simulated data sets.
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to which site, when a large set of sites have a single predom-
inant amino acid (e.g., 7% have A) there is a tendency to
erroneously group those sites into a single class rather than
attributing them to low rates.

The results reported throughout make comparisons with
hierarchical clustering. Other clustering approaches are avail-
able. As an alternative we compared hierarchical clustering
with the popular kmeans clustering algorithm (Hartigan and
Wong 1979). We considered two starting strategies: 1) choos-
ing the frequency classes over 100 random starting points
that give the largest between-to-total sum of squares over
100 random starting points and 2) using the frequency classes
coming from hierarchical clustering as starting points. For
both starting strategies, hierarchical clustering was found to
perform better. The average percent decrease in error (stan-
dard deviation) of hierarchical clustering over kmeans was 4.4
(2.1) for starting strategy (1) and 6.1 (2.5) for (2).

Penalized Estimation Has a Small but Important Effect
Penalized estimation had a relatively small effect on estima-
tion results. Table 1 summarizes results for penalized multi-
nomial ML estimation using high rate sites, no taxa weighting
and penalty parameters g ¼ 2, 5, and 10. The reduction of
error over hierarchical clustering was comparable to no pe-
nalization, being within 0.5% of the reduction of error without
penalization (53.8%); the standard deviations of the reduction
were approximately 2%. Clear linear relationships existed be-
tween estimated frequencies with penalty to estimated fre-
quencies without penalty (g ¼ 0). Over all data sets and
classes the average R2 (over data sets) was at least 0.96 over
choices of penalty parameter g ¼ 2, 5, and 10.

The expectation with penalization is that, for any given
class, small frequencies under g ¼ 0 will be estimated as
larger under g > 0 and large frequencies will consequently
decrease. This is supported by fitted regression relationships
(g > 0 frequencies regressed on g ¼ 0 frequencies) over data
sets. The average intercepts suggest an estimated zero fre-
quency with no penalization would be increased to roughly
0.001–0.002 with penalization but the regression slopes, being
<1, suggest large estimated frequencies with penalization will
be reduced.

While the effect of penalization in reducing error is small, it
remains valuable as a means of avoiding zero frequencies.
With no penalization, over all data sets, classes and amino
acids, there were seven estimated frequencies that were
<1.0e-8 with g ¼ 0 but none with g > 0; one estimated
frequency was <1.0e-4 with g ¼ 2. Since it reduces the
chance of zero estimates while maintaining comparable per-
formance, we used g ¼ 5 as a penalty in all following analyses.

Likelihood Weights for Taxa Improve Estimation
Using likelihood weights for taxa gives a substantial improve-
ment over approaches that do not use likelihood weighting.
Table 2 shows the reduction in error over hierarchical clus-
tering. Although estimation of frequencies is restricted to high
rate sites, it turned out to be valuable to use all of the sites in
estimating likelihood weights. Weights using only high rate
sites tended to be more homogeneous than those using all

sites. Figure 2 gives the average estimated likelihood weights
for each of the taxa. The maximum standard deviation in
these weights over data sets was 0.33. The weighting is to
some degree intuitive. Taxa that are distantly related to most
other taxa, and consequently provide less dependent infor-
mation about frequencies, are upweighted and there is a
sampling of relatively large weights throughout the tree.

Figure 3 gives the true frequencies for the frequency classes.
Some classes are distinct enough from each other that one
can expect that they will be well estimated, but the similarity
of many of the frequency classes, suggests difficulties in sep-
arating contributions from similar classes. As a measure of
how well individual classes were estimated, for each true class
and restricting attention to high rate sites for that class, we
calculated the average posterior probability for each of the
estimated classes; we restricted attention to high rate sites,
since it is much more difficult to assign posterior probability
to low-rate sites. The results are in table 3. If an estimated class
is highly linked with a particular true class, its average poste-
rior probability will be large only for sites from that true class.
We see that this is the case for true classes like Class 5, which
exhibits a very unique frequency pattern, but not for Class 21
which has more homogeneous frequencies that are similar to
those of a number of other classes.

While large improvements over hierarchical clustering
have been found, improvements can be expected to be less
when fewer sites are considered. Supplementary table S1,
Supplementary Material online considers frequency estima-
tion using the same approach as in table 3 and the same
simulation setting but with only 500 sites and with different
numbers of classes; separate simulations were conducted us-
ing the first C ¼ 5; 10, 20, and the full 21 classes in figure 3.

Table 1. Summary of Results for Penalized Estimation.a

Penalty Parameter g

0 2 5 10

Percent decrease 53.8 (1.8) 53.3 (2.4) 53.8 (2.4) 54.0 (2.3)
R2 0.98 (0.04) 0.98 (0.04) 0.96 (0.04)
Intercept � 100 0.09 (0.13) 0.11 (0.13) 0.20 (0.12)
Coefficient 0.98 (0.03) 0.98 (0.03) 0.96 (0.02)

aThe first row gives the average percent reduction of error (standard deviation) over
hierarchical clustering for different penalty parameters. The second row gives the
average R2 for the regression of frequencies with penalization on frequencies with-
out penalization (g ¼ 0); class labels with penalization were chosen to best match
frequencies without penalization. The third and fourth rows give the intercept and
slope of the regressions.

Table 2. The Average Percent Error Decrease of Multinomial Mixture
ML Over Hierarchical Clustering for Simulated Data When Likelihood
Weights for Taxa Are Used.a

Method Error Decrease SD

Optimal weights for entire data 71.2 1.8
Weights optimized for high rate sites 64.8 3.8
No weights 53.8 2.4

aWeights were approximated from the entire data set as well as for only those sites
with rates larger than the 75th percentile of rates.
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Average percent decreases were smaller than the 71.2%
reported in table 3. With only 500 sites, decreases were in
the range 8.9–18.1% with larger standard deviations over the
ten simulated data sets.

Tree-Based EM-Updating Improves Estimation with a
Small Number of Iterations
Table 4 gives the results of tree-based EM-updating on a full
phylogenetic tree applied with starting frequencies coming
from the best performing method in table 2; the average
error, jp̂ðcÞa � pðcÞa j; in estimation is reported in supplemen-
tary table S1, Supplementary Material online. For all
approaches, performance improves in initial iterations but
then remains relatively stable or decreases. Similarly, log-
likelihoods after updating, increased most substantially from
1 to 10 iterations and then became more stable

(supplementary fig. S6, Supplementary Material online).
Since error decreases were best with 5 or 10 iterations, one
possible stopping strategy for updating is to stop when log
likelihoods on the tree show relatively small increases. In prac-
tice the true tree is unknown, but performance with it pro-
vides an upper bound on what may be achievable with good
estimates of the tree. Using an estimated NJ tree gives com-
parable performance.

Part of the reason for the lack of improvement in perfor-
mance as the number of iterations increases, which occurred
across methods, likely has to do with numerical instabilities
due to some frequencies being estimated as close to 0. Due to
the penalized likelihood estimation used to obtain the start-
ing frequencies, for each data set, the minimum starting fre-
quency over all classes and amino acids was at least 2� 10�4.
This minimum decreased over all data sets as the number of
iterations increased. Using the true tree, after 50 iterations the
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FIG. 2. The tree used to simulate the data sets and the average estimated optimal likelihood weights for the tree over data sets.
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FIG. 3. The frequencies for the 21 classes used to simulate data. Similar frequency classes have been grouped together.

Table 3. For Each True Class and Restricting Attention to High Rate Sites for That Class, the Average Posterior for the Esimated Classes.a

True Class Estimated Classes (Posteriors) True Class Estimated Classes (Posteriors)

1 6 (0.96) 14 7 (0.94)
2 12 (0.93) 3 15 (0.92)
12 2 (0.87) 8 (0.10) 13 8 (0.33) 15 (0.33) 19 (0.22) 12 (0.08)
4 13 (0.82) 10 (0.16) 5 21 (0.95)
6 18 (0.73) 1 (0.20) 20 4 (0.49) 18 (0.42)
7 16 (0.96) 10 17 (0.97)
16 3 (0.98) 17 5 (0.95)
8 20 (0.79) 14 (0.10) 8 (0.05) 9 8 (0.54) 19 (0.43)
11 10 (0.46) 1 (0.42) 19 (0.07) 15 11 (0.96)
18 19 (0.89) 1 (0.05) 19 9 (0.65) 19 (0.14) 10 (0.11)
21 19 (0.42) 20 (0.31) 8 (0.11) 1 (0.08)

aTop-ranked estimated classes are listed with, in parenthesis, the average posterior probability. Results are for one of the simulated data sets and posteriors were calculated
using the true tree and edge-lengths.
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minimum frequency ranged between 5� 10�5 and
5� 10�11. Since the true tree adjusts for phylogenetic relat-
edness, the small frequencies are primarily a consequence of
using a relatively small number of taxa. In the case that the
number of taxa are small, if an amino acid, a, has low fre-
quency for a particular true frequency class, c0, then a might
not be observed (nia¼ 0) at sites i corresponding to c0. If in
addition, the frequencies for this true class differ substantially
from those of other classes, then it will be easy to distinguish
site patterns that correspond to c0 from those of other classes.
Consequently, pðc�jxiÞwill be large for the estimated class, c�,
that best fits c0 if, and only if, xi corresponds to true class c0.
Since nia is small or zero at such sites, the weighted average,P

i pðc�jxiÞnia, used to update the frequency of a in
equation (3), will be small.

A variation on the explanation above is also important
in understanding why updating mixture weights lead to
performance decreases with increasing numbers of itera-
tions. The added flexibility of updating weights often leads
to mixture weights that are small with corresponding fre-
quency classes that are dominated by a few frequencies.
With 50 iterations, some data sets had classes that, up to
machine precision, had frequencies for some amino acids
equal to 0.

A difficulty with tree-based EM-updating is that it comes
with a substantial computational cost due to the need to
repeatedly calculate likelihoods on trees. Using a star tree
reduces this computational cost substantially. No attempt
was made to optimize the software used and results will
vary depending on hardware but, using one particular data
set for illustration, the elapsed (wall clock) time required for
50 posterior updates was approximately 5.5 h using an NJ tree
and 10 min using a star tree. There was however, a small
performance decrease due to using the star tree.

Cross-Validation Requires Log Likelihoods Calculated
on a Tree
Figure 4 gives plots of the cross-validated log likelihoods for
estimation of the number of classes in the mixture; the num-
ber of classes in the simulating model is C¼ 20. Regardless of
how the log likelihood is calculated, the initial rate of increase,

as a function of the number of classes, is large. There is clear
evidence that smaller numbers of classes are not sufficient.
Using the multinomial log likelihood for fitting does not work
well at estimating a sufficient number of classes. The cross-
validated log likelihood increases steadily. Some of this may
be due to the presence of low rate sites in the test samples.
Adding classes allows for frequency vectors that are large
for a few amino acids and that fit low rate sites well.
Adjusting for rate variation is thus important which is
why using the star tree or NJ tree to estimate the number
of classes gives cross-validated likelihood curves that be-
come relatively flat with larger numbers of classes. The star
tree, however, still gives log likelihoods that increase too
quickly. As table 5 indicates, for three of the simulated
data sets, the cross-validated log likelihood was maximized
using 29 classes, but for the other seven data sets, it con-
tinued to increase over all numbers of classes. Using the NJ
tree gave much better performance but tended to over-
estimate the number of classes.

An alternative approach to estimation of the number of
classes via cross-validated log likelihoods is to choose the first
class, C, which has a larger cross-validated log likelihood than
Cþ 1. Using this approach tended to gives smaller numbers
of estimated classes regardless of the way in which cross-
validated log likelihoods were calculated. The star tree still
tended to overestimate whereas the NJ tree tended to under-
estimate the number of classes. Because many of the fre-
quency classes were similar to each other (fig. 3)
underestimation of the number of classes might not cause
difficulties for downstream analyses.

That estimation under a tree is needed for cross-validation
is further illustrated in supplementary figure S7,
Supplementary Material online, where simulation is from a
single frequency vector (C¼ 1). Cross-validated estimation
with a star or NJ tree give the correct number of components
whereas the cross-validated multinomial log likelihood is in-
creasing as a function of C.

Maximum Likelihood Estimation on a Tree Is Expected
to Improve Performance with Good Tree Estimates
Table 6 gives the results of full ML estimation on a fixed
tree and with fixed edge-lengths, applied with starting
frequencies coming from the best performing method in
table 2. Using the NJ tree gives performance improve-
ments over the starting frequencies but the improvements
are comparable to those using posterior weighting
(table 4). No attempt has been made to optimize software
but, using one particular data set for illustration, the
elapsed (wall clock) time required for 50 posterior updates
was approximately 5.5 h whereas >8 days were required
for ML estimation.

Maximum likelihood estimation using the true tree is not
possible in practice but performance with it provides an up-
per bound on what is achievable with good estimates of the
tree. Comparing results with those of tree-based EM-updating
on the true tree (table 4), a substantial improvement is
obtained and the approach gave the best percentage error
decrease of any method considered.

Table 4. The Average Percent Error Decrease (SD) Over Hierarchical
Clustering for Simulated Data When Tree-Based EM-Updating Is
Used with a Fixed Number of Iterations.a

Iteration Weight Update Star Tree NJ Tree True Tree

0 71.2 (1.8) 71.2 (1.8) 71.2 (1.8) 71.2 (1.8)
1 78.7 (1.8) 78.8 (1.8) 78.7 (1.7) 80.9 (1.7)
5 80.2 (3.1) 81.2 (2.9) 83.7 (3.0) 85.0 (2.2)
10 77.6 (4.0) 81.0 (3.3) 84.1 (3.8) 84.2 (2.7)
25 69.4 (4.6) 79.2 (4.4) 83.1 (4.7) 82.8 (3.7)
50 57.9 (6.5) 76.5 (4.6) 81.5 (5.3) 82.5 (4.0)

aTree-based EM-updating uses (Weight Updating): an estimated neighbor-joining
tree and updating of mixture weights, (Star Tree): an estimated star tree with
likelihood weights but no updating of mixture weights (NJ Tree): an estimated
neighbor-joining tree with likelihood weights but no updating of mixture weights,
and (True Tree): the true tree, edge-lengths and mixture weights with no likelihood
weighting.
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Large Variability of Frequency Vectors Makes
Estimation Harder
The final simulation result we briefly consider is for the setting
were each site has a completely different frequency vector. To
ease computation multinomial ML estimation was used with
no EM-updating; high rate sites, likelihood weights and pe-
nalization continued to be used and aþ F component was
included. Results were compared with C20þ F frequency
vectors and from hierarchical clustering.

The log likelihoods were largest for frequencies estimated
using multinomial ML (With 20 classesþF DLnL¼ 269.6 by

comparison with hierarchical clustering and DLnL¼ 81.4 by
comparison with C20þ F) suggesting it gave the best fit.
Because each site has its own frequency vector, it is not longer
possible to evaluate the abilities of the methods to estimate
the class frequency vectors. To compare methods, we con-
sidered the average difference between frequencies at a site
and the posterior mean frequency estimate using the fre-
quencies for 20 class and 60 class models but with different
frequency estimates. All choices of frequencies gave similar
errors in estimation of approximately 3.0 with comparable
standard deviations of approximately 4.0.
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FIG. 4. For each of the ten simulated data sets, the cross-validated log likelihoods and changes in cross-validated log likelihoods (LnL for class
Cþ 1—LnL for class C) as the number of classes, C, increases. Log likelihoods were calculated under the multinomial mixture, using the NJ tree and
an estimated star tree. The number of classes in the simulating model is C¼ 20.
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Large Likelihood Increases Are Obtained with
Empirical Data
We obtained frequency vectors using multinomial mixture
estimation and tree-based EM-updating for the four empirical
data sets listed in table 7. Due to the good performance found
in simulations, for each data set, multinomial mixture estima-
tion was applied to sites with rates larger than the 75th per-
centile, using estimated likelihood weights and penalized
estimation with g ¼ 5. Tree-based EM-updating was
conducted using the estimated NJ tree and a gamma
rates-across-sites distribution with four rate categories and
a estimated using DGPE. In each case models were fit with
10; 20; . . . ; 60 classes with starting frequencies coming from
the C-series frequency classes.

Figure 5 gives the log likelihood increases for fixed trees
when frequencies used in likelihood calculation were esti-
mated using multinomial mixture ML estimation and tree-
based EM-updating; increases are over the likelihoods for the
C-series model with the same number of components.
Regardless of the tree or data set considered, enormous gains
in likelihood were obtained. The smallest likelihood increase
over all data sets, trees and methods is 1649.4. The C-series
models are nested within the mixture models, and the
mixture model has 380¼ 19� 20 additional parameters.

Using likelihood theory, if the C20þ FþC model were cor-
rect, the chance of observing a likelihood increase as large as
1649.4 is approximately Pðv2

19C > 2� 1649:4Þ, which up to
machine precision is 0, for any C ¼ 10; 20; . . . ; 60. In most
cases, the log likelihood increase gets larger with larger C, with
the Amborella and Platyhelminths data sets providing excep-
tions when C¼ 60. Using likelihoods as a measure of fit, tree-
based EM-updating tended to give substantially larger likeli-
hood increases than using multinomial frequencies; the
Obazoa data provided an exception, however.

Figure 6 gives the log likelihood differences between the
mixture tree over the default tree when frequency classes are
obtained using multinomial ML estimation or EM-updating.
The relatively small increases in figure 6 may be a bit surpris-
ing because of the enormous increases in likelihood using the
new approaches over C-series models fitted to a fixed tree
(fig. 5). In each case considered in figure 6, a positive log
likelihood difference implies that the mixture tree was favored
over the true tree. With the exceptions of some settings for
the Platyhelminths and Microsporidia data, the mixture tree
is always favoured.

By contrast with simulated data, starting frequencies came
from the C-series frequency classes. Since C-series generating
frequencies were used in simulation, the intent in simulations
was to avoid bias in making comparisons to hierarchical clus-
tering. Because the behavior of hierarchical clustering is not
clear in more complex real data settings, fixed C-series fre-
quency classes may be considered preferable. Supplementary
figures S7 and S8, Supplementary Material online, give results
for multinomial mixture ML estimation like those of figures 5
and 6 but using starting frequencies coming from hierarchical
clustering; due to the large memory requirements, the R pack-
age Rclusterpp (Linderman and Bruggner 2013) was used in
place of the default clustering algorithm hclust. While differ-
ent starting points often give different solutions, the general
trends and conclusions are the same as for figures 5 and 6.

For the Microsporidia, Nematode, and Obazoa data the
estimated C20þ FþC tree usually gave the largest likelihood
for the mixture models. The support for the correctness of
the Obazoa tree is primarily through mixture model-based
analyses (Brown et al. 2013) whereas additional support
(Keeling and Fast 2002, Brinkmann et al. 2005) has been given
to microsporidiaþ fungi grouping in the C20þ FþC tree.
For the Nematode data, the C20þ FþC Ecdysozoa tree is

Table 5. The Estimated Number of Classes Using Either the Estimated
NJ Tree or Star Tree to Calculate Log Likelihoods.a

NJ (LnL)
Number of classes 20 21 22 24 25
Number of data sets 3 1 2 3 1

NJ (DLnL)
Number of classes 16 17 19 20
Number of data sets 1 3 2 4

Star (LnL)
Number of classes 29 30
Number of data sets 3 7

Star (DLnL)
Number of classes 20 21 22 24 25 27
Number of data sets 3 1 3 1 1 1

aThe estimated class was chosen either to maximize the cross-validated log likeli-
hood (LnL) or as the first class C such that the cross-validated log likelihood for C
was large than the cross-validated log likelihood for Cþ 1 (DLnL). The number of
classes in the simulating model is C¼ 20.

Table 6. The Average Percent Error Decrease (SD) Over Hierarchical
Clustering for Simulated Data After Full ML Estimation of Frequencies
and Weights After a Fixed Number of Iterations and Using a Fixed
Tree.a

Updating ML Estimation

Iteration NJ Tree True Tree NJ Tree True Tree

0 71.2 (1.8) 71.2 (1.8) 71.2 (1.8) 71.2 (1.8)
1 78.7 (1.7) 80.9 (1.7) 79.8 (1.6) 82.9 (1.5)
5 83.7 (3.0) 85.0 (2.2) 79.6 (1.5) 88.9 (1.2)
10 84.1 (3.8) 84.2 (2.7) 79.9 (1.3) 91.3 (2.0)
25 83.1 (4.7) 82.8 (3.7) 80.7 (3.2) 92.5 (4.1)
50 81.5 (5.3) 82.5 (4.0) 80.6 (3.3) 93.1 (4.3)

aFor comparison, some results from table 4 corresponding to tree-based EM-updat-
ing are repeated.

Table 7. Empirical Data Sets.

Data
Set

Proteins Taxa Sites Source

1 Amborella 61 24 15,688 Leebens-Mack
et al. (2005)

2 Microsporidia 133 40 24,291 Brinkmann
et al. (2005)

3 Nematode 146 37 35,371 Lartillot et al.
(2007)

4 Platyhelminths 146 32 35,371 Lartillot et al.
(2007)

4 Obazoa 159 68 43,615 Brown et al.
(2013)
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also not controversial. In addition to being supported by
mixtures, Lartillot et al. (2007) show that the Ecdysozoa
tree (nematodesþ arthropods) is obtained with conven-
tional models when closer outgroups to bilaterian metazoans
are included in the data set; specifically, choanoflagellates and
a cnidarian.

The Platyhelminths data consider the same proteins and
sites as in the Nematode data. Many of the taxa are the same
but the Platyhelminths data set replaces the data for the
ten nematodes with sequences from five platyhelminths.
The CATþGTR tree for the platyhelminths data differs
from the LGþ FþC tree in supporting a Protostomia

grouping (platyhelminthsþ arthropods to the exclusion of
deuterostomes) rather than a Coelomata grouping (deuter-
ostomesþ arthropods to the exclusion of platyhelminths).
That tree was also obtained using the PMSF methodology
of Wang et al. (2017). However, the C-series mixtures estimate
the incorrect Coelomata tree. While the log likelihood differ-
ence in favor of the Coelomata tree gets smaller for C-series
mixtures as C increases, the Coelomata topology continues to
be estimated. Using multinomial and updated mixture fre-
quencies in place of the C-series frequencies, the correct
Protostomia position is favored with C � 20 for the multino-
mial frequencies and C � 30 with tree-based EM-updating.
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For the Amborella data set, the main difference between
trees, whether Amborella is at the base of the angiosperms
(JTTþC20 tree) or forms a clade with the water lilies, remains
contentious (Leebens-Mack et al. 2005; Drew et al. 2014;
Wickett et al. 2014; Goremykin et al. 2015; shen et al. 2017).
Perhaps not surprisingly then, the pattern of likelihood
increases differed for the Amborella data set by comparison
with the other data sets. Whereas multinomial and updated
mixture frequencies usually showed comparable or larger
increases for mixture-derived trees over default estimation,
for the Amborella data set, the log likelihood increases tended
to be smaller and decreased with increasing C. Nevertheless,

the C20þ FþC and CATþGTR trees tend to be favored.
Interestingly, whereas the C-series models consistently
favored the C20þ FþC tree over the CATþGTR tree,
which differ only in their placement of Calycanthus, the mul-
tinomial and updated mixture frequencies gave much more
comparable likelihoods for the two trees.

Figure 7 gives the results of cross-validation for the multi-
nomial mixture ML frequencies. By contrast with the simu-
lated data, the additional frequency variability for the
empirical data suggests a large number of components. The
largest cross-validated log likelihood for the range of C con-
sidered is always at C¼ 60. For the Platyhelminth data, the
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FIG. 6. Log likelihood differences for mixture trees over trees estimated using default models that do not allow mixtures of frequencies. Models used
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approach.
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NJ-Tree cross-validated log likelihood for C¼ 20 is larger than
for C¼ 30 and the star tree cross-validated log likelihood
increases slowly going from C¼ 20 to C¼ 30. Similarly for
the related Nematode data, the NJ-Tree increase from C¼ 20
to 30 is relatively small, suggesting that for these data sets,
C¼ 20 might give a reasonable choice with limited compu-
tational resources. The biggest increase in cross-validated log
likelihood for all methods is from C¼ 10 to 20. Thus cross-
validation always supports least 20 classes; the only choice of
C that sometimes did not support the mixture tree with
multinomial mixture ML frequencies was C¼ 10 (fig. 6).

Because frequency classes with a few relatively large fre-
quencies will give rise to fewer distinct amino acids at a site, it

is possible that they can be explained to some degree by
allowing a richer rates-across-sites distribution. We expect,
however, that richer rates-across-sites will not completely ex-
plain frequency classes with a few relatively large frequencies
because sites corresponding to such classes are expected not
only to show fewer amino acids but fewer amino acids of
particular type; For example, consistently R and K for Class 4
in 1. To test this hypothesis we fit much richer, effectively
unconstrained, rate distributions referred to as the discrete
estimate (DE) in Susko et al. (2003). The mixtures allow any
distribution on a set of 100 rates logarithmically equal-spaced
from 0.01 to 10, plus a zero rate. If it is true that richer rates-
across-sites distributions do not provide a sufficient
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FIG. 7. Rescaled and shifted cross-validated log likelihoods for the multinomial mixture ML frequencies. To allow comparisons across different
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explanation, it is expected that log likelihood increases of a
frequency mixture model over the single frequency will con-
tinue to increase substantially as a function of C when DE is
used as the rate distribution. This is indeed the behavior
exhibited in supplementary figure S10, Supplementary
Material online. The rapid increases due to richer mixture
of frequency models is the predominant feature of supple-
mentary figure S10, Supplementary Material online, suggest-
ing that frequency variation was the more important model
element. However, the increases in log likelihood over the
single frequency model were usually smaller using DE than
gamma rate variation and the rate of increase was usually
slower. Thus, the frequency mixtures seem to be explaining
some of what may be rate variation and/or richer rate models
help to explain frequency variation to some degree. Further
evidence that the rate variation is entangled with frequency
variation is provided by supplementary figure S11,
Supplementary Material online, which gives the estimated
cumulative distribution functions of rates. These usually are
closer to continuous (fewer plateaus) when fitted with a sin-
gle frequency class.

Conclusions
Multinomial mixture ML estimation showed good perfor-
mance in computational experiments provided that several
adjustments were made to the base methodology. It is im-
portant to restrict use to sites with relatively high rates. While
we found that restricting attention to the top quartile of rates
gave optimal performance, optimal rate thresholds may vary
depending on the nature of the data. Likelihood weighting
helps and using penalized estimation can prevent frequencies
from getting too small. Tree-based EM-updating was found to
sometimes provide further performance improvements albeit
with additional computational cost.

Several additional adjustments to the approaches might be
considered. One is to use cross-validation to estimate the
penalty parameter g in penalized approaches. This increases
computational costs and was not pursued here due to the
similarity of frequencies with different choices of g and due to
the modest performance gains.

Most of the adjustments to the base methodology were
motivated by difficulties estimating vectors of 20 frequencies
at a site using the limited information provided by relatively
small number of dependent taxa. Performance with very large
numbers of well-separated taxa might not require as many
adjustments. For the commonly occurring case that there are
<100 taxa, however, multinomial mixture ML estimation
provides a computationally feasible means of estimating mix-
ture profiles that can be expected to give good performance.

Theory and Methods

Conventional and Frequency Mixture Models
Throughout this article we assume a mixture-of-frequencies
model generated the alignment. Let x1; . . . ; xn denote the
columns of the alignment. Here, xi is a site pattern,
xi1; . . . ; xim, where xis is the amino acid at site i for taxa s,
s ¼ 1; . . . ;m. For instance xi¼AAAR denotes that the first

three taxa were observed to have amino acid A and the fourth
taxon, amino acid R. As with conventional models we assume
the xi are independent. Consequently the log likelihood for
the data is of the form

lðhÞ ¼
Xn

i¼1

log pðxi; hÞ;

where h denotes all unknown parameters in the model and
pðxi; hÞ the probability of observing site pattern xi at a site.

A conventional site-homogeneous model provides the ba-
sis for the frequency profile mixture model. In the site-
homogeneous model, at a site, evolution along any edge in
the tree occurs according to a Markov chain with rate matrix
Q. In conventional models the rate matrix is parameterized as
Qij ¼ Sijpj, for i 6¼ j, where the Sij are fixed exchangeability
parameters determined from empirical data. Common
choices include the JTT matrix (Jones et al. 1992), the WAG
matrix (Whelan and Goldman 2001), or the LG matrix of Le
and Gascuel (2008). We use the LG matrix throughout most
of this article. With Qij parameterized as Qij ¼ Sijpj, the pj are
interpretable as the stationary frequencies of amino acids
under the model. For conventional models, usually pj is esti-
mated by the observed aggregate frequency of amino acid j
over all taxa and sites. In such cases, the model nomenclature
is JTTþ F or LGþ F depending on the exchangeability matrix.

Rate variation is allowed in a conventional model through
a finite gamma mixture model described in Yang (1994). In
that model rates arise independently from a discrete distri-
bution that assigns probability 1=K to rates r1; . . . ; rK ; in all
applications we use K¼ 4. The rk are chosen to provide a
discrete approximation to a gamma distribution and depend
on the shape parameter a for that gamma distribution. For a
site having rate rk, the probability of observed data x can be
directly calculated using the pruning algorithm of Felsenstein
(1981). We denote that probability as pðxjk; f; pÞ=K, where
we have indicated dependence on the stationary frequencies
p and the other parameters f, which includes a, the unrooted
topology s and edge lengths t. Since the rk are unobserved,
the unconditional probability of the data actually observed is
pðx; f; pÞ ¼

P
k pðxjk; f; pÞ=K. The model nomenclature

for discrete gamma rate variation, is JTTþ FþC or
LGþ FþC depending on the exchangeability matrix.

The frequency mixture model is a mixture on top of the
gamma mixture. Frequency vectors arise independently from
a discrete distribution that assigns probabilities w1; . . . ;wC to
frequency vectors pð1Þ; . . . ;pðCÞ. Similarly as for the gamma
mixture, the probability of observing x at a site is
pðx; hÞ ¼

P
c wcpðx; f; pðcÞÞ, where now pðx; f; pðcÞÞ

denotes the conditional probability of x given the frequency
vector pðcÞ for the site. The parameter vector h includes the
parameters f that are present in a conventional model and
also the frequency vectors and weights, wc. In current appli-
cations of frequency mixture models, the wc are estimated
from the data but the frequency vectors, pð1Þ; . . . ; pðCÞ; are
fixed and do not necessarily reflect the amino acid preferen-
ces at sites for the data at hand. A particular choice that will
be utilized in what follows are the C-series frequency vectors
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from Le et al. (2008) which are a set of C frequency vectors
derived from empirical data, C ¼ 10; 20; . . . ; 60. The model
is frequently applied with a discrete gamma rate model and
an additional frequency vector, determined as the observed
frequencies of the amino acids, and is denoted as
LGþC20þ FþC for an LG exchangeability matrix and
when C¼ 20.

Composite Likelihood—The Multinomial Mixture
Likelihood
By comparison with conventional models, the frequency mix-
ture model includes additional weight parameters, w1; . . . ;
wC and frequency vectors pð1Þ; . . . ; pðCÞ. Estimation of the
weights through ML requires a relatively minor additional
computational cost. Estimation of frequency vectors, how-
ever, is usually prohibitive. First, because each frequency vec-
tor introduces 19 additional parameters, there are 19 C
additional parameters requiring optimization; with C¼ 20
components, for instance, this gives 380 additional parame-
ters. Second, the new frequency vectors encountered in the
course of optimization give new rate matrices which result in
completely different pijðtÞ along all edges of the tree. As a
consequence, likelihood evaluation for a new set of frequency
vectors requires a completely new application of the pruning
algorithm. By contrast, edge-length estimation, which simi-
larly involves relatively large numbers of parameters, can reuse
previous calculations to more efficiently calculate likelihoods.
Finally, optimization requires derivative calculations. Whereas
derivatives of log likelihoods for edge-lengths can be calcu-
lated exactly and efficiently, derivatives for frequency param-
eters need to be approximated.

Even in the case of a conventional model where there is
only a single frequency vector, estimation is not usually
through ML. Instead the observed aggregate frequencies of
amino acids over sites and taxa are directly calculated. An
alternative characterization of the observed frequencies is
that they are ML estimates of the frequencies for a tree
with infinite edge lengths. The log likelihood in this case is
a multinomial log likelihood,X

i

log ð
Y

s

pxis
Þ ¼

X
a

na log ðpaÞ; (1)

where na is the number of times the amino acid a occurred in
the alignment. This characterization as ML estimation is use-
ful in suggesting that observed frequencies can be expected to
perform well by comparison with full ML estimation when
evolutionary distances are large. However, even in the case
that evolutionary distances are small, observed frequencies
are statistically consistent estimators of stationary frequen-
cies. Indeed, because of site independence, even for a single
taxon, the frequency of a given amino acid has the properties
of a binomial proportion, and thus, as a consequence of the
Law of Large Numbers, converges upon the true frequency
with increasing numbers of sites. That likelihood methods can
be expected to work even when models are misspecified is a
phenomenon that has been exploited in a variety of data
settings involving complex dependencies including space-

time and longitudinal data modeling (Varin et al. 2011). Log
likelihoods like equation (1) are referred to as composite log
likelihoods (Lindsay 1988; Varin et al. 2011). Key properties are
that they sum over independent units (sites in the present
case) and that while the probability of observing xi is misspe-
cified (that probability is not

Q
s pxis

in the present case), the
marginal probability of xis (pxis

in the present case) is correctly
modeled (which in the present case amounts to the assump-
tion that frequencies are stationary throughout the tree).

In the case of a frequency mixture the composite likeli-
hood that corresponds to a tree with infinite edge lengths isX

i

log ð
X

c

wc

Y
s

pðcÞxis
Þ (2)

which we refer to as the multinomial mixture log likelihood.
Because the class c for a site is unobserved, the simple reduc-
tion in equation (1) is not applicable and there is no simple
formula allowing explicit calculation of the maximizer, pðcÞa .
The EM algorithm of Dempster et al. (1977), however, pro-
vides a simple and intuitively appealing scheme to obtain
updated frequencies and weights, pðcuÞ and wu

c , from old
ones pðcÞ and wc. Let nia denote the number of occurrences
of amino acid a at site i. Let pðcjxiÞ / wc

Q
s p
ðcÞ
xis denote the

conditional probability of class c for a site, under the multi-
nomial mixture model, given the data x at the site; the con-
stant of proportionality is determined by the constraint thatP

c pðcjxiÞ ¼ 1. Then updates are obtained through

pðcuÞ
a /

X
i

pðcjxiÞnia; wðuÞc /
X

i

pðcjxiÞ; (3)

where constants of proportionality are determined from
the constraints that

P
c w
ðuÞ
c ¼ 1 and

P
a pðcuÞ

a ¼ 1; deri-
vation is given in Supplementary Material. Updating con-
tinues until the difference between old and updated
parameters becomes small. The updating equation (3)
establishes a relationship between the observed frequen-
cies and those inferred from the mixture model. Had the
sites corresponding to class c been known, the observed
frequencies would be over those sites. Since they are un-
known, estimation takes a weighted average of the fre-
quencies, weighting the contribution from site i more
heavily if it was likely from class c.

There are several biases that can be expected to occur with
approximate methods like the multinomial mixture ap-
proach. We discuss these below and present adjustments.

Penalized Likelihood
Because alignments tend to have few taxa, it is to be expected
that some frequencies will be underestimated. With <20
taxa, for instance, because there are 20 amino acids, at least
one amino acid will not be present at a site. Zero frequencies
are likely art factual in this case. In addition, very small fre-
quencies can cause numerical difficulties in likelihood calcu-
lations. An adjustment for small numbers of taxa is to use a
penalized log likelihood that adds a penalty term g

P
c

P
a

log ½pðcÞa � to the multinomial mixture log likelihood. Here, g
> 0 is a tunable parameter that controls the amount of
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penalization; we investigate a few choices through simulation.
Because log ðpðcÞa Þ becomes large in magnitude but negative
for pðcÞa small, adding a penalty term to the multinomial log
likelihood prevents frequencies from getting too small.
Adding penalization leads to a relatively simple adjustment
to the updating equation (3). Updates of w

ðuÞ
c are the same as

before but the appropriate update for pðcuÞ
a is shown in

Supplementary Material to be pðcuÞ
a /

P
i pðcjxiÞnia þ g.

The approach is consequently comparable to the pseudo-
count adjustment discussed, for instance, in Chapter 1 of
Durbin et al. (1998). When site classes are known, the pseudo
count approach estimates pðcÞa as ½

P
i2c nia þ g�=½mNc þ 20

g�; where the sum is over the Nc sites that correspond to
class c. Penalized likelihood estimation gives rise to an esti-
mate ½

P
i pðcjxiÞnia þ g�=½m

P
i pðcjxiÞ þ 20g�, where un-

certainty about class membership is adjusted for by
weighting sites according to how likely they were to corre-
spond to class c.

Rate Variation Adjustments
Another source of difficulty for multinomial ML is dealing
with rate variation across sites. Even with a substantial num-
ber of taxa, if a site evolves at a relatively low rate, it is fre-
quently the case that only one or a few amino acids will be
present. This is not because the actual frequencies are highly
skewed but simply because there is not enough evolutionary
distance to observe other amino acids. Since low rate sites are
not uncommon, they can give rise to estimated frequency
components, pðcÞ, that assign mass to one or a few amino
acids. Our adjustment is to restrict estimation to sites having
rates exceeding the qth percentiles of rates; the choice of q
will be investigated. To ensure a range of rates we use the
DGPE rate estimates described in (Susko et al. 2003). In brief,
DGPE estimates are obtained by fitting a discrete approxima-
tion to the gamma rates-across-sites mixture model but with
a larger number of components (101 by default). By contrast
with the usual approach where rates, rkðaÞ, depend on the a
shape parameter and probabilities, pk ¼ 1=K are fixed, DGPE
fits with rates, rk; that are fixed and with probabilities, pkðaÞ
that depend on a. This avoids repeated application of the
pruning algorithm and gives an estimate of a. Rates at sites
are then estimated on a fixed tree as the conditional means
for those sites:

P
k rkpðkjxiÞ is the rate for site i where pðkjxÞ

is the conditional probability of rate class k as a site, given the
data x at that site. The approach gives a larger range of rates at
sites than would be estimated under a usual discrete mixture
with a few rate classes.

Likelihood Weights for Taxa
The final source of bias that we consider is due to phyloge-
netic relatedness. Because closely related taxa frequently share
the same amino acid at a site, observed frequencies can be
dominated by an amino acid shared by a set of closely related
taxa. This gives rise to frequency vectors, pðcÞ, where the
largest pðcÞa is overestimated and makes it difficult to estimate
frequency vectors that are closer to homogeneous
(pðcÞa ¼ 1=20). Our adjustment for this is a form of likelihood
weighting.

To motivate the approach, we begin by considering esti-
mation of frequencies at a single site. The weighted composite
likelihood is X

s

vs log ½pxs
�: (4)

The case vs¼ 1 corresponds to the usual composite log
likelihood that ignores phylogenetic relatedness. We restrict
the likelihood weights so that vs � 0 and

P
vs ¼ m; the

number of taxa; a condition that holds for the usual compos-
ite log likelihood. The weights give some flexibility so that
closely related taxa can be downweighted and taxa that are
more distant from the majority can be upweighted. We im-
plicitly do this by choosing the weights to minimize the var-
iance of the resulting p̂a.

The maximizer of equation (4) is p̂a ¼ vTdðaÞ=m, where
dðaÞ has sth component dðaÞs ¼ 1 if xs¼ a and 0 otherwise; see
Supplementary Material. It follows that Varðp̂aÞ ¼ vTRðaÞv=
m2 where RðaÞ is the covariance matrix of dðaÞ. That covariance
matrix can be calculated (see Supplementary Material) as

½RðaÞ�sj ¼
pað1� paÞ if s¼j

paa;sj � p2
a otherwise

:

(
(5)

Here, paa;sj is the probability of taxa s and j having amino
acid a at the site. The average variance of the pa estimates is
then vTRv=m2 where R ¼

P
a RðaÞ=20. Thus to minimize

the average variance one needs to minimize vTRv, subject to
the constraint that

P
s vs ¼ m and vs � 0. An explicit ex-

pression for the optimal weights is unavailable but the min-
imization is a quadratic programming problem and has a
global minimizer that can be determined numerically given
a R. We utilized the R package quadprog of Turlach and
Weingessel (2013) which implements the methods of
Goldfarb and Idnani (1983). Since R is unknown in practice
it requires estimation. The simple approximation that we use
approximates pa by the observed frequency of amino acid a
over all sites and taxa, and paa;sj by the proportion of sites
where both s and j had amino acid a. Alternatively, one might
obtain an estimate from the pairwise substitution matrix for s
and j where evolutionary distance between the pair is either
calculated on a tree or using the pairwise data alone.

To extend the approach above to mixtures of frequencies,
we take the composite likelihood contribution at a site for a
given class to be weighted:

Q
s p

vs
xis

. The resulting weighted
composite or multinomial mixture likelihood is thenX

i

log ð
X

c

Y
s

½pðcÞxis
�vsÞ:

This continues to give rise to a simple updating scheme
similar to equation (3) but where nia is replaced by

P
s vsdis.

Allowing for the possibility of penalization, the updates are

pcu
a /

X
i

pðcjxiÞ
X

s

vsdis þ g wðuÞc /
X

i

pðcjxiÞ:

In principle the matrix R used to obtain likelihood weights
should be approximated separately for each class but
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preliminary experiments suggested the optimal weights were
not very sensitive to the stationary frequencies. In all cases, we
used the simple approximation that approximates pa by the
observed frequency of amino acid a over all sites and taxa,
and paa;sj by the proportion of sites where both s and j had
amino acid a.

Tree-Based EM-Updating
The EM-updating scheme given by equation (3) can be
expected to more generally give good estimates of the
frequency vectors whenever p(cjx) provides a good ap-
proximation to the true p(cjx), the posterior probability
calculated using the true generating parameters for the
model. Calculating p(cjx) using the multinomial is fast
and using weighted composite likelihoods adjust for phy-
logenetic relatedness to some degree but it is possible
that a p(cjx) calculated using a tree will improve upon
initial multinomial estimates of the frequency vectors.

EM-updating is generally expected to give good estimates
when p(cjx) gives a good approximation to the true p(cjx). To
see this, suppose the true p(cjx) is used in equation (3). Since
nia ¼

P
s Ifxis ¼ ag, using the convention that uppercase

letters are random, the expected value of an update is

E½n�1
X

i

pðcjXiÞNia� ¼ E½pðcjXiÞ
X

s

IfXis ¼ ag�

¼
X

s

X
xijxis¼a

pðxijcÞwc

pðxiÞ
pðxiÞ

¼ wc

X
s

X
xijxis¼a

pðxijcÞ

¼ wc

X
s

PðXis ¼ ajcÞ ¼ wcmpðcÞa
;

where m is the number of taxa and the sums only consider xi

satisfying that xis ¼ a. The final expression is the same as the
true frequency pðcÞa up to a constant of proportionality that
vanishes upon rescaling.

We consider two approaches to obtaining a tree for tree-
based EM-updating. One is to calculate a distance matrix for
the LGþ F model and obtain a neighbor joining (NJ) tree
using the neighbor joining method of Saitou and Nei
(1987). The second is to calculate a star tree with edge-
lengths estimated from the distance matrix through least-
squares estimation. The second approach has the advantage
that subsequent EM-updates are faster due to there being a
single internal node in the tree.

Cross-Validation to Estimate the Number of Classes
In many of the simulations we treat the number of mixture
classes as fixed and known. In practice, however, they need to
be estimated from the data. This cannot be done through
multinomial mixture ML estimation since increasing the
number of components will always increase the log likelihood;
the models are nested. The approach we take is to use cross-
validation. The k-fold procedure can be described as follows.

(1) Randomly partition the alignment into k separate
alignments, A1; . . . ;Ak of roughly the same size and
having no overlap; since n/k might not be an integer
the alignment sizes might vary slightly.

(2) For each number of classes C ¼ 2; . . . ; Cmax,

a. For each predictive alignment Ap, p ¼ 1; . . . ; k
i. Concatenate A1; . . . ;Ap�1;Apþ1; . . . ;Ak to

create a new alignment AðeÞ. Use this alignment
to estimate the frequencies.

ii. Obtain lC;p ¼
P

i2Ap
log ½pCðxiÞ�; the cross-

validated log likelihood, where pCðxiÞ denotes
the probability of x under the model but with
parameters estimated from AðeÞ.

b. The cross-validated log likelihood over all folds is
calculated as lC ¼

P
p lC;p.

Using cross-validated log likelihoods as criteria measures
avoids the difficulties associated with models having differ-
ing numbers of parameters. Because the data that the log
likelihood is being calculated for is completely separate
from the data that was used to get estimates, there is little
reason to be concerned about the differing numbers of
parameters for differing class sizes. There is a caveat to
this in that frequency vectors having a number of small
entries are likely to be present in both estimated and pre-
dictive data sets, and might be predicted via additional
classes having small weight. In all applications we consid-
ered 10-fold cross-validation with a maximum of 30 fre-
quency classes.

There are two ways of estimating a class from the proce-
dure. The traditional approach is to choose the number of
classes, C giving the largest cross-validated lC (Stone 1977;
Smyth 2000). Another, more conservative approach, is to
choose C as the first class that gives a larger cross-validated
log likelihood than Cþ 1. The conservative approach is mo-
tivated by the caveat discussed above whereby excess classes
may be estimated as a result of observed frequency vectors
having a number of small entries. Similar approaches have
been used with other criteria measures in clustering (Gori
et al. 2016). Additional motivation for the conservative ap-
proach is given in Supplementary Material.

The natural approach to cross-validation is to calculate
predicted log likelihoods using the multinomial mixture
model. We also consider cross-validated log likelihoods cal-
culated using a NJ tree and using a star tree both con-
structed as for tree-based EM-updating. Calculation of
cross-validated log likelihoods is then more expensive but
because parameters are not being estimated under trees, it
remains feasible.

Maximum Likelihood Estimation of a Mixture of
Frequencies Model on a Fixed Tree
Full ML estimation of frequencies and weights is computa-
tionally demanding and dependent on starting frequencies.
However, to evaluate how the methods described here com-
pared with ML estimation, we implemented ML estimation
using a fixed tree and edge-lengths. The EM algorithm of
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Dempster et al. (1977) was used. Similarly to multinomial
mixture estimation, at each iteration, weight updates are
obtained through w

ðuÞ
c /

P
i pðcjxiÞ but with pðcjxiÞ calcu-

lated as the posterior probability using the fixed tree and
current pðcÞ. The updates of the class frequencies at each
iteration require numerical optimization. Following the EM
scheme, the frequencies for the cth class are obtained by
maximizing the contribution to expected complete log like-
lihood from class c,X

i

pðcjxiÞ log pðxi; f; p
cÞ:

Here f includes the tree, edge-lengths and a parameter
and are fixed in updating. In simulations and for empirical
data, we used a NJ tree and DGPE to obtain an a estimate.
There is no closed-form expression of the maximizer and so
the L-BFGS-B routines of Byrd et al. (1995) and Morales and
Nocedal (2011) were required.

Simulation Setting
To evaluate the performance of the multinomial mixture like-
lihood approach with the adjustments above we consider sim-
ulation from a true 21-class mixture model. The classes include
the C20 frequency vectors from Le et al. (2008) plus one addi-
tional class having the stationary frequencies of the LG model
of Le and Gascuel (2008). The frequencies for the 21 classes are
given in figure 3. For a given data set, we generated 1,000 sites
from each of the 21 classes, using the LG exchangeability matrix
and a 4-component discrete gamma rates-across-sites process.
The result is a concatenated alignment with 21,000 sites. Data
were generated for 74 taxa using the tree given in figure 2 and
a ¼ 0:74 for the gamma rate distribution. That generating tree
and a were estimated from an expanded version of the Brown
et al. (2013) data set with a larger number of taxa.

As a simulation in a more complex setting we also consider
estimation for a single simulated data set where each site has
its own frequency vector. The tree, edge-lengths and a pa-
rameter were the same as above. Frequency vectors at sites
were obtained from the posterior mean frequencies at the
sites in Brown et al. (2013) data set under a fitted
C20þ LGþ F model. A total of 21,000 site-frequencies
were selected at random from the source data for simulation
with an LG exchangeability matrix.

Hierarchical clustering of observed frequency vectors over
sites provides a default method for frequency estimation.
Results for simulated data used the R function hclust and
average distances between clusters to determine clustering.
Because large distance matrices are required, memory con-
straints can make the approach prohibitive with a large num-
ber of sites using implementations like hclust that require
distance matrices as input. A simpler source of starting fre-
quencies for multinomial mixture ML are provided by the
C20 frequencies or other empirical choices. Because the C20
frequencies were the generating frequencies for the simula-
tions, hierarchical frequencies were used for starting values to
avoid biasing results. To evaluate how well a set of multino-
mial mixture ML frequencies did at estimating the true

underlying frequencies, we calculated the percentage error
decrease in L1 distance over hierarchical clustering:
100� ½L1ðhÞ � L1ðmÞ�=L1ðhÞ, where L1ðhÞ and L1ðmÞ de-
note the L1 distances for hierarchical clustering and multino-
mial mixture ML. For a given set of estimated frequencies,
p̂ðcÞ, the L1 distance is calculated as a sum over amino acids
and classes, X

c;a

jpðcÞa � p̂ðcÞa j:

A complication arises in that class labeling is arbitrary. For
an estimated set of frequencies, p̂ðcÞ, it is possible, for instance,
that the estimated class that best fits the class 1 frequencies of
C20 is labeled as class 2. To determine well-fitting classes, we
used the following scheme.

(1) Determine the L1 distance dck ¼
P

a jp
ðcÞ
a � p̂ðkÞa j for

all pairs of classes c (true) and k (estimated). Continue
the following two steps until all classes are matched.

i. Determine the two class labels c (true) and k (esti-
mated) giving the smallest dck among all classes
that have not been matched; initially this includes
all classes.

ii. Class k is the matching class for class c. Remove c
(true) and k (estimated) from the set of classes that
have not been matched and go to (i).

Classes are then relabeled so that estimated class c has the
same label as the class it matches.

It should be noted that the above approach doesn’t guar-
antee that relabeled classes are best in the sense of minimizing
the overall L1 distance between the estimated frequencies.
Computing the minimizer through exhaustive search is not
feasible.

Empirical Data
We consider four empirical data sets listed in table 7. For each
data set, there has been some controversy over the correct
topology with different topologies being estimated under
mixtures than under a conventional models; see Lartillot
et al. (2007) and Wang et al. (2017). Conventional site-
homogeneous models differ from frequency profile mixtures
in placing Amborella as a sister to all other angiosperms for
the Amborella data set. For the Microsporidia data set, site-
homogeneous models place Microsporidia close to archaea.
For the Nematode and Platyhelminth data sets, site-
homogeneous models estimate a tree with nematodes or
platyhelminths branching at the base of Metazoa, grouping
with Fungi to the exclusion of arthropods and deuterostomes.
Finally, for the Obazoa data, the position of the breviate
protists in the eukaryote tree differs depending on whether
a site-homogeneous or frequency profile mixture model is
used. Competing trees are given in supplementary figures
S1–S4, Supplementary Material online. The trees estimated
under a conventional, nonmixture model and under the C20
model were included in each case. For the Amborella data, we
also calculated log likelihoods for trees previously recovered in
Bayesian analyses using the CAT model (Wang et al. 2017).
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For each tree and data set, edge-lengths and the a parameter
were reestimated via ML estimation.

The JTT exchangeability matrix was found to be the best-
fitting matrix for the Amborella data and was used in both
nonmixture and mixture fitting. For all other data, the LG
exchangeability matrix was used. We adopted the common
approach of including aþ F component. For default meth-
ods, this means that the stationary frequencies of amino acids
were determined as the observed frequencies over all taxa
and sites. For mixture approaches, the observed frequency
vector was used as an additional frequency class, as described
in Wang et al. (2014).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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