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Abstract.—A central objective in biology is to link adaptive evolution in a gene to structural and/or functional phenotypic
novelties. Yet most analytic methods make inferences mainly from either phenotypic data or genetic data alone. A small
number of models have been developed to infer correlations between the rate of molecular evolution and changes in a
discrete or continuous life history trait. But such correlations are not necessarily evidence of adaptation. Here, we present
a novel approach called the phenotype–genotype branch-site model (PG-BSM) designed to detect evidence of adaptive
codon evolution associated with discrete-state phenotype evolution. An episode of adaptation is inferred under standard
codon substitution models when there is evidence of positive selection in the form of an elevation in the nonsynonymous-
to-synonymous rate ratio ω to a value ω>1. As it is becoming increasingly clear that ω>1 can occur without adaptation,
the PG-BSM was formulated to infer an instance of adaptive evolution without appealing to evidence of positive selection.
The null model makes use of a covarion-like component to account for general heterotachy (i.e., random changes in the
evolutionary rate at a site over time). The alternative model employs samples of the phenotypic evolutionary history to
test for phenomenological patterns of heterotachy consistent with specific mechanisms of molecular adaptation. These
include 1) a persistent increase/decrease in ω at a site following a change in phenotype (the pattern) consistent with
an increase/decrease in the functional importance of the site (the mechanism); and 2) a transient increase in ω at a site
along a branch over which the phenotype changed (the pattern) consistent with a change in the site’s optimal amino
acid (the mechanism). Rejection of the null is followed by post hoc analyses to identify sites with strongest evidence for
adaptation in association with changes in the phenotype as well as the most likely evolutionary history of the phenotype.
Simulation studies based on a novel method for generating mechanistically realistic signatures of molecular adaptation
show that the PG-BSM has good statistical properties. Analyses of real alignments show that site patterns identified post
hoc are consistent with the specific mechanisms of adaptation included in the alternate model. Further simulation studies
show that the covarion-like component of the PG-BSM plays a crucial role in mitigating recently discovered statistical
pathologies associated with confounding by accounting for heterotachy-by-any-cause. [Adaptive evolution; branch-site
model; confounding; mutation-selection; phenotype–genotype.]

Statistical models for the evolution of phenotypes
have traditionally been formulated independently of
models for the evolution of gene sequences. Yet the
two approaches share a common motivation, namely to
provide a means to test various evolutionary hypotheses
regarding apparent structural and/or functional novel-
ties that might have occurred as a result of adaptation.
Analyzing the two data types separately neglects any
possible advantage of combining information and belies
the fundamental objective of identifying individual
genes whose evolution can be mechanistically linked
to adaptive changes in phenotype. The centrality of
this objective underlines the need for models that
combine the two types of data under a common
statistical framework. In this article, we propose such a
model.

Among the first models for the evolution of phenotype
were those developed to infer the rate and mode
(e.g., gradual or punctuated) of phenotypic evolu-
tion, or to infer correlations between two phenotypic
measures or between a phenotype and a contextual
variable (for a brief review see Cornwell and Nakagawa
2017). Such models, which typically assume either
a continuous phenotype that evolved via Brownian
Motion (Felsenstein 1973) or a discrete phenotype that
evolved via a Markov process (Pagel 1994; Lewis 2001),
provide the basis for a wide variety of phylogenetic

comparative methods. Sophisticated phylogenetic com-
parative methods now include models that assume
an Ornstein–Uhlenbeck “mean-reverting” evolutionary
process (Hansen 1997), models that account for temporal
dynamics in the form of changes in the rate of change in a
phenotype over the tree (Butler and King 2004; O’Meara
et al. 2006; Eastman et al. 2011), and models that test
for relationships between phenotype and diversification
(e.g., the binary state speciation–extinction model, Mad-
dison et al. 2007). More recently, several methods for
the analysis of multivariate data have been proposed
(for a candid assessment see Adams and Collyer 2018).
The relevant point is that the majority of phylogenetic
comparative methods use alignments of homologous
protein-coding genes to estimate phylogentic relation-
ships that are treated as fixed for the remainder of an
analysis based on the phenotype data alone.

Codon substitution models were developed to detect
evidence of adaptation at the molecular level. Under
the current paradigm, the canonical signature of pos-
itive selection in the form of a nonsynonymous-to-
synonymous rate ratio (typically denoted ω) greater
than its neutral expectation (i.e., ω>1) is considered
evidence of adaptation (e.g., Yang et al. 2000). Among
the more sophisticated models of this type in use today
are the branch-site models designed to detect evidence
of adaptation at some sites along particular branches of
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the tree (Yang and Nielsen 2002; Yang et al. 2005; Zhang
et al. 2005). Amino acid substitution models formulated
to detect clade-specific changes in the replacement rate
(Type I functional divergence) or the preferred amino
acid at a site (Type II functional divergence) (Gu 1999,
2001, 2006; Gaston et al. 2011) have also been proposed.
Both approaches require a priori specification of the
branches over which changes in the substitution process
are thought to have occurred. This is often realized via
informal use of external information such as phenotype.

Models that account for molecular and phenotypic
evolution under a unified statistical framework have
been proposed (Mayrose and Otto 2011; Lartillot and
Poujol 2011; O’Connor and Mundy 2013; Karin et al.
2017). In CoEvolve (Lartillot and Poujol 2011), for
example, log(ω) is assumed to have evolved continuously
over the tree via Brownian motion and the model
objective is to estimate correlations between it and
other continuous variables, such as body size, longevity,
and metabolic rate. Similarly, in TrateRateProp (Karin
et al. 2017) the objective is to determine whether a
subset of nucleotide sites evolved under one of the two
substitution rates depending on the state of a binary
phenotype. Neither model appeals to mechanisms by
which evolution of the phenotype might be linked
to evolution of the gene. Here, we develop a novel
approach in the form of a phenotype–genotype branch-
site model (PG-BSM), the objective of which is to link
phenomenological signatures of site-specific variations
in ω (a.k.a. heterotachy, Lopez et al. 2002) to specific
mechanistic processes, including those that occurred in
association with changes in a discrete character state
(e.g., a phenotype).

The mutation-selection framework of Halpern and
Bruno (1998), and the notion of a site-specific fitness
landscape that it implies (McCandlish 2011; Jones et al.
2017), provides a means to think about the mechanistic
processes that can give rise to heterotachy in real
alignments. Under this framework, each site is assumed
to evolve independently with its own vector of fitness
coefficients for the 20 amino acids (i.e., a site-specific
fitness landscape). A site evolving on a static landscape
can undergo chance fixation to a suboptimal amino acid
followed by a period of positive selection that restores the
site to its optimal state. This results in heterotachy via a
process we call nonadaptive shifting balance (Jones et al.
2017). Wright introduced his theory of shifting balance
to explain how a subpopulation might move from one
fitness peak across a fitness valley to another higher peak
on a fixed landscape and subsequently cause the entire
population to move to the new peak (Wright 1932, 1982).
Here, we use nonadaptive shifting balance to refer to
the movement of an entire population away from and
back to the same peak on a fixed site-specific landscape.
Heterotachy can also be caused by episodic changes
in site-specific landscapes congruent with molecular
adaptation, such as a change in the optimal amino
acid (i.e., a peak shift) or a change in the stringency
of selection at a site. Nonadaptive shifting balance
and episodic changes in site-specific landscapes can
both be represented phenomenologically as a Markov-
modulated or “covarion-like” Markov process (Galtier

2001) under which sites switch randomly between two
rate ratios ω1<ω2 over time. Significantly, nonadaptive
shifting balance on static fitness landscapes and episodic
adaptive changes in landscapes can both manifest as
episodic elevations to ω2>1 (dos Reis 2015; Jones et al.
2017). It follows that the canonicalω>1 signature of pos-
itive selection does not necessarily provide unequivocal
evidence of adaptation (Jones et al. 2017).

The PG-BSM was formulated to identify sites that
likely underwent adaptation without appealing to evid-
ence for positive selection (it will be argued that adaptive
evolution and positive selection are not necessarily
commensurate insofar as adaptation implies changes
in a site-specific fitness landscape). Our approach is in
some ways similar to the amino acid models developed
to detect functional divergence (Gu 1999, 2001, 2006;
Gaston et al. 2011) and other models formulated to infer
adaptive evolution without requiring ω>1 (e.g., Tamuri
et al. 2009; Parto and Lartillot 2018). The host-shift model,
for example, was motivated in part by the recognition
that heterotachy can be associated with changes in
site-specific amino acid fitnesses, implying adaptation
(Tamuri et al. 2009). The differential selection model
takes a Bayesian approach to infer changes in amino acid
proclivities at a site that imply adaptation (Parto and
Lartillot 2018). Both models assume that the branches
over which the phenotype changed are known. The PG-
BSM, by contrast, explicitly accounts for uncertainty in
the location of such branches by making formal use of
a discrete phenotype assigned to the terminal nodes of
the tree. Branches over which the phenotype might have
changed are determined by a distribution of histories at
the internal nodes of the tree derived from a model for
phenotype evolution (cf. Karin et al. 2017). It is assumed
under the null hypothesis that all heterotachous sites
evolved independently of the phenotype and that their
observed site patterns are consistent with the phe-
nomenological covarion-like process of random shifts
between ω1<ω2. The alternative model permits specific
modes of switching between ω1<ω2 that occurred in
coordination with changes in the discrete phenotype.
The modes are specified to be consistent with either
a change in the stringency of selection or a change
in the optimal amino acid at a site. Rejection of the
null is interpreted as evidence for the existence of sites
where replacement substitutions apparently occurred
in association with changes in phenotype, hereafter
referred to as phenotype–genotype association. The PG-
BSM represents a paradigm shift both in the information
it uses (genotype and phenotype) and in the form of
evidence for molecular adaptation (specific modes of
heterotachy) it is meant to detect.

MATERIALS AND METHODS

Background
The traditional way of characterizing codon evolu-

tion is to estimate from an alignment of homologous
protein-coding genes the ratio of the nonsynonymous
substitution rate dN to the synonymous substitution
rate dS, accounting for differences in the rate at which
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nonsynonymous and synonymous substitutions occur
under neutral selection (see Jones et al. 2018 for an
explanation of the way dN and dS are defined). Selection
regimes are categorized according to ω=dN/dS, such
thatω<1 indicates a conservative regime,ω=1 a neutral
regime, andω>1 the canonical positive selection regime.
Codon substitution models can be used to infer ω>1
by contrasting a null model that allows sites to evolve
under a set ofω-categories all withω≤1 with an alternate
model that includes an additional category for sites with
ω>1. Rejection of the null is interpreted as evidence
that positive selection occurred somewhere in the gene.
Subsequent analysis can be conducted to identify sites at
which positive selection is most likely to have occurred
(e.g., Yang and Nielsen 1998).

The majority of codon substitution models are based
on a continuous-time homogeneous and time-reversible
Markov process that describes the rate at which substi-
tutions occur under neutral selection (i.e., with ω=1).
This can be represented by a substitution rate matrix M,
which in this study was constructed as follows (Jones
et al. 2018):

Mij ∝

⎧⎪⎨
⎪⎩

�st�ik �=jk�
∗
jk

if s=1
��st�ik �=jk�

∗
jk

if s=2
��st�ik �=jk�

∗
jk

if s=3
. (1)

Equation (1) applies to all pairs of codons (i,j) that differ
by s∈{1,2,3} nucleotides, st of which are transitions
(substitutions of the form T↔C or A↔G) and s−st
of which are transversions (substitutions of the form
{T,C}↔{A,G}). �∗

jk
is the frequency of the nucleotide in

the kth∈{1,2,3} position of the jth codon (i.e., jk is a nuc-
leotide jk ∈{T, C, G, A}), � is the transition/transversion
rate ratio, and � and � are the rates at which double
and triple substitutions occur. Diagonal elements Mii are
adjusted to make rows sum to zero. The selection process
can be introduced via an element-wise matrix product:

Q(ω)=M◦(�S +ω�N)/rω, (2)

where rω=
∑
j �=i

�iMij(�S(i,j)+ω�N(i,j)){�1 +2�2 +3�3}.

Diagonal elements Qii(ω) are adjusted to make rows sum
to zero. Here, �S represents an indicator matrix whose
(i,j)th element �S(i,j) is one if i and j are synonymous and
zero otherwise. �N similarly indicates nonsynonymous
codon pairs. The constant rω normalizes Q(ω) so that
branch lengths give the expected number of single
nucleotide substitutions per codon site and is computed
using the stationary codon frequencies �i ∝�∗

i1
�∗

i2
�∗

i3
.

The scalar indicator �k is one if i and j differ by k ∈
{1,2,3} nucleotides and zero otherwise. Note that M is a
component of the analytic models fitted to data as well as
the alignment-generating models used to simulate data.
All of the analytic models used in this study assumed
single nucleotide substitutions only (i.e., with �=�=0)
and made neutral substitution rates proportional to the
frequency of the nucleotide at the position where the

substituting codon j differs from the incumbent codon i,
consistent with Muse and Gaut (1994) (cf. Goldman and
Yang 1994). Some of the alignment-generating models
allowed fixation of double–triple mutations (i.e., with �
and � both >0).

The rate matrix Q(ω) is a useful phenomenological
approximation of the evolutionary process at a codon
site but is unsuitable as a means of thinking about
the process. For example, the rate ratio ω, a proxy
for the strength of selection for (ω>1) or against (ω<
1) the i to j substitution, is assumed to be the same
for all nonsynonymous (i,j) pairs. This is conceptually
misleading for the majority of proteins because it implies
that the fitness of an amino acid at a site is independent of
its physicochemical properties. It is more useful to think
of the evolutionary process at a codon site in terms of
the dynamic on its site-specific fitness landscape (Jones
et al. 2017) as characterized by the mutation-selection
modeling framework (Halpern and Bruno 1998). If codon
sites are assumed to evolve independently, a site-specific
fitness landscape can be defined for the hth site by
a vector of fitness coefficients fh or its implied vector
of equilibrium codon frequencies πh (Sella and Hirsh
2005). These determine the evolutionary dynamic at
the site, or the way it “moves” across its landscape
over macroevolutionary time scales. Possible dynamic
regimes include: nonadaptive shifting balance, under
which the site moves episodically away from the peak
of its static fitness landscape (i.e., the fittest amino acid)
via drift and back again by positive selection; adaptive
evolution, under which a change in the landscape in the
form of a peak shift is followed by movement of the site
toward its new fitness peak; and neutral or nearly neutral
evolution, under which drift dominates and the site is
free to move over a relatively flat landscape constrained
primarily by biases in the mutation process.

The PG-BSM
Genetic information is assumed to consist of an

alignment X of N homologous protein-coding sequences
of length n with a known rooted topology 	. The pheno-
type, encoded by a vector F, can be any discrete character
state, such as a property of the gene’s protein product
(i.e., a molecular phenotype), some characteristic of the
organism, or an environmental variable. The PG-BSM
fitted to (X,F) consists of three components : 1) a model
for the evolution of the codon sequence; 2) a model for
the evolution of a discrete phenotype; and 3) a model
that accounts for the mechanism(s) by which 1) and
2) are associated. Details of all model components are
provided in Supplementary Material available on Dryad
at http://dx.doi.org/10.5061/dryad.rb4b420. Here, we
provide a verbal/visual overview.

A Markov process is the natural choice to model
the evolution of a discrete phenotype. It is possible
to choose a parameter-rich model that allows a dif-
ferent substitution rate for each pair of phenotypes
akin to the generalized time-reversible model for DNA
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(Tavaré 1986), which would allow for possible asym-
metries caused by canalization, for example. Instead,
we chose to use the simpler proportional rates model
under which the phenotype is assumed to have changed
from i at a parent node to j at a daughter node via
a continuous time Markov process at a constant rate
proportional to the stationary frequency of state j with
proportionality constant 
. This choice was motivated in
part by the fact that the number of discrete phenotypic
states was two for most of our simulations and real data
analyses, and that the generalized time-reversible model
for a 2-state system is equivalent to the proportional rates
model.

The model for sequence evolution assumes that some
proportion �0 of sites evolved under ω0 =0 over the tree
while the remaining sites evolved via a covarion-like pro-
cess with random switches between two rate ratios ω1<
ω2 over time at a rate of � switches per unit branch length
(i.e., under the simple covarion-like model hereafter
referred to as CLM3(k =2) Jones et al. 2017). Alignments
typically exhibit variations in rate ratio across sites
in addition to site-specific variations over time. It is
possible to account for variations across sites using an M-
series model such as M3(k =2) (Yang et al. 2000), which
assumes sites evolved under either ω1 or ω2 over the
entire tree without heterotachy. However, by accounting
for random switching between ω1 and ω2 over time,
the covarion-like model CLM3(k =2) implicitly accounts
for variations in site-specific time-averaged rate ratios
(cf. Wu and Susko 2009). Hence, with only one extra
parameter (the switching rate �), CLM3(k =2) captures
variations in rate ratio both across sites and over time.
The covarion-like model consequently often provides a
better fit to real alignments compared to M3(k =2) (e.g.,
Jones et al. 2018). Furthermore, the CLM3(k =2) com-
ponent of the PG-BSM provides a means to account for
heterotachy caused by processes unassociated with the
evolution of the phenotype. Such processes can include
not only nonadaptive shifting balance but also adaptive
changes in site-specific landscapes not associated with
changes in the phenotype. By accounting for what we
call heterotachy-by-any-cause, the covarion-like model
reduces the probability of falsely rejecting the null hypo-
thesis, as will be demonstrated via simulation studies.

The alternative PG-BSM enforces dependencies
between phenotype and genotype evolution at some
fraction of sites, or what we call phenotype–genotype
associations. Various mechanisms of dependency are
amenable to phenomenological representation as dis-
tinct modes of heterotachy (Figure 1). Here we consider
three. First, a change in phenotype along a branch can
coincide with a reduction in the stringency of selection
at a site in the descendant clade. This might be caused
by a reduction in the site’s role in the maintenance
of the protein’s tertiary structure (Pupko and Galtier
2002), or by a change in a life-history trait (Lartillot
and Poujol 2011; Karin et al. 2017) such as a reduction
in the reproductive population size. These mechanisms
are expressed phenomenologically in the PG-BSM as

the cladewise (CW) process under which a proportion
�CW of sites are assumed to have evolved under the
smaller ω1 prior to a change in phenotype and under
the larger ω2 over the entire clade descending from
the branch over which a change in phenotype occurred
(CW tree in Figure 1). Second, a change in phenotype
along a branch can coincide with an increase in the
stringency of selection at a site. Mechanisms that can
produce this result are represented in the PG-BSM by
the reverse cladewise (rCW) process under which a
proportion �rCW of sites are assumed to have evolved
under the larger ω2 prior to a change in phenotype and
under the smaller ω1 over the entire clade descending
from the branch over which a change in phenotype
occurred (rCW tree in Figure 1). Third, a change in
phenotype can coincide with changes in site-specific
fitness landscapes in the form of peak shifts. This mech-
anism is represented in the PG-BSM by the branchwise
(BW) process under which a proportion �BW of sites
are assumed to have evolved under the larger ω2 over
branches along which the phenotype changed and under
the smaller ω1 everywhere else in the tree (BW tree in
Figure 1).

Sites consistent with the phenomenological CW, rCW
or BW processes (herein referred to as CW, rCW, or
BW sites) represent a subset of those assumed by the
null PG-BSM to have evolved under the covarion-like
process. It is therefore assumed that the CW, rCW, BW,
and covarion-like processes all share the sameω1 andω2.
This is in contrast to the approach taken by the branch-
site model first introduced by Yang and Nielsen (2002).
One version of that model (the YN-BSM A, Yang et al.
2005) partitions sites into four categories according to the
way they are assumed to have evolved. Category 0 and
1 sites are assumed to have evolved under 0<ω0<1 and
ω1 =1 over the entire tree. Category 2a sites are assumed
to have evolved under 0<ω0<1 and category 2b sites
under ω1 =1 everywhere in the tree except for the set of
prespecified foreground branches, where they are both
assumed to have evolved under ω2 ≥1. The rate ratio ω2
therefore applies to category 2 sites only. This approach
gives the YN-BSM A the power to detect evidence of
positive selection (i.e., ω2>1) at a small number of
sites along foreground branches, but also introduces
the risk of issues related to irregularity (e.g., Baker
et al. 2016; Mingrone et al. 2018). When the proportion
of category 2 sites (p2) is small, for example, ω2
becomes nearly unidentifiable. Its maximum likelihood
estimate can consequently be very large and potentially
misleading. The PG-BSM avoids potential irregularity
issues by using the same parameters ω1 and ω2 for all
four processes. Our approach undoubtedly reduces the
statistical power to detect a small number of sites that
evolved under an exceptionally large rate ratio. However,
we argue that the potential impact of this loss is mitigated
by the fact that the PG-BSM does not rely on evidence of
positive selection to reject the null.

The alternate PG-BSM requires knowledge of where
in the tree the phenotype changed. This information is
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CW rCW BW

FIGURE 1. An illustration of the difference between the cladewise (CW and rCW) and branchwise (BW) evolutionary processes assumed
under the alternative PG-BSM. Each process accounts for a specific form of heterotachy associated with changes in phenotype. The empty and
filled markers at the terminal nodes indicate three phenotypic states. ω1<ω2 are dN/dS rate ratios. The gray disks indicate the nodes at which
a change in phenotype occurred. CW sites are assumed to have evolved under ω1 prior to a change in phenotype and under ω2 after a change.
rCW sites are assumed to have evolved under ω2 prior to a change in phenotype and under ω1 after a change. BW sites are assumed to have
evolved under ω2 over branches along which a change in phenotype occurred and under ω1 everywhere else in the tree. The model assumes a
rooted tree because the interpretation of the CW and rCW processes require a particular order of change in rate ratio.

provided by realizations of ancestral phenotypes at the
internal nodes of the tree generated using the model
for phenotype evolution. Each set of realizations is
converted to a change map z= (z1,...,z2N−2), a vector of
zeros and ones where zero indicates a branch over which
the phenotype remained constant and one a branch over
which the phenotype changed. The likelihood function
under the alternative hypothesis can in principle be
computed by summing over all possible change maps
each weighted by its probability under the model for
phenotype evolution. However, the number of possible
change maps can be very large depending on the number
of taxa and phenotypic states. To make the summation
feasible, a sample of 105 change maps is generated
and the summation is over all unique change maps
that appear in the sample each weighted by its relative
frequency �̂z. To further reduce computational load,
change maps that occurred with �̂z<10−3 are excluded.
The relative frequencies �̂z of the remaining change
maps are renormalized to sum to one.

An omnibus test is conducted to contrast the null
and alternative components of the PG-BSM. The com-
ponents can differ by m∈{1,2,3} parameters among
the proportions {�CW,�rCW,�BW} depending on which
of the three processes are included in the alternate
model. In all cases, the null PG-BSM is the same as the
alternative when the proportions are on the boundary
of the parameter space (i.e., when �CW =�rCW =�BW =0).
The theoretical limiting distribution of the log-likelihood

ratio is therefore a 50:50 mixture of the �2
0 and �2

1
distributions when m=1 and an unknown mixture of the
�2

0, �2
1,...�2

m distributions when m∈{2,3} (Self and Liang
1987). Although the mixture weights for the distribution
are unknown when m∈{2,3}, the 95th percentile of a
mixture of the �2

0, �2
1,...�2

m distributions is always at
most that of the �2

m distribution (i.e., 3.84, 5.99, and 7.81
for m=1, m=2, and m=3, respectively). Using these as
critical values for the omnibus test should therefore be
conservative and produce <5% type I error rate.

Rejection of the null hypothesis provides evidence for
phenotype–genotype associations at some sites in the
alignment. Naive empirical Bayes analysis is then used
to identify the most likely process under which each
site evolved (i.e., the null covarion-like process or one
of the alternatives, the CW, rCW, or BW processes). A
false positive occurs when a site pattern xh is incorrectly
attributed to one of the three alternative processes. The
false positive rate is usually controlled by attributing
site patterns to process c∈{CW,rCW,BW} only when the
posterior P(c |xh) is greater than some threshold such as
0.95 (e.g., Yang et al. 2000). An alternative approach, also
based on posteriors, is to aim to control the proportion
of sites attributed to process c that in fact did not
evolve under c (i.e., the false discovery rate, Benjamini
and Hochberg 1995). To see the difference between the
two approaches, consider an analysis of an alignment
with 1000 codon sites. Suppose 10 sites were inferred
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to have evolved under the CW process (i.e., there were
10 “discoveries”) and that 5 of these were incorrect.
Then the false positive rate would only be 0.5% (5 sites
out of 1000), whereas the false discovery rate would be
50% (5 sites out of 10). Hence, a low false positive rate
does not necessarily imply a low false discovery rate,
particularly when the number of discoveries is small. The
false discovery rate approach was used in all analyses
but with one modification. Rather than controlling the
proportion of false discoveries of a given category c∈
{CW,rCW,BW}, it was decided to control the number of
false discoveries or the “false discovery counts” (FDC)
for each process.

To quantify the evidential support for branches over
which the phenotype is thought to have changed, the
probability of the most frequently sampled change map
z∗ conditioned on the combined data is estimated. The
algorithm that generates change maps makes use of
estimates of 
 (the proportionality constant for the
model of phenotype evolution) and t (a vector of branch
lengths). But 
 is independent of the alignment under
the null hypothesis, meaning that the proportion �̂z∗
of change maps that correspond to the most frequently
sampled change map depends on X only through branch
length estimates. The likelihood of the combined data
under the alternative model (X,F) given z∗, by contrast,
also depends on the existence of site patterns that
match to greater or lesser degree patterns of heterotachy
indicated by z∗ that are consistent with either the CW,
rCW, or BW process. It follows that the probability
assigned to the most likely history of the phenotype can
be increased under the alternate PG-BSM by accounting
for such sites if they exist, as demonstrated in the
analyses to follow.

RESULTS

Rigorous Model Assessment Requires a Realistic
Data-Generating Process

Accuracy and power are usually assessed by fitting a
codon substitution model to alignments generated under
a similar model (Anisimova et al. 2001, 2002; Wong et al.
2004; Zhang 2004; Kosakovsky Pond and Frost 2005; Yang
et al. 2005; Zhang et al. 2005; Yang and dos Reis 2011;
Kosakovsky Pond et al. 2011; Lu and Guindon 2013).
One drawback of this approach is that standard models
constructed from rate matrices of the form Q(ω) cannot
mimic site-specific variations in ω caused by processes
such as adaptation following episodic peak shifts (dos
Reis 2015) and nonadaptive shifting balance (Jones et al.
2017). This is an issue because heterotachy generated by
such processes may well be pervasive in real alignments
(e.g., Fitch and Markowitz 1970; Fitch 1971; Lopez et al.
2002; Philippe et al. 2003; Wang et al. 2007; Whelan et al.
2011) and can engender statistical pathologies that will
go unnoticed if models are tested using data simulated
without such heterotachy (e.g., phenomenological load,
Jones et al. 2018).

A direct way to mimic heterotachy is to base the
generating model on the mutation-selection framework.
Two such generating models were used in this study. The
first, dubbed MSmmtDNA, was developed to mimic 12
concatenated H-strand mitochondrial DNA sequences
(3331 codon sites) from 20 mammalian species as
distributed in the PAML software package (Yang 2007).
MSmmtDNA was shown to produce data similar to
the real alignment by several measures of comparison,
and with similar levels of heterotachy (Jones et al.
2018). Although MSmmtDNA is more realistic as a
generating model, it represents only a small portion
of the space of all distributions of vectors of site-
specific fitness coefficients that might arise in nature.
We therefore used a second generating model for some
of our simulations that samples with replacement from
a set of 3598 such vectors estimated from an alignment
of 12 mitochondrial genes taken from 244 mammalian
species (Tamuri et al. 2014). This generating process
will be referred to as MSTGdR after the authors of that
study (Tamuri, Goldman, and dos Reis). Substitutions
between codons that differ by two or three nucleotides
can only occur in single nucleotide steps under the PG-
BSM, consistent with the majority of codon substitution
models in common use today. The occasional fixation
of double or triple mutations will therefore manifest
as an additional source of heterotachy (Jones et al.
2018). It was not clear what effect such fixations might
have on power and accuracy when left unaccounted for
by the fitted model. We therefore included alignments
generated using both MSmmtDNA with 0% double–
triple mutations and MSmmtDNA with 6% double–
triple mutations (recent studies suggest that double–
triple mutations comprise between 1% and 3% of all
mutations, Keightley et al. 2009; Schrider et al. 2014;
De Maio et al. 2013; Harris and Nielsen 2014). The null
PG-BSM itself was also used to generate alignments for
the purpose of assessing the statistical properties of the
PG-BSM without misspecification.

The mutation-selection framework has been used in
several studies to simulate alignments (Holder et al.
2008; Spielman and Wilke 2015, 2016; Spielman et al.
2016; Jones et al. 2017, 2018). In all cases the substitution
process was stationary, meaning that fitness coefficients
and the stringency of selection were made to be con-
stant at each site over the entire tree. In this study,
MSmmtDNA and MSTGdR were formulated to include
a subset of sites evolved under nonstationary processes
in the form of changes in the stringency of selection
and/or fitness coefficients at specific nodes of the tree
(Figure 1). Changes in the stringency of selection starting
along a single branch leading to a clade can manifest
as a cladewise difference in the mean rate ratio ω to
produce site patterns phenomenologically consistent
with the CW or rCW processes. Similarly, changes in
fitness coefficients (a peak shift) along a single branch
can result in site patterns phenomenologically consistent
with the BW process, particularly if they occur at sites
otherwise evolved under stringent selection. In this way,
the mutation-selection framework was used to produce
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0 1

Clocked Tree

0 2.6

Unclocked Tree

FIGURE 2. The clocked and unclocked trees used in Simulations 1, 2, and 3. Tree depths give the expected number of single nucleotide
substitutions per codon. Symbols at the nodes indicate different phenotypes, with k =2 phenotypes (0 and 1) on the clocked tree and k =4 (0, 1,
2, and 3) on the unclocked tree.

alignments with realistic levels of heterotachy due to
multiple processes. Our purpose was to assess the ability
of the PG-BSM to identify among all variant site patterns
those most consistent with one of the three modes
of heterotachy represented in Figure 1. Our approach
represents a significant improvement over traditional
methods of model testing based on data generated
using rate matrices of the form Q(ω). Details of all
generating processes are provided in Supplementary
material available on Dryad.

SIMULATIONS

In this section, we report the results of three simulation
studies encompassing a wide variety of evolutionary
scenarios. Simulation 1 was designed to test the statistical
properties of the PG-BSM by fitting the model to align-
ments generated under the null PG-BSM. Simulation
2 was conducted to assess the impact of differences
between the process assumed under the fitted model and
the process used to generate the data (i.e., misspecifica-
tion). For this purpose, alignments were generated using
MSmmtDNA with 0% double–triple mutations or 6%
double–triple mutations and MSTGdR with 0% double–
triple mutations. In some cases, the alternate PG-BSM
was fitted with the phenotype designated incorrectly.
Simulation 3 was designed to assess the performance
of the model under a scenario with four phenotypes.
Increasing the number of phenotypes introduces greater
uncertainty in the distribution of change maps and
therefore represents a greater challenge to the model.
Note that all simulations were conducted with �rCW =0
(i.e., no sites were evolved under the rCW process), and
in all that follows the alternate PG-BSM included the CW
and BW processes unless otherwise indicated.

Simulation 1: Generating under the Null PG-BSM
According to maximum likelihood theory, when the

PG-BSM is fitted to data generated under the null PG-
BSM, and as information (i.e., the number of codon
sites) increases without bound, 1) the distribution of
the log-likelihood ratio for the contrast between the null
and alternate PG-BSM will converge to some unknown
mixture of the�2

0,�2
1 and�2

2 distributions (Self and Liang
1987), and 2) the distribution of the maximum likelihood
estimate for each model parameter will converge to a
normal centered on the parameter’s generating value.
The objective of the first simulation was to assess how
well these expectations hold. To that end, 100 alignments
300 codons in length and 100 alignments 1000 codons
in length were generated on the clocked and unclocked
trees shown in Figure 2. The generating model was the
null PG-BSM with the following parameters: �0 =0.65
(the proportion of sites evolving underω0 =0),ω1 =0.10,
ω2 =1.50, p1 =0.80, �=0.20,�CW =�BW =0, where p1 is the
expected proportion of time a heterotachous site spends
evolving underω1. The parameters for the mutation pro-
cess, including position-specific nucleotide frequencies
and the transition/transversion rate ratio, were set to
values estimated from an alignment of 12 concatenated
H-strand mitochondrial DNA sequences from 20 mam-
malian species (Yang 2007). The phenotypes assumed
under the alternate PG-BSM were those indicated at
the terminal nodes in Figure 2 (e.g., reading from top
to bottom F= (0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0) for the
clocked tree and F= (1,1,1,1,0,0,0,0,0,2,2,2,2,2,2,3,3)
for the unclocked tree).

Likelihood ratio tests were conducted assuming �2
2

to be the limiting distribution, when using 5.99 as the
critical value would be expected to result in a nominal
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TABLE 1. Simulation 1 log-likelihood ratio distributions

Scenario 0 to 0.50 to 5.99 to False
0.50 5.99 +∞ positive

PG-BSM C 300 sites 0.66 0.32 0.02 2/100
PG-BSM UC 300 sites 0.68 0.32 0.00 0/100
PG-BSM C 1000 sites 0.65 0.34 0.01 1/100
PG-BSM UC 1000 sites 0.78 0.22 0.00 0/100
Expectation under �2

2 0.22 0.73 0.05 5/100

Comparison of the empirical log-likelihood ratio distribution for
Simulation 1 scenarios with the assumed �2

2 distribution. The last
column shows the number of times the omnibus test incorrectly
rejected the null to give a false positive. C indicates simulations using
the clocked tree, UC simulations using the unclocked tree; 300 and 1000
indicate the number of simulated codon sites. One hundred alignments
were generated under each simulation scenario.

TABLE 2. Site patterns identified by the YN-BSM

Clade Site Site Site Site Site Site
64 182 153 329 239 127

Marine (20) S20 S20 N20 L12M5I2V1 M20 L13V5A1I1
Freshwater (8) S8 S8 T8 C8 K8 M8
Terrestrial (9) S9 S9 N9 L7F1A1 M8L1 L7F2
Intertidal (8) S8 S8 N8 L3A3S2 M8 L6V2
P(cat 2) 0.9970 0.9970 0.9610 0.9590 0.9530 0.9500

Amino acid composition for sites with P(cat 2) ≥0.95 as determined
by the YN-BSM A using the branch leading to the freshwater clade
as the foreground branch. Sites are shown in order of descending
Bayes empirical Bayes posteriors. Letters represent amino acids and
subscripts the number of taxa with that amino acid among the
corresponding clade.

false positive rate of 5%. As the true limiting distribution
of the log-likelihood ratio is an unknown mixture of �2

0,
�2

1, and �2
2, the actual critical value corresponding to a

5% test is some unknown value less than 5.99. It follows
that the expected false positive rate using 5.99 is less than
5%, and that assuming �2

2 makes the test conservative.
The relative frequencies of the empirical log-likelihood
ratio in each of the three intervals [0,0.50), [0.50,5.99),
and (5.99,+∞) for all four simulation scenarios to that
expected under the �2

2 distribution are shown in Table 1.
Using the 5.99 cut-off gave a false positive rate of at most
2/100 among Simulation 1 scenarios. Furthermore, the
relative frequencies in the [0,0.50) interval fell between
0.65 and 0.78 compared to the expected probability 0.22
for the �2

2 distribution. This result is not inconsistent
with the fact that the actual limiting distribution places
a substantial weight of 0.5 on the �2

0 component of the
mixture (i.e., a point mass of 0.5 at zero; the weight is
0.5-p on the �2

1 distribution and p on the �2
2 distribution

for some unknown p∈[0,0.5), Self and Liang 1987). The
test therefore appears to be conservative as expected, at
least under the scenarios considered. We nevertheless
elected to use �2

2 for the remainder of our analyses as a
buffer against inevitable misspecifications and/or issues
associated with low information content, as is standard
practice when an exact distribution is unknown (e.g.,
Wong et al. 2004; Zhang et al. 2005; Yang 2007, 2017).

The mean, median, and standard deviation of the
maximum likelihood estimates of select model paramet-
ers for each generating scenario are shown in Table 1
in Supplementary material available on Dryad. In each
case, the mean and median were either the same or nearly
so, indicating symmetrical distributions. A one-sample
Kolomogorov–Smirnov test for normality applied to
each set of 100 maximum likelihood estimates failed to
reject the null hypothesis of a normal distribution in all
cases (P-value ≥0.16). Furthermore, the mean maximum
likelihood estimate for each parameter was either the
same or very close to its generating value in all four
scenarios. And in each case the standard deviation was
smaller for the 1000-codon scenario compared to its
counterpart 300-codon scenario (see Figure 3). These
results suggest that the PG-BSM is statistically well
behaved when fitted to alignments generated under the
scenarios considered.

Simulation 2: Generating under MSmmtDNA and
MSTGdR

The second simulation study was conducted to assess
the statistical accuracy and power of the PG-BSM when
fitted to alignments simulated using a more complex
generating model compared to the null PG-BSM. In
particular, we aimed to generate alignments using the
mutation-selection framework in such a way as to mimic
realistic levels of heterotachy caused by nonadaptive
shifting balance and episodic changes in site-specific
fitness landscapes. The simulation is comprised of
five scenarios, each of which was tested under three
different sequence generating processes, yielding 15
cases in total (see Table 2 in Supplementary material
available on Dryad). In the first scenario (denoted 2a
(�CW,�BW)= (0%,0%)), alignments were generated with
no phenotype–genotype association, but with substan-
tial heterotachy due to nonadaptive shifting balance.
These alignments therefore contained signal for the
covarion-like process that could potentially be miscon-
strued as signal for the CW and BW processes under
the alternate PG-BSM. The second scenario (denoted
2b (�CW,�BW)= (5%,0%)) included signal in the form
of a small fraction (�CW =5% of 300 sites) of sites
generated with a reduction in the stringency of selection.
The third scenario (denoted 2c (�CW,�BW)= (0%,5%))
included sites generated with peak shifts (�BW =5%). In
the fourth scenario (denoted 2d (�CW,�BW)= (0%,0%))
we investigated the effect of phenotype error by using
the data generated for 2c but with a misspecified
vector of phenotypes. In this case, the data included
heterotachy generated by peak shifts at 5% of sites
that occurred independently of the assumed pheno-
type, and so was designated (�CW,�BW)= (0%,0%) to
indicated no phenotype–genotype association. Signal
for phenotype–genotype association was increased in
the final scenario (denoted 2e (�CW,�BW)= (5%,5%)) by
including both sites generated with a reduction in the
stringency of selection (�CW =5%) and sites with peak
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FIGURE 3. Violin plots for select maximum likelihood estimates obtained in Simulation 1. The first pair of plots in each panel (light grey) are
for alignments generated on the clocked tree with 300 (C300) and 1000 (C1000) codon sites. The second pair of plots in each panel (dark grey) are
for alignments generated on the unclocked tree with 300 (UC300) or 1000 (UC1000) codon sites. The varying width of each violin plot indicates
a smoothed probability density. Data points are marked as disks with random horizontal offset to produce the cloud around each plot. The
median parameter estimate is indicated by the white circle and the interquartile range by the thick vertical bar. The horizontal line in each panel
shows the parameter value used to generate the alignments.

shifts (�BW =5%). The three generating processes used
were: MSmmtDNA with 0% double–triple mutations,
MSmmtDNA with 6% double–triple mutations, and
MSTGdR with 0% double–triple mutations. In each case
50 alignments 300-codons in length were generated on
the clocked tree in Figure 2. Changes in the stringency
of selection and/or peak shifts were effected along
the branch marked in bold. The correct phenotype
designation was F= (0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0),
while the incorrect designation used in 2d was F=
(0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0).

The omnibus test correctly failed to reject the null
in all Scenario 2a (�CW,�BW)= (0%,0%) trials (Table 2 in
Supplementary material available on Dryad). In Scenario
2b (�CW,�BW)= (5%,0%), the null was correctly rejected in
47/50, 46/50, and 42/50 trials, indicating good power,
and the CW and BW processes were inferred at an
average of (7%,1%), (7%,1%), and (4%,0%) of sites, in
approximate agreement with their generating values.
The agreement was also good in Scenario 2c (�CW,�BW)=
(0%,5%) where the null was rejected in 46/50, 38/50,
and 50/50 trials, and the CW and BW processes were
inferred at an average of (1%,9%), (2%,7%), and (1%,7%)
of sites. The null was rejected in only 1/50, 1/50, and
2/50 trials, in Scenario 2d (�CW,�BW)= (0%,0%), well
below the expected 5% error rate. And in Scenario 2e
(�CW,�BW)= (5%,5%) the null was rejected in all trials and
the CW and BW processes were inferred at an average of
(6%,9%), (6%,8%), and (6%,6%) of sites.

Results of the post hoc analysis applied to alignments
with signal for phenotype–genotype association (Scen-
arios 2b, 2c, and 2e) are summarized in Table 3 in

TABLE 3. Site patterns identified by the PG-BSM

Clade Site Site Site Site Site Site
153 144 25 239 182 64

Marine (20) N20 G20 L20 M20 S20 S20
Freshwater (8) T8 S8 F8 K8 S8 S8
Terrestrial (9) N9 G9 I5L4 M8L1 S9 S9
Intertidal (8) N8 G8 L8 M8 S8 S8
P(BW) 0.9859 0.9799 0.9458 0.9433 0.9221 0.7509

Amino acid composition for the first six sites identified by the PG-BSM
to be associated with the freshwater versus other phenotype. Sites are
shown in order of descending P(BW). Letters represent amino acids
and subscripts the number of taxa with that amino acid among the
corresponding clade.

Supplementary material available on Dryad. Analyses
were conducted with the expected false discovery count
limited to E{FDC}=1 for each process c∈{CW,BW}. For
Scenario 2b (�CW,�BW)= (5%,0%) MSmmtDNA 0% DT
(first row of Table 3), for example, the average FDC
was 0.80 CW sites and 0.86 BW sites per alignment,
and the average power to detect the 15 (5% of 300)
CW sites generated with a reduction in the stringency
of selection was 0.31, corresponding to an average of
4.72/15 correctly identified sites per alignment. The
FDCs among all scenarios were approximately normal
in distribution and ranged between 0.62 and 2.12, with
a mean of 1.32 and standard deviation of 0.44. The
FDCs were therefore slightly biased toward values
greater than the nominal expectation E{FDC}=1. Note
that a FDC of 1.32 corresponds to a false positive
rate of 1.32/270 sites ×100%=0.49% for the (�CW,�BW)=
(5%,5%) scenario.
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The model performed well with respect to identifying
the correct evolutionary history of the phenotype (see
the last two columns of Table 3 in Supplementary
material available on Dryad). The change map z∗
corresponding to the most frequently sampled history
matched that used to generate the alignment in no less
than 44/50 trials and often in 50/50 trials. Furthermore,
the probability P̂(z∗ |X,F) of z∗ conditioned on all of
the data was always greater than its relative sampling
frequency �̂z∗ , with average differences ranging between
0.22< P̂(z∗ |X,F)−�̂z∗<0.27. This result illustrates how
accounting for phenotype–genotype associations can
substantially reduce uncertainty in the inferred his-
tory of the phenotype whenever such associations
exist.

Simulation 3: Generating under MSmmtDNA with Four
Phenotypic States

The third simulation study was conducted to assess
the statistical accuracy and power of the PG-BSM
under scenarios with four phenotypic states. In this
case, we used only MSmmtDNA with 0% double–
triple mutations to generate data because the results of
Simulation 2 indicated no substantial difference between
the three mutation-selection generating processes used
there (as reported in Supplementary material available
on Dryad). Fifty 300-codon alignments were generated
on the unclocked tree in Figure 2 under four scenarios.
In the first (denoted 3a (�CW,�BW)= (0%,0%)) align-
ments were generated with no phenotype–genotype
association. In the second (denoted 3b (�CW,�BW)=
(5%,0%)) alignments were generated with a reduction
in the stringency of selection at 5% of sites. In the
third (denoted 3c (�CW,�BW)= (0%,5%)) alignments were
generated with peak shifts at 5% of sites. And in the last
scenario (denoted 3d (�CW,�BW)= (5%,5%)) alignments
were generated with both a reduction in the stringency
of selection at 5% of sites and peak shifts at 5% of sites.
In all cases, the stringency of selection and/or peak
shifts were effected along the branches marked in bold.
The phenotype assumed by the alternate PG-BSM was
F= (1,1,1,1,0,0,0,0,0,2,2,2,2,2,2,3,3) in all scenarios.
The unclocked tree is arguably more consistent with
real data in both its irregular topology and depth
compared to the clocked tree in Figure 2, and was chosen,
in combination with the increase in the number of
phenotypes, to provide a more challenging test of model
performance.

The omnibus test correctly failed to reject the null
hypothesis in all Scenario 3a (�CW,�BW)= (0%,0%) tri-
als under which alignments were generated with no
phenotype–genotype association (Table 4 in Supple-
mentary material available on Dryad). The null was
correctly rejected in all Scenario 3c(�CW,�BW)= (0%,5%)
and Scenario 3d (�CW,�BW)= (5%,5%) trials. However, in
Scenario 3b (�CW,�BW)= (5%,0%) the null was correctly
rejected in only 15/50 trials. The PG-BSM apparently had
difficulty identifying sites generated with a reduction in

the stringency of selection. Concordantly, the average
power to detect CW sites was 0.16 for Scenario 3b
(�CW,�BW)= (5%,0%) alignments and 0.36 for Scenario
3d (�CW,�BW)= (5%,5%) alignments, much less than the
average power to detect BW sites, which was 0.67 for both
Scenarios 3c (�CW,�BW)= (0%,5%) and 3d (�CW,�BW)=
(5%,5%). The power to detect BW sites was substantially
better in Simulation 3 (power = 0.67) compared to
Simulation 2 (0.24≤power≤0.59), and the FDCs for both
CW and BW sites were significantly lower (no more than
0.78 false discoveries per alignment among Simulation 3
scenarios compared to as much as 2.12 among Simulation
2 scenarios). There was also a marked increase in
uncertainty in the ancestral phenotypes in Simulation
3, with an average 0.38≤ �̂z∗ ≤0.56 compared to 0.62≤
�̂z∗ ≤0.78 in Simulation 2. However, use of the combined
information in the data made up the difference, as the
probability P̂(z∗ |X,F) of z∗ conditioned on all of the data
was approximately twice as large as �̂z∗ in all Simulation
3 scenarios with phenotype–genotype association—see
(prior, post) in Table 5 in Supplementary material
available on Dryad.

A possible explanation for the low power of the
omnibus test in Scenario 3b (�CW,�BW)= (5%,0%) is con-
founding due to “branch-length effects.” Two alignment-
generating processes (real or simulated) are said to be
nearly confounded if the site-pattern distributions they
produce are approximately the same (Jones et al. 2018).
Sites evolved under MSmmtDNA on the unclocked
tree in Figure 2 with relaxation of selection pressure
along the three branches marked in bold tend to
produce site patterns consistent with the phenomeno-
logical CW process (i.e., with greater diversity among
amino acids at the terminal nodes indicated by the
filled markers and less diversity among terminal nodes
indicated by the open marker). But similar patterns
can arise on that tree at sites evolved on static fitness
landscapes due to the fact that the distances from
the root to the terminal nodes indicated by the filled
markers are relatively long (increasing the probability
of replacement substitutions) whereas the tip-to-root
distances for terminal nodes indicated by the open
marker are relatively short (decreasing the probability of
replacement substitutions). Heterotachous site patterns
xh generated with relaxation of selection pressure in
Scenario 3b (�CW,�BW)= (5%,0%) therefore tended to be
approximately as likely under the covarion-like process
as they were under the CW process. The log-likelihood
ratio for the contrast between the null and alternate
PG-BSM consequently tended to be small, and often
something less than the critical value 5.99 (assuming
the �2

2 distribution for the log-likelihood ratio and a 5%
significance test). Note that modifying the alternate PG-
BSM to test for the CW process only, which permits the
use of the�2

1 distribution for the log-likelihood ratio and
a critical value of 3.84 for a 5% test, increased the power
of the omnibus test only slightly (19/50 rejections instead
of 15/50).
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FIGURE 4. Branch lengths (the expected number of single nucleotide substitutions per codon) estimated by fitting the null PG-BSM to the
cytochrome B alignment.

INVERTEBRATE CYTOCHROME B

We now turn to an analysis of real data. Euthyneura
(snails and slugs) have adapted to diverse habitats,
including marine, intertidal, terrestrial, and freshwater.
Their mitochondrial genome includes cytochrome B (cyt
B), an essential component of the electron transport chain
common to most life forms on Earth. Given its crucial
role, one would expect cytB to be highly conserved.
It is nevertheless reasonable to suspect that transition
from the marine to the other three environments might
have required some adaptations (e.g., for differences in
osmotic pressure or the risk of dessication). To test this
hypothesis, the PG-BSM and YN-BSM A were fitted to
an alignment consisting of 45 cytB sequences 341 codons
in length. The sequences were selected from a larger
published data set (Romero et al. 2016) to produce four
homogeneous clades. Tree topology was estimated from
the DNA sequences using RAxMLv0.6.0 with default
settings, and the tree was rooted to produce that shown
in Figure 4.

The PG-BSM was initially fitted to the alignment using
the different environments to define a phenotype with
four states, but no signal for phenotype–genotype asso-
ciation was found. The data were then reanalyzed using

three different binary phenotypes: terrestrial versus
nonterrestrial, freshwater versus nonfreshwater, and
intertidal versus nonintertidal. Furthermore, rather than
seeking to detect CW and BW sites simultaneously, we
elected to attempt to detect either CW, rCW, or BW sites
alone. The YN-BSM A was also fitted to the alignment
using the branch leading to the terrestrial, freshwater,
and intertidal clade each in turn as the foreground
(marked in bold in Figure 4). Signal was detected for
BW sites by the PG-BSM when phenotype was set to
freshwater versus nonfreshwater, with log-likelihood
ratio =2(24,537−24,527)=20 compared to a critical
value of 5.73 (assuming that the log-likelihood ratio
follows a �2

1 distribution and using a level of sig-
nificance �=0.05/3 to adjust for the fact that three
tests were conducted on the alignment with freshwater
vs. nonfreshwater as the phenotype). The maximum
likelihood estimates were ω̂1 =0.00, ω̂2 =0.08, p̂1 =0.58,
�̂=0.06, and (�̂0,�̂CL,�̂BW)= (0.34,0.60,0.06). The model
therefore inferred that 34% of sites evolved underω0 =0,
60% of sites evolved under the covarion-like process
with random switching between ω̂1 =0.00 and ω̂2 =
0.08, and 6% of sites evolved under the BW process
with ω̂1 =0.00 everywhere in the tree except along
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the branch leading to the freshwater clade, where the
rate ratio was elevated slightly to ω̂2 =0.08. The YN-
BSM A detected evidence of positive selection in two
cases, once along the branch leading to the terrestrial
clade (log-likelihood ratio =2(25,819−25,812)=14, ω̂2 =
999, p̂2 =0.04) and again along the branch leading to
the freshwater clade (log-likelihood ratio =2(25,811−
25,807)=8, ω̂2 =999, p̂2 =0.12). Akaike’s Information
Criterion (AIC=2m−2LL, where m is the number of
estimated model parameters and LL is the log-likelihood
of the data under the fitted model) is frequently used
to compare non-nested models under the maximum
likelihood framework. The better of any two models is
the one with the smaller AIC. The PG-BSM provided
the better fit by this criterion: the criterion was 51,700 for
YN-BSM A but 49,146 for the alternate PG-BSM with BW
sites alone using the freshwater versus nonfreshwater
phenotype.

It is instructive to compare the distribution of amino
acids among each clade at sites identified by the YN-
BSM A and PG-BSM via post hoc analysis. The YN-BSM
A identified 11 sites with strong evidence of having
undergone episodic positive selection on the branch
leading to the freshwater clade after post hoc analysis
was conducted with the expected FDC set to E{FDC}=1.
Table 2 shows the distribution of the amino acids at six
of those sites for which P(cat 2)≥0.95, where P(cat 2)
is the Bayes empirical Bayes posterior probability (Yang
et al. 2005). Site 329, for example, is occupied by four
amino acids among the 20 taxa in the marine clade, 12
by L (Leucine), 5 by M (Methionine), 2 by I (Isolucine),
and 1 by V (Valine). A comparison of distributions across
clades gives some clue as to the processes that might have
generated the data. Sites 153 and 239 exhibit one amino
acid among the freshwater clade (T at site 153 and K at
site 239) but are dominated by a different amino acid
among the other three clades (N at site 153 and M at site
239). These patterns are consistent with peak shifts along
the branch leading to the freshwater clade (i.e., the BW
process). Sites 329 and 127 show one amino acid among
the freshwater clade and two or more different amino
acids among each of the remaining clades. These sites
are consistent with intensification of selective constraint
in the freshwater clade (i.e., the rCW process) possibly
accompanied by a peak shift (since the amino acid in the
freshwater clade, C at site 329 and M at site 127, does not
occur in any of the other three clades).

The PG-BSM fitted using freshwater versus nonfresh-
water as the phenotype detected seven sites with 0.52≤
P(BW)≤0.99 after post hoc analysis was conducted with
the expected FDC set to E{FDC}=1. The first six of
these are shown in Table 3. The first four sites (153,
144, 25, and 239) are highly consistent with the BW
process, being dominated by one amino acid among the
freshwater clade and a different amino acid among the
nonfreshwater clades. Sites 182 and 64 are both occupied
by serine only. There are eight codon aliases for serine in
the invertebrate mtDNA code, including TCN and AGN
where N is any nucleotide. Paths between TCN and AGN
by single nucleotide substitutions require a minimum

of one nonsynonymous change to either tryptophan,
cystine, or threonine. The fact that sites 64 and 182
were identified in the post hoc analysis is explained by
the codons that appear within each clade: both sites
are occupied by AGN everywhere in the freshwater
clade but are dominated by TCN among all remaining
taxa. This suggests that substitutions to intermediate
amino acids occurred along the branch leading to the
freshwater clade. Note that the YN BSM A assigned the
largest posterior to sites 64 and 182, and also assigned
them equal probability P(cat 2) = 0.9970 despite the
fact that the two sites have different codon substitution
patterns (data not shown). The PG-BSM, in comparison,
placed less weight on these sites and was apparently
sensitive to their differences, since P(BW) = 0.9221 for
site 182 but only P(BW) = 0.7509 for site 64.

ACCOUNTING FOR HETEROTACHY PREVENTS FALSE POSITIVES

The PG-BSM was used to analyze two other real align-
ments. The first consisted of 12 concatenated sequences
of mammalian mtDNA taken from 20 species (Yang,
2007). This alignment is characterized by a long branch
separating 7 primate species from 13 nonprimate species.
Our analysis of the mtDNA alignment revealed the
potential impact of accounting for nonstationary CW
and BW processes on branch-length estimates (i.e., by
making the tree more clock-like), and also that the PG-
BSM can be robust to confounding by what we call
branch-length effects. Details of that analysis can be
found in Supplementary material available on Dryad.
The second alignment consisted of genes for various
forms of phytochrome. The same data were used to
illustrate the efficacy of the YN-BSM (Yang and Nielsen
2002; Zhang et al. 2005) and therefore has historical
significance. Our analysis of the phytochrome data
motivated simulations that revealed that accounting
for heterotachy using the covarion-like component of
the PG-BSM can be essential to prevent false infer-
ence of phenotype–genotype association. The results
of that simulation study are presented here, whereas
additional components of that analysis are reported in
Supplementary material available on Dryad.

The PG-BSM did not detect phenotype–genotype
association in the phytochrome data (15 sequences 1072
codons in length) despite the presence of site patterns
consistent with both the CW and BW processes. We
speculated that the data might contain true signal that
went undetected due to the unusually large proportion
(approximately 70%) of variable sites (i.e., site patterns
with 2 or more amino acids). To test this hypo-
thesis, a fourth simulation was conducted under which
MSmmtDNA was used to generate sets of 50 alignments
1072 codons in length on the phytochrome tree. The
proportion of variable sites can be controlled under
MSmmtDNA by changing the proportion of sites with
landscapes that admit nonadaptive shifting balance (i.e.,
landscapes with a selection regime somewhere between
stringent and neutral, Jones et al. 2017). Alignments
under scenarios 4a and 4b were generated with either
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≈40% or ≈70% variable sites, including 5% CW and 5%
BW sites. Alignments under Scenarios 4c and 4d were
generated with either ≈40% or ≈70% variable sites with
no phenotype–genotype association.

The PG-BSM correctly detected phenotype–genotype
association in 50/50 alignments generated with 40%
variable sites (scenario 4a (�CW,�BW)= (5%,5%)), but in
only 42/50 alignments generated with 70% variable
sites (scenario 4b (�CW,�BW)= (5%,5%)). Although 42/50
indicates substantial statistical power, the reduction
in the number of detections is consistent with our
hypothesis that the power of the PG-BSM can be reduced
when the proportion of variable sites is high. The YN-
BSM A inferred positive selection at some sites along
the foreground branch in all trials under both of these
scenarios. The PG-BSM produced 0/50 false positives
when there was no phenotype–genotype association
regardless of the proportion of variable sites. The YN-
BSM A, by contrast, inferred positive selection (i.e.,
ω2>1) at some sites in 11/50 alignments generated
with 40% variable sites (scenario 4c (�CW,�BW)= (0%,0%))
and in 31/50 alignments generated with 70% variable
sites (scenario 4d (�CW,�BW)= (0%,0%)). Some of these
might be true evidence of ω>1 at some sites over
the foreground branch since positive selection due to
shifting balance is expected to occur some of the time
(Jones et al. 2017). However, they are all false positives
when interpreted as evidence of adaptive evolution (e.g.,
a change in the protein’s function) because the data were
generated with static site-specific fitness landscapes.

The PG-BSM was specifically designed to account for
sources of heterotachy other than the three mechanisms
of phenotype–genotype association by including the
covarion-like component of the model. The importance
of this component is illustrated by fixing �=0 and
fitting the resulting modified PG-BSM to Scenario 4d
alignments (70% variable sites, no phenotype–genotype
association). Setting the switching rate to zero has the
effect of making CLM3(k =2) equivalent to M3(k =2),
since ω1<ω2 are still estimated but sites can no longer
switch between them. Sites most consistent with M3(k =
2) are those that evolved at a constant rate over the
tree. The modified version of the alternate PG-BSM
can therefore accommodate heterotachous sites only by
appealing to the CW and BW processes. The modi-
fied PG-BSM incorrectly inferred phenotype–genotype
association in 33/50 trials when fitted to Scenario
4d alignments compared to 0/50 for the regular PG-
BSM. This result demonstrates the utility of accounting
for heterotachy with the covarion-like process as a
mean to mitigate false detection of phenotype–genotype
associations.

DISCUSSION

Traditional branch-site codon substitution models
(Yang et al. 2005) provide a means to detect evidence
that a codon site underwent positive selection along
a specified foreground branch of a phylogeny. Such
evidence, in the form of an estimated rate ratio ω>1, is

widely considered sufficient to infer adaptive evolution
at a codon site. However,ω>1 does not necessarily imply
adaptation. It is true that the dynamic at a codon site
following a peak shift is characterized by a transient
increase in the expected rate ratio, and that the increase
can sometimes be to ω>1 (dos Reis 2015). But the same
can also occur on a static fitness landscape following
chance fixation to a less-than-optimal amino acid (i.e.,
by nonadaptive shifting balance, Jones et al. 2017). It is
therefore not possible to distinguish an episodic change
in a site-specific landscape from nonadaptive shifting
balance on a static landscape using estimates of ω alone.
Furthermore, adaptation does not necessarily imply ω>
1. The increase in the rate ratio following a peak shift
rapidly diminishes as the site moves toward its new
fitness peak (dos Reis 2015). This suggests that the
initial elevation in rate ratio can be more difficult to
detect as sequences become more divergent. A previous
analysis of the relationship between branch length and ω̂
estimated from pairs of sequences simulated under the
mutation-selection framework supports this intuition.
Peak shifts were implemented by simultaneously chan-
ging the fitness coefficients at all 1000 codon sites in an
initial sequence S1 that was subsequently evolved over a
branch of length b to obtain a second sequence S2. The
codon substitution model M0 (i.e., a model that estimates
a single rate ratio for all sites in an alignment, (Nielsen
and Yang 1998) was then fitted to (S1,S2) to obtain ω̂.
The median estimate across 200 trials was ω̂≈1.4 when
b=0.2, but ω̂≈1.0 when b=1.0 (Jones et al. 2017). Hence,
ω>1 does not imply adaptive evolution and nor does
adaptive evolution imply ω>1.

The PG-BSM provides an approach for inferring
adaptation that does not rely on the canonical ω>1
signature of positive selection. The method is based on
the supposition that mechanisms of adaptation at the
molecular level consist of changes in site-specific fitness
landscapes. The mechanisms considered in this study
consisted of either a persistent change in the stringency
of selection at a site or a peak shift at a site along a
branch of the tree. Changes in stringency are represented
as CW changes in rate ratio, whereas a peak shift is
represented by the BW process as a transient elevation
in rate ratio along specific branches of the tree. The
locations of branches over which these processes may
have occurred are informed by a discrete character state
(e.g., a phenotype) via a model for the evolution of
that character state. This constraint provides additional
information that makes it possible to identify among
all variable sites those with replacement patterns that
imply phenotype–genotype association. It is possible to
use a model with asymmetric rates something like the
generalized time-reversible model for the evolution of
the discrete phenotypic state. However, the generalized
time-reversible model is equivalent to the proportional
rates model when there are only two phenotypic states,
as was the case for most of the data sets used in
this study. The simpler proportional rates model was
therefore used throughout. Nevertheless, the addition
of parameters to account for asymmetric transition rates
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can potentially be useful for data sets with many taxa
and more than two phenotypic states. The PG-BSM
also includes a covarion-like component to account
for variant site patterns inconsistent with phenotype–
genotype association. This component provides the null
hypothesis, which is rejected by the presence of site
patterns that are more likely to have occurred under one
of the CW, rCW, or BW processes.

The PG-BSM framework offers several advantages
over its predecessor, the YN-BSM. First, it includes a
model for the evolution of a discrete phenotype that
not only frees the analyst from the task of specifying
foreground branches but also automatically takes into
account less likely but nevertheless possible evolution-
ary histories of the phenotype. Second, it includes a
covarion-like component to account for random shifts
between ω1<ω2 consistent with all processes that can
potentially result in heterotachy, including changes in
site-specific landscapes not associated with changes in
phenotype. Covarion-like models (e.g., Galtier 2001;
Guindon et al. 2004) were originally intended to account
for epistatic interactions between codons sites thought
to be the cause of the covarion (i.e., concomitantly
variable codons, Fitch and Markowitz 1970; Fitch 1971)
phenomenon. It is now understood that potential sources
of heterotachy include nonadaptive shifting balance
and the fixation of double–triple mutations in addition
to episodic changes in site-specific fitness landscapes
(Jones et al. 2018; Venkat et al. 2018). The utility of
using the covarion-like model as the null hypothesis
was illustrated in our simulations of the phytochrome
alignment, where its inclusion as a component of the
PG-BSM was instrumental in reducing the false positive
rate of the omnibus test. Third, pathologies such as false
positives that can sometimes arise under the YN-BSM
due to statistical irregularities (e.g., Baker et al. 2016;
Mingrone et al. 2018) are avoided under the PG-BSM. The
YN-BSM assumes that category 2 sites evolved under a
separate rate ratioω2 on the foreground. The rate ratioω2
is consequently nearly unidentifiable when p2 is small.
Under this irregular condition, the maximum-likelihood
estimate ω̂2 is sometimes very large and potentially
misleading (e.g., in our analysis of cytB, the YN-BSM
A yielded ω̂2 =999 with p̂2 =0.04 or p̂2 =0.12). This
issue is avoided under the PG-BSM because estimates
of ω1 and ω2 make use of information contained in
all variable sites. Fourth, the PG-BSM can identify
sites consistent with specific mechanisms of adaptation
without a test for positive selection. This key feature
was empirically validated by our simulation studies,
where the null hypothesis was correctly rejected for
the majority of alignments generated with changes in
site-specific landscapes. Moreover, a fair proportion of
sites generated under specific mechanisms (relaxation
or intensification in the stringency of selection, a peak
shift) were correctly identified via post hoc analysis.

The chance fixation into the tail of a static site-specific
landscape and an adaptive change in a site-specific
landscape both cause a site to be temporarily occupied by

a less-than-optimal amino acid, say B. In either case the
result is a transient increase in rate ratio to some value
ωB that decays exponentially while positive selection
drives the site from B to the fittest amino acid A. Once
A is fixed the rate ratio stabilizes to some value ωA<
ωB. These processes can manifest across the sites in an
alignment as covarion-like switching between ω̂1<ω̂2.
The magnitude of ω̂2 depends on the distribution of the
ωB, which in turn depends on the magnitude of the
selection coefficients sBA = fA −fB>0. In Simulations 2
and 3, where sites were evolved using models based on
the mutation-selection framework, the mean value of ω̂2
was never less than one. This indicates that sBA tended
to be large enough to make theωB>1. In the cytochrome
data, the rate ratio was only ω̂2 =0.08. Sites in real
proteins are undoubtedly subject to both intragenic
(e.g., Pollock et al. 2012; Starr and Thornton 2016) and
intergenic (e.g., Phillips 2008) epistatic constraints. These
can be difficult to model because they depend on unique
aspects of the structure and function of a given protein
as well as the nature of its interactions with other
proteins. These and other potential sources of constraint
are therefore absent in the majority of generating models
used in simulation studies (e.g., Anisimova et al. 2001,
2002; Wong et al. 2004; Zhang 2004; Kosakovsky Pond
and Frost 2005; Yang et al. 2005; Zhang et al. 2005;
Yang and dos Reis 2011; Kosakovsky Pond et al. 2011;
Lu and Guindon 2013), including those used in our
study. Such constraints might have the effect pushing
the sBA closer to zero. For example, there is evidence
that epistasis can cause the magnitude of sBA at a site to
diminish over time due to compensating substitutions
at other sites (e.g., via an evolutionary Stokes shift,
Pollock et al. 2012). This can have the overall effect of
reducing the ωB. Differences in the depth of the tree
might also have played a role in lowering ω̂2, since the
cytochrome alignment was considerably more divergent
than the simulated alignments, and estimates of ω tend
to diminish with larger divergences (dos Reis and Yang
2013; Jones et al. 2017). It is noteworth, however, that the
PG-BSM detected evidence of adaptive evolution in the
cytochrome alignment despite the small estimate of ω2.
This was possible only because the model was designed
to identify patterns of change in ω consistent with
specific mechanisms of adaptation without imposing
bounds on the magnitude of ω2.

Like the vast majority of codon substitution models,
the YN-BSM framework assumes evolution occurs via a
series of single nucleotide substitutions. Consequently,
whether or not a site is inferred to have undergone
positive selection depends in part on the codon dis-
tribution implicitly inferred by the pruning algorithm
(Felsenstein 1981) at the two nodes of the foreground
branch. Positive selection is more often inferred when
the codons that most likely occupied those two nodes
differ by more than one nucleotide. Indeed, it was
recently shown that the majority of support for positive
selection in real data under the YN-BSM A consists of
sites patterns that suggest multiple single nucleotide
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substitutions along the foreground (Venkat et al. 2018).
Yet instantaneous double and triple mutations can occur
at a rate recently estimated to be roughly 1% to 3%
of all mutations (Keightley et al. 2009; Schrider et al.
2014; De Maio et al. 2013; Harris and Nielsen 2014). The
chance fixation of a double–triple mutation along the
foreground can only be misconstrued by the YN-BSM A
as evidence of multiple single nucleotide substitutions.
Hence, positive selection was often falsely inferred
by the YN-BSM A in alignments generated with the
fixation of rare double–triple mutations (Venkat et al.
2018). It follows that positive selection due to genuine
episodic peak shifts can be confounded not only by
nonadaptive shifting balance (Jones et al. 2017), but also
by the fixation of double–triple mutations (Venkat et al.
2018). The PG-BSM was specifically formulated with the
understanding that evidence of positive selection in the
form ofω>1 can result from multiple processes, some of
which are nonadaptive. This was the point of the move
away from the standard ω>1 paradigm. The PG-BSM
is apparently robust to double–triple mutations since,
although the inclusion of 6% double–triple mutations
resulted in larger ω̂2 compared to simulations with
0% DT, the omnibus test never incorrectly rejected the
null.

The current trend in model development is toward
greater realism via the addition of parameters that
represent specific mechanistic processes (e.g., Liberles
et al., 2013; Zaheri et al., 2014; Pollock et al., 2017; Venkat
et al., 2018). It is gradually becoming clear that this
approach is not guaranteed to give better models. Under
the maximum likelihood framework, the addition of any
parameter  to a null model M will always result in
a better fit (i.e., a larger likelihood). To guard against
a spurious increase in likelihood, the null is rejected
only if the log-likelihood ratio comparing the null model
without  with the alternate model that includes  is
greater than a prespecified threshold chosen to limit
the false positive rate to some maximum upper bound
(e.g., 5%). The trend toward realism implicitly assumes
that rejection of the null can be interpreted to mean
that the model with  provides a better representation
of the actual data-generating process than the model
without . It has been recently pointed out by several
authors that this assumption can be invalidated by
hidden variables and confounding (e.g., Beaulieu and
O’Meara 2016; Caetano et al. 2018; Jones et al. 2018).
Suppose  represents process P1, which did not occur
when the data were generated. Further, suppose process
P2 did occur when the data were generated, and that P2
tends to produce patterns in the data similar to P1 (i.e.,
P1 and P2 are confounded, Jones et al. 2018). Rejection
of the null under this scenario is likely because  can
account for variations in the data generated by process
P2. And rejection would be correct as an indication that
the inclusion of  improved model fit. But it would
also lead to the false conclusion that process P1 actually
occurred. When this happens we say that ̂ carries
phenomenological load (Jones et al. 2018).

The covarion-like component of the PG-BSM confers
some robustness against phenomenological load. Under
the null PG-BSM, the covarion-like model accounts
for all mechanisms that might generate heterotachy,
whether adaptive (i.e., episodic peak shifts) or nonadapt-
ive (shifting balance, fixation of double–triple mutations,
epistasis). Hence, the parameters

〈
ω1,ω2,p1,�

〉
for the

covarion-like process account for multiple mechanisms.
By contrast, the parameters � and � in equation (1)
have specific mechanistic interpretations as the rate at
which double and triple nucleotide mutations occur. It
was recently suggested that existing codon substitution
model should be modified to account for the possible
fixation of double–triple mutations (Venkat et al. 2018).
However, models that include � and � as estimated
parameters can result in false detection of fixation
of double–triple mutations due to phenomenological
load (Jones et al. 2018). This is avoided under the
PG-BSM by allowing that the maximum likelihood
estimates for

〈
ω1,ω2,p1,�

〉
result from an unknown

combination of mechanisms, including the fixation of
double–triple mutations. Hence, for example, finding
that �̂ is significantly >0 in a contrast between the
null PG-BSM with �=0 versus the null PG-BSM with
� estimated need not be interpreted as evidence for
any particular mechanism of heterotachy, but only for
“heterotachy-by-any-cause.” In this way, the possibility
of the fixation of double–triple mutations is subsumed
in the parameters for the covarion-like process, and
false conclusions due to the confounding of processes
are avoided. The PG-BSM framework therefore not only
provides a means to identify site patterns consistent with
specific adaptive mechanisms, but through the addition
of external phenotypic information also offers a solution
to several recently discovered problems associated with
confounding and phenomenological load (Jones et al.
2017, 2018; Venkat et al. 2018).

SOFTWARE

Software for the methods is available at: https://www.
mathstat.dal.ca/∼tsusko/software.html.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.rb4b420.
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