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Abstract.—Previous work has shown that it is often essential to account for the variation in rates at different sites in phylo-
genetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma
distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma. In
this article, we introduce discrete distribution estimates with large numbers of equally spaced rate categories allowing us
to investigate the appropriateness of the gamma model. With large numbers of rate categories, these discrete estimates are
flexible enough to approximate the shape of almost any distribution. Likelihood ratio statistical tests and a nonparametric
bootstrap confidence-bound estimation procedure based on the discrete estimates are presented that can be used to test the
fit of a parametric family. We applied the methodology to several different protein data sets, and found that although the
gamma model often provides a good parametric model for this type of data, rate estimates from an equal-probability discrete
gamma model with a small number of categories will tend to underestimate the largest rates. In cases when the gamma
model assumption is in doubt, rate estimates coming from the discrete rate distribution estimate with a large number of rate
categories provide a robust alternative to gamma estimates. An alternative implementation of the gamma distribution is
proposed that, for equal numbers of rate categories, is computationally more efficient during optimization than the standard
gamma implementation and can provide more accurate estimates of site rates. [Gamma model; Markov models; maximum
likelihood; molecular evolution; phylogenetics; rate distribution.]

Many phylogenetic models used in a maximum like-
lihood analysis of sequence data assume independent
Markov substitution processes across sites. Most of the
parameters for these Markov processes are assumed
constant across sites, but it has long been recognized
that it is unreasonable to assume that the overall rate of
evolution is constant across sites (Fitch and Markowitz,
1970; Uzzel and Corbin, 1971; Nei, 1987). Failure to
account for variation in rates across sites can, under
some conditions, lead to phylogenetic artifacts such as
long-branch attraction, as has been shown in simulation
studies (Huelsenbeck, 1995; Sullivan and Swofford,
2001) and in analyses of real data (Huelsenbeck, 1997;
Silberman et al., 1999). Likelihood methods that adjust
for the heterogeneity of rates across sites assume a
probability distribution for these rates (Yang, 1994;
Felsenstein and Churchill, 1996) and have been imple-
mented in popular packages for phylogenetic estimation
such as PHYLIP (Felsenstein, 1993), PAUP∗ (Swofford,
2000), TREE-PUZZLE (Strimmer and von Haeseler,
1996), and PAML (Yang, 2000). Most of these packages
use a gamma model as the parametric family for the rate
distribution and, for computational tractability, require
some form of discretization of this distribution for
estimation (Yang, 1994). It is possible that the family of
gamma distributions may not be rich enough to model
the actual rate distribution. This will occur, for instance,
when relatively few rates are possible so that the rate
distribution is discrete or when the rate distribution fits
some other parametric family (e.g., log normal or inverse
Gaussian). Another possibility would be that for the
taxa under consideration, a gene is undergoing a rapid
rate of evolution but, because of functional constraints,
a certain proportion of sites have very low rates, giving
rise to a bimodal distribution of rates across sites.

In addition to aiding more accurate phylogenetic esti-
mation, rate distributions are used in obtaining rate es-
timates at sites; consequently, the use of incorrect rate
distribution models can give rise to poor rate estimates.
Rate estimates at a site have been used in studies relat-
ing protein function and structure to sites (Gaucher et al.,
2001; Simon et al., 2002; Blouin et al., unpubl.). They have
also been used in studies investigating “covarion behav-
ior,” i.e., rate variation across subtrees (Lopez et al., 2002;
Susko et al., 2002). Clearly, the use of good rate estimates
is important for any such study.

It is important to be able to check the validity of the
gamma or any other parametric model for the rate dis-
tribution. To proceed we develop methods to compute
nonparametric maximum-likelihood estimates of the
distribution of rates-across-sites with no additional as-
sumptions about the form of the rate distribution. If such
a maximum-likelihood estimate is very different from a
gamma distribution in shape and regions of mass, evi-
dence is provided that the gamma distribution is inap-
propriate. We also present methods to construct boot-
strap confidence intervals for the true rate distribution.
With these intervals, we can verify whether a specific
parametric family is appropriate for a given data set.
We apply the methods to several amino acid data sets
and use likelihood ratio tests and bootstrap confidence
intervals to check whether the gamma distribution is ap-
propriate. Although the gamma model provides a good
fit for eight of our amino acid data sets, there is some
evidence for lack of fit in the remaining five data sets.
In cases where the gamma model does not fit well, rate
estimates from the discrete model with a large number of
rate categories can be very different than gamma model
rates and provide a robust alternative because they do
not require a gamma model assumption.
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RATES-ACROSS-SITES MODELS

The most common way of modeling rate variation is
through a rate distribution. Rates at sites are treated as
random (usually independent) variables that are drawn
from a common distribution. To ensure that the branch
lengths in the tree can be interpreted as the expected
number of substitutions between the two nodes at the
ends of the branch, the rate distribution must be chosen
so that E[r ] = 1.

The rate distribution in the rates-across-sites model
can be any random distribution, including both continu-
ous and discrete distributions. The most commonly used
continuous model is the gamma model with density for
rates:

g(r ; α) = ααrα−1 exp(−αr )/�(α).

The gamma model allows for a variety of different shapes
for the probability density function of rates but cannot
model all possible probability densities. For instance,
it cannot be used to model a bimodal density for the
rates. When testing whether the gamma model is ap-
propriate, to ensure that any distributional form can
be approximated we use a discrete model with a large
number of rates. The discrete model is specified by the
set of rates, r1, . . . , rk , that have positive probabilities,
ζ1, . . . , ζk , of occurring and can approximate parametric
densities well.

A discrete approximation will usually be required for
continuous rate distribution models such as the gamma
because of the computational difficulties in evaluating
likelihoods. For the usual independent sites model, the
likelihood is the product over sites of the uncondi-
tional probabilities, f (x), of those data x observed at the
sites. The unconditional probabilities f (x) are calculated
through f (x | r ), the conditional probability of x given
the rate at a site, which can be calculated directly through
a postorder tree traversal algorithm that requires sum-
mation of a number of terms that grows roughly linearly
with the number of taxa. The unconditional probabilities
are related to the conditional probabilities through

f (x) =
∫

f (x | r )g(r ) dr (1)

for a continuous rate density g(r ) and through

f (x) =
∑

j

f (x | r j ) ζ j (2)

for a discrete rate distribution. Explicit calculation of
Equation 1 would prevent use of the postorder tree
traversal algorithm and require summation over a num-
ber of terms that grows exponentially with the number
of taxa. It is to avoid this computational difficulty that
the discrete approximations are used in practice.

In the discussion below, we introduce the three main
models that we will use. The first is the model that is

most frequently implemented in present software, the
second is a discrete alternative implemented here with
large numbers of rate categories, and the third is a differ-
ent implementation of the gamma model that allows one
to more easily deal with large numbers of rate categories.

Discrete Gamma Estimate

The discrete gamma estimate (DGE) used by TREE-
PUZZLE is based on the approximation of Yang (1994):

f (x) =
∫

f (x | r )g(r ) dr ≈
k∑

j=1

1
k

f (x | r j ), (3)

where g(r ) is the gamma density with parameter α. Here
r1, . . . , rk are calculated as the 1/(2k), . . . , (2k − 1)/(2k)
percentage points of the gamma distribution and then
rescaled so that

∑
r j/k = 1. Because the gamma distri-

bution depends on the parameter α, r1, . . . , rk are func-
tions of α. The parameter α is chosen so that r1, . . . , rk
give the largest approximate likelihood

∏
i f (xi ). Under

this approach, each choice of α gives different ri so that
the f (x | ri ) need to be recomputed during optimization,
which is an expensive calculation.

Discrete Estimate

We construct a discrete estimate (DE) using a discrete
model for the rate distribution. For a fixed grid r1 < · · · <
rk of rates and corresponding probabilities ζ1, . . . , ζk , the
probability of data x at a site is

f (x) =
k∑

j=1

ζ j f (xi , r j ).

The parameters in the rate distribution that are estimated
are ζ1, . . . , ζk . They are chosen to maximize the likeli-
hood over all ζ1, . . . , ζk that satisfy ζ j ≥ 0,

∑
ζ j = 1 and

E[r ] = ∑
ζ j r j = 1. In our examples, the maximization

was done using the general constrained optimization
algorithm VE11AD in the Harwell Subroutine Library
(HSL). We vary the size of the grid for illustration but
always choose the grid to be equally spaced and usually
use a large grid of values (k = 101). This approach is in
contrast to the grid used for the DGE, which is unequally
spaced and usually based on a small number of intervals.

Even though the distribution we fit is discrete, with
a large enough grid it can approximate any distribu-
tion reasonably well. Thus, the discrete estimate can be
thought of as a nonparametric estimate of the rate distri-
bution (it does not correspond to a family described by a
few parameters). This approach is useful for comparison
with parametric estimates and can be used to assess the
appropriateness of a specific parametric family.

Discrete Gamma Probability Estimate

Alternative gamma model estimates can be obtained
through different approximations to Equation 1. One
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estimate that will be of value for comparison to the dis-
crete estimate is the discrete gamma probability estimate
(DGPE).

Given a set of rates, r1, . . . , rk , contained in intervals
I1, . . . , Ik , let ζ j (α) be the probability of a rate in the in-
terval I j calculated under the gamma distribution with
parameter α. The approximation to Equation 1 used to
obtain the DGPE is

f (x) =
∫

f (x | r )g(r ) dr ≈
k∑

j=1

ζ j (α) f (x | r j ).

The parameter α is chosen so that ζ1(α), . . . , ζk(α) give
the largest approximate likelihood

∏
i f (xi ). In our ex-

amples, given a set of rates, intervals were chosen as
I1 = (0, b1], I j = (b j−1, b j+1], j = 2 . . . , k − 1 and Ik =
(bk−1, ∞), where b j = (r j + r j+1)/2, j = 1, . . . , k − 1.

Because the last rate category is always infinite in
length, with a large number of categories, it should be
chosen so that the gamma probabilities and site likeli-
hoods for rates within it are small. One way to choose
would be to check for rate estimates that are close to the
lower boundary for the last rate category. If a significant
number of rates are close, a refitting with a larger upper
bound on the last rate category should be considered. In
our examples, for simplicity, because of a lack of prior
information, and to make comparison with the DE sim-
pler, we have chosen the first k − 1 intervals to be of equal
width, but in principle they need not be.

Choosing the probabilities ζ j (α) through maximum-
likelihood estimation for a fixed set of rates, which is
how the DGPE is determined, has substantial computa-
tional advantages over choosing the rates r j (α), which is
what is done to obtain the DGE. For DGPE, which maxi-
mizes over the probabilities, the conditional probabilities
of the data f (x | ri ) are fixed throughout the computation.
These conditional probabilities are relatively expensive
to compute. In contrast for DGE, where rates r j (α) change
every time a new α is considered, the conditional proba-
bilities must be recalculated.

Most phylogenetic analyses with a rates-across-sites
model require estimation of both rate distribution pa-
rameters and a tree. In principle, this estimation can
be done by maximizing the likelihood over both by, for
instance, alternating between estimation of the tree for
fixed rate distribution parameters and estimation of the
rate distribution parameters with a fixed tree. However,
the estimation of a tree is very computationally expen-
sive, and so, while this is the preferred approach in prin-
ciple, we have not implemented it with any of the forms
of estimation below. In all cases, the rate distribution pa-
rameters are estimated with a fixed tree; to further avoid
computational difficulties, in most cases the tree was esti-
mated by means other than maximum-likelihood estima-
tion. In such implementations, if the initial distribution
used in the estimation (usually a gamma model) is deter-
mined to be unacceptable as a rate distribution model,
one should re-estimate the tree and check for differences.

In the examples considered here, the gamma distribution
was the initial distribution and was not found to be in
gross error. For the eubacterial hsp-70 data set where the
gamma model seemed in greatest doubt, re-estimation of
the tree with a discrete estimate of the rate distribution
gave the same topology as the gamma rate distribution
and similar, but on average shorter, branch lengths (see
Fig. 1).

GENE FAMILIES EXAMINED

We fit rate distributions to a number of dif-
ferent data sets. The data sets are available at
http://www.treebase.org/treebase under study acces-
sion number S910; the matrix accession numbers are
indicated in Table 1. The data sets were β-tubulin; eu-
karyote, plant, archaebacterial, and eubacterial forms
of hydroxymethylglutaryl-CoA (HMG-CoA) reductase;
eubacterial plus mitochondrial-targeted chaperonin 60
sequences; eubacterial and mitochondrial heat shock
protein (hsp) 70 sequences; cytosolic homologs of hsp-
90 from eukaryotes; cytosolic-type malate dehydroge-
nase (cMDH) from eukaryotes, eubacteria, and chloro-
plasts; archaebacterial and eukaryotic elongation factor
1-α, (EF-1α); eukaryotic HBS1; and eukaryotic release
factor 3 (eRF3).

All alignments were performed using the progres-
sive alignment method implemented in ClustalW 1.8
(Thompson et al., 1994) with default settings. Alignments
were inspected by eye, and regions of ambiguous align-
ment were removed. Alignments are available upon re-
quest from the authors. Phylogenies were inferred by
first estimating a maximum-likelihood distance matrix
using TREE-PUZZLE with an eight-category gamma dis-
tribution (DGE) model of rate variation and the PAM
amino acid substitution matrix (Dayhoff and Eck, 1968;
Dayhoff et al., 1979). The Fitch–Margoliash method (im-
plemented in FITCH; Felsenstein, 1993) was used to in-
fer trees from the distance matrices by multiple random
stepwise addition replicates and global rearrangements.
Branch lengths of the optimal topology were then re-
estimated under maximum likelihood with model spec-
ifications as above. The β-tubulin data set was used as the
main data set for illustration and was treated differently.
Partly to illustrate the difficulties of rate estimation with
small number of rate categories, four rate categories were
used with this data set, and because it was the main il-
lustrative example, full maximum-likelihood estimation
was used to obtain the tree.

RATE DISTRIBUTION ESTIMATION

As an example of rate distribution estimation we con-
sider in detail the aligned amino acid data set ofβ-tubulin
composed of 431 sites for 22 taxa. The log likelihood for
the model with a single rate was −3319.73246. By com-
parison the log likelihoods for all of the models that allow
rates to vary according to a distribution were in the range
of −3170 to −3150, suggesting that for these data some
model of rate variation is needed.
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FIGURE 1. Plots of the estimated trees for the eubacterial hsp70 data set. Both trees were estimated using the Fitch–Margoliash method.
Branch lengths were then re-estimated under maximum likelihood. The top panel gives the estimated tree with eight category DGE distances
obtained using TREE-PUZZLE. The bottom panel gives the tree estimated using DE distances.

The plots of the estimated cumulative distribution
function, G(r ) = ∑

r j ≤r ζ j , for the DE and the gamma cu-
mulative distribution function for the α = 0.271 result-
ing from DGPE are given in Figure 2; both the DE and
DGPE were based on estimates with 101 rates between
0 and 10. The log likelihood for the discrete estimate
was −3153.713 and that for the DGPE was −3154.249.
The likelihoods for the models are similar, and the basic
patterns in the distributions are similar, both having a
rapid initial increase and then a leveling off (Gu et al.,
1995; Waddell et al., 1997). The distributions are, how-
ever, quite different with the DE, exhibiting several large
steps. This is not an optimization artifact. Estimation

was done using the general constrained optimization
algorithm VE11AD in the HSL and cross-checked with
the E04UCF routine in the Numerical Algorithms Group
FORTRAN libraries; convergence criteria were met.

With a large number of grid points, it was quite com-
mon for the DE to assign probability to only a few rates.
This happens because the probabilities f (x | r ) of data
given the rate are almost the same for rates r that are
close together. Because of this, a rate distribution that
assigns relatively large probability to a few rates, say
r1, . . . , rk , will give almost the same likelihood as a rate
distribution that, for instance, assigns approximately the
same probability as was assigned to each of the ri spread
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TABLE 1. Differences in log likelihoods for the DE and DGPE models for several data sets. The P value is given for a test of the null hypothesis
that the gamma model is appropriate as it is the critical value for a 0.05-level test; both were determined by parametric bootstrapping.

Accession no. Data set No. sites No. taxa Difference Cutoff P

M1508 β-tubulin 431 22 0.54 4.12 0.932
M1500 eukaryotic, EF-1α 269 27 3.00 7.33 0.652
M1499 eubacterial, chaperonin 60 513 22 3.58 7.77 0.532
M1496 archaebacterial, HMG-CoA 251 11 2.40 5.18 0.440
M1506 plant, HMG-CoA 251 15 1.58 3.05 0.290
M1501 eukaryotic, HMG-CoA 251 17 2.84 5.27 0.270
M1497 archaebacterial, EF-1α 269 13 3.14 4.69 0.175
M1505 eukaryotic, cMDH 319 16 3.33 3.94 0.072
M1502 eukaryotic, HBS1 269 13 6.02 5.24 0.020
M1504 eukaryotic, hsp-90 547 37 10.69 7.90 0.008
M1498 eacterial, HMG-CoA 251 14 8.15 5.23 0.002
M1507 eukaryotic, eRF3 269 17 11.24 5.54 0.000
M1503 eubacterial, hsp-70 479 23 15.38 6.48 0.000

out over a large number of rates that are very close to ri .
Nevertheless, because the f (x | r ) are usually quite differ-
ent for rates that are further apart, estimates that involve
summing over rates, such as the cumulative distribution
function and the conditional mean rate at a site, tend to
be quite stable.

There was only a small difference in log likelihoods
between the gamma and discrete models for this data
set. Because the DE is a maximizer of the log likeli-
hood over a very flexible family of distributions, one
can conclude that estimation with any other family of
rate distributions would similarly show a small differ-
ence in likelihood; otherwise, a discrete approximation
to it would have given the DE. This similarity is illus-
trated in the present case by the log likelihood for the
gamma + invariable sites model, which gave a log like-
lihood of −3154.242, only marginally larger than the log
likelihood of −3154.29 for the gamma model.

To check whether the estimate of the tree would change
significantly with a different rate distribution, we re-
estimated the tree using the DE as the rate distribution.
The resulting log likelihood was −3153.35. The topology

FIGURE 2. The DE and DGPE rate cumulative distribution esti-
mates and 95% bootstrap confidence bounds for the β-tubulin data.
The DE and DGPE rate distribution estimates were estimated with 101
rates equally spaced between 0 and 10.

was the same, and there were only small changes in some
of the branch lengths. This result reinforces our point that
more iterations of estimating the rates and then the tree
may not be necessary.

LIKELIHOOD RATIO TESTS FOR THE FIT
OF THE GAMMA MODEL

The gamma distribution seems to provide a reason-
able model for the β-tubulin data. To check whether this
property was more widely applicable, we obtained the
likelihood differences between DE and DGPE for a num-
ber of other data sets. These were then used in likelihood
ratio tests of the null hypothesis that the gamma model is
appropriate. The results are given in Table 1, sorted with
respect to P value in decreasing order. The estimated
P values range from 0.000 to 0.932. Five of the data sets
have P values <0.05, with one other having a relatively
small estimated P value of 0.072. For the other seven data
sets, there is no significant evidence of a departure from
the gamma model.

Two data sets have P values between 0.01 and 0.10,
and four data sets have estimated P values <0.01, with
two of these having P values estimated as 0.000. Never-
theless, none of the log-likelihood differences were ex-
tremely large, suggesting that although there is signifi-
cant evidence of a departure from the gamma model, the
departure may not be an indication of a very different
rate distribution. To investigate this possibility further,
we constructed confidence bounds for the true rate distri-
bution for the data set (eubacterial hsp-70) that gave the
largest difference in log likelihoods. Approximate 95%
confidence bounds for the rate distribution were con-
structed using the bootstrap methodology, discussed in
more detail below. The result is given in Figure 3. One
can see that the estimated gamma cumulative rate dis-
tribution is well within the bounds in the region where
the rate distribution increases most quickly. The distri-
bution falls outside of the bounds only for large rates.
In this case, the data suggest that it is unlikely that the
rate distribution has mass at large rates yet the gamma
model requires positive probability everywhere.

The results reported in Table 1 are based on para-
metric bootstrapping; because many of the estimated
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FIGURE 3. The gamma rate distribution estimates and 95% boot-
strap confidence bounds for the eubacterial hsp-70 data set. The dashed
line gives the cumulative distribution function for a gamma distribu-
tion with α = 0.563, the DGPE of α.

probabilities in the DE are on the boundary of the pa-
rameter space it is unlikely that usual likelihood theory
is applicable here. To approximate the distribution of the
differences in log likelihoods under the null hypothesis,
we repeatedly simulated data from a gamma model and
obtained the differences in log likelihoods between the
DE and the DGE for each of the simulated data sets. The
critical value for an α-level test can then be estimated
as the (1 − α) × 100th percentile of the differences in log
likelihoods from the simulated data sets and the P value
as the proportion of simulated samples with larger log-
likelihood differences than the difference observed for
the actual data. We made these estimations separately
for each of the data sets that were analyzed. Table 1 re-
ports the critical values (cutoff) for a 0.05-level test and
P values for each of the data sets. Simulated data were
generated using Pseq-Gen (Rambaut and Grassley, 1997)
with the estimated tree and estimated DGPE α value. A
total of 1,000 simulated samples were generated for each
data set. The DE and DGPE were estimated with 101
equally spaced rates.

BOOTSTRAP ESTIMATION OF CONFIDENCE BOUNDS

The discrete rate distribution estimates can be used to
obtain bootstrap confidence bounds for the actual rate
distribution. We used this method to obtain confidence
bounds for the cumulative rate distribution at each of the
rates. The procedure is described as follows:

1. Sample with replacement sites from the n sites available
and record the data at these sites as x∗

1 , . . . , x∗
n .

2. Estimate the discrete rate distribution with the se-
lected sites.

3. Store the values of the estimated cumulative distribu-
tion function at the grid points G(r1)∗, . . . , G(rk)∗.

Steps 1–3 are repeated a large number of times. Upon con-
clusion, the lower and upper bounds for a (1 − α) × 100%

confidence interval for G(r j ) are taken as the α/2th
and (1 − α/2)th percentiles of the generated G(r j )∗. This
method of bootstrapping is sometimes referred to as the
percentile method (Davison and Hinkley, 1997: sect. 5.3)
and has been shown to give appropriate coverage prop-
erties in a number of cases.

The bootstrap bounds calculated through the above
method are marginal bounds: the probability is approxi-
mately 1 − α that the actual rate distribution at r j will be
within the bounds given. The bounds are not however
simultaneous: the probability is less than 1 − α that the
actual distribution will be contained within the bounds
simultaneously at each r j . To change the bounds to si-
multaneous bounds we used the above strategy to ob-
tain the shape of the initial bounds. Let lr and ur denote
the resulting lower and upper bounds at rate r . Logis-
tic transformations were applied to these bounds, giving
new bounds log(lr/[1 − lr ]) and log(ur/[1 − ur ]) on the lo-
gistic scale. A bisection algorithm was then used to deter-
mine the smallest constant a > 0 so that (1 − α) × 100%
of the generated rate distributions G∗ satisfied that

log(lr/[1 − lr ]) − a ≤ log{G∗(r )/[1 − G∗(r )]}
≤ log(ur/[1 − ur ]) + a

simultaneously for all a . This process gives simultaneous
bounds on the logit scale. To transform back to the cu-
mulative distribution scale, a bound b was transformed
to exp(b)/[1 + exp(b)]. Note that this same additive ad-
justment could have been made on the original scale;
however, it can lead to a violation of the restriction that
the bounds be between 0 and 1.

The bootstrap bounds based on 1,000 bootstrap sim-
ulations for the β-tubulin data are included in Figure 2.
The gamma estimate is within the bootstrap bounds, and
the bounds are tight: No distribution with a single mass
point (which corresponds to not requiring a rate distri-
bution) would fall within the bounds, and any reason-
able rate distribution would have to have a rapid rate of
increase.

RATE ESTIMATION

Estimating the rate of evolution of sites in proteins has
recently been recognized as important to the undestand-
ing and/or prediction of their functional or structural
properties (Gaucher et al., 2001; Simon et al., 2002; Blouin
et al., 2003; Blouin et al., unpubl.). Estimates of rates are
most naturally constructed from the conditional distri-
bution of rates given the data at a site, which can by
obtained through Bayes’s formula:

p(r j | x) = f (x | r j )ζ j

/( ∑
j

f (x | r j )ζ j

)
.

The most common rate estimate is the conditional
mode: the rate giving the largest conditional probability
p(r j | x). An alternative rate estimate that is sometimes
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TABLE 2. The rate distribution estimates for the DE (maximum
likelihood, ML) and the DGE from TREE-PUZZLE for the β-tubulin
data set.

DGE

ML rate estimate 0 0.551 3.393

0 298 0 0
0.8 0 51 35
3.9 0 0 42

10 0 0 5

used is the conditional mean estimate:

E[r | x] =
∑

j

r j p(r j | x),

which has the optimality property of giving minimal ex-
pected mean square error.

Different rate estimates are obtained from different
methods of rate distribution estimation. Our interest here
is in contrasting a “conventional” rate estimates (DGE)
with more flexible estimates. We consider the differences
that result using the DGE and DE of rate distributions for
the β-tubulin amino acid data set.

Table 2 gives the conditional mode rate estimates us-
ing the DE, estimated with 101 rates, of the rate distri-
bution cross-tabulated against the conditional mode rate
estimates from the DGE obtained from TREE-PUZZLE
with four rate categories. Many of the rates are similar:
51 of the sites have rates that are estimated to be 0.551 by
TREE-PUZZLE, and these are estimated as 0.8 by using
the discrete rate distribution estimate. Similarly 42 of the
rates are estimated as 3.9 using the discrete distribution
and as 3.933 by TREE-PUZZLE. One difference that is
worth noting is the five sites that were estimated to have
a large rate of 10 using the discrete distribution but that
were estimated to have a rate of 3.393 by the discrete
gamma. The estimated conditional probability p(10 | x)
for these sites provides an indication of how likely it is
that the rates at these sites are much larger than 4. For
the five sites with estimated rates of 10, these estimated
conditional probabilities were 0.89, 0.77, 0.56, 0.99, and
0.93, giving strong evidence for an estimated rate of 10.
The difficulty for the gamma estimates is the discrete na-
ture of the approximation used by the discrete gamma
model. The largest rate category is always of the form
(b, ∞), with b chosen so that the probability of the inter-
val under the gamma model is 1/k. For many α parame-
ters, this value will be small, and so any rate that is very
large will be assigned the relatively small rate b.

Figure 4 includes scatter plots comparing the condi-
tional mean and mode estimates corresponding to the
different forms of rate distribution estimation for the
β-tubulin data set. The DE and DGPE rate distribution
estimates had mass on 101 values between 0 and 10. The
DGE is for a discrete gamma model obtained from TREE-
PUZZLE with four equal-probability rate categories. As
with the conditional mode estimates, a major feature is
that a number of sites are estimated to have large rates

using the DE but relatively small estimated rates based
on the DGE. This is true when comparisons are made
between the DGE and DGPE estimates as well. The dis-
crepancy between the DGE and DGPE, which are both
based on a gamma model, indicates that the DGE are
in error largely because of the large last rate category.
This error can be avoided by using a larger number of
categories when fitting the models. In practice, however,
a small number of categories is often used. Moreover,
while the use of a small number of rate categories may
not appreciably affect the estimation of topology and will
make computation more manageable, the example indi-
cates that the rate estimates may be poor. One possible
adjustment would be to use a DGE for estimation of the
topology and then use DGPE to estimate the rates after-
wards.

The DGPE mean rate estimates for the β-tubulin data
set are highly correlated with but different from the
DGPE mode rate estimates. The majority of mode rate
estimates are smaller than the mean estimates, with a
few large rate estimates providing exceptions. Plots of
conditional distributions or rates for the sites where the
mode and mean estimates differed most indicated that
skewness in these distributions caused these estimates
to differ.

One of the other features of note in Figure 4 is the agree-
ment between the DE mean rates and DGPE mean rates.
For the β-tubulin data set, the likelihood ratio test for
the null hypothesis that the gamma model is appropri-
ate gave a P value of 0.932. Because there is no significant
evidence that the gamma model is inappropriate, the rate
estimates can be expected to be similar and this turned
out to be the case. In contrast, the likelihood ratio test for
the eubacterial hsp-70 data set gave a P value that was
estimated as 0.000. Although the result of the test indi-
cates a significant departure from the gamma model, the
plot of the gamma distribution function with bootstrap
bounds (Fig. 3), suggests that the departure is not large
in magnitude. Because the gamma distribution falls out-
side of the bootstrap bounds only for large rates, and
in this case falls below the bootstrap bounds, the plot
suggests that the gamma distribution places a little too
much mass at larger rates. The implication of this bias for
rate estimation should be that large DGPE rate estimates
will be larger than the corresponding DE rate estimates.
This indeed turns out to be the case, as is illustrated in
Figure 5, which plots the DGPE means against the DE
means. Some of the smaller rate estimates also appear to
be underestimated. For this data set, if an analysis were
being conducted where rate estimation was important,
the DE rate estimates would be preferred because they
do not assume a gamma model, which in this case can
be rejected.

DISCUSSION

The rate distribution cannot be expected to be fully re-
covered from character data alone. Nevertheless signifi-
cant information can be obtained from data. The bounds
for the rate distribution given in Figure 2 are tight and
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FIGURE 4. Scatter plots comparing the different conditional mean and mode estimates corresponding to the different forms of rate distribution
estimation for the β-tubulin data set. The DE and DGPE rate distribution estimates had mass on 101 values between 0 and 10. The DGE is for a
discrete gamma with four equal-probability rate categories.

do not allow for many choices of rate distribution. More-
over, at least for the types of data sets that have been
considered here, the gamma distribution often provides
a reasonable model for the rate distribution (similar con-
clusions were arrived at by Waddell et al., 1997). The ap-
propriateness of the gamma model was inferred by com-
parison with the discrete model, which provides a very
flexible family of rates distributions that can be used for
comparison with a parametric family and to construct
bootstrap confidence bounds. In constrast, likelihood ra-
tio comparisons between the gamma model and other
parametric models usually suffer from the difficulty that
the models are nonnested and always suffer from the fact
that the alternative parametric families imply restrictions
on the alternate form of the rate distribution.

One of the other conclusions that comes out of the anal-
ysis is that for estimation of the rate at a site, it may be
valuable to consider a DGPE with a larger number of rate
categories rather than those for the DGE. The heavy right
tail of the gamma distribution creates a very large last
rate category so that a few sites with rates that should be
inferred as much larger than the rest will be grouped into
this largest rate category using the DGE. Sites with large
rates are important because they are often suspected of

being in locations in the sequence that are not function-
ally or spatially constrained for the organisms under
study. Accurate identification of unconstrained versus
constrained sites is required if inferences regarding func-
tion are to be made from analyses of site rates. Finally, in
cases where rate estimation is important and a gamma
model can be rejected, the DE mean rate estimates, which
do not require a gamma assumption, provide a robust al-
ternative to gamma estimates. Software to obtain the DE,
DGPE rate distributions, and rate estimates is available
at http://www.mathstat.dal.ca/∼tsusko.

Although we did not find much evidence for changed
tree topologies, the rate distribution can in principle
make a big difference to estimation, especially if there
are long branches present (Huelsenbeck, 1995; Sullivan
and Swofford, 2001). Ideally, the shape parameter of the
gamma rate distribution should be re-estimated for every
tree examined during the course of maximum-likelihood
estimation. Computational limitations associated with
the recalculation of site likelihoods when optimizing α
using the standard DGE discretization have made this
re-estimation all but impossible. However, implemen-
tation of the DGPE rate estimation with the number of
rate categories comparable to that of the traditional DGE
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FIGURE 5. A scatter plot comparing the DGPE conditional means
with the DE conditional means for the eubacterial hsp-70 data set.

method should allow for a much greater speed of com-
putation and could permit the re-estimation of the rate
distribution for all trees examined, potentially improv-
ing the estimation of topologies. Furthermore, use of DE
and DGPE distributions with a large number of rates
and a fixed tree should allow for much more accurate
estimation of the rates of evolution at sites. This will be
extremely useful to those developing more realistic mod-
els of protein evolution.

Yang et al. (2000) considered a similar problem in
which the rate of nonsynomymous to synonymous sub-
stitutions is allowed to vary across sites. They considered
10 parametric families as models for the distribution of
these rates. Although these are a different type of rate
than what is being considered here, for 7 of the 10 genes
they considered the difference between the log likelihood
for a gamma model and the best other parametric model
was less than 4. For one of the data sets, the difference
was 20, and for two others it was larger than 5. A discrete
model, such as the DE considered here but with a small
number of categories, fit well for all of the data sets.

The discussion here assumed a model where rates vary
across sites but are constant at a given site. Recent work
by Lockhart et al. (1998), Galtier (2001), and Susko et al.
(2002), among others, has suggested that the rates of
molecular evolution often vary across subtrees of the
larger evolutionary tree as well as across sites.
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